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ABSTRACT

Background: Cytology-based screening methods for cervical adenocarcinoma 
(ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. 
DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, 
but few methylation markers have been described for ADC. We aimed to identify novel 
methylation markers for the early detection of both ADC and SCC.

Results: Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 
6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both 
ADC and SCC. Verification and independent validation of the 15 most significant 
regions revealed 5 markers with differential methylation between 17 normals and 13 
cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted 
in detection rates ranging between 80% and 92% while between 94% and 99% of 
control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) 
detected ADC and SCC with similar sensitivity. In scrapings from women referred 
with an abnormal smear (n=229), CIN3+ sensitivity was between 36% and 71%, 
while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and 
CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination 
SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), 
while specificity improved (42% vs. 84%, respectively, P < 10-5).

Conclusion: SOX1 and SOX14 are methylation biomarkers applicable for screening 
of all cervical cancer types.

INTRODUCTION

Cervical cancer is one of the most common female 
cancers in the world, with more than 525,000 new cases 
and over 265,000 deaths occurring globally each year 
[1, 2]. Cervical squamous-cell carcinoma (SCC) and 

cervical adenocarcinoma (ADC) are two main histological 
subtypes of invasive cervical cancer, which account for 
75 - 90% and 10 - 25% of cases, respectively [3–5]. 
Currently, the incidence of SCC is declining in most 
developed countries. In contrast, there is a rise in the 
absolute and relative incidence of ADC [6]. In Europe, 

                  Research Paper



Oncotarget80736www.impactjournals.com/oncotarget

ADC is increasing rapidly, especially in younger women 
[7, 8]. In the Netherlands, the absolute incidence rate of 
ADC increased by 15.8% in women aged 15 - 29 years 
and 2.5% in women aged 30 - 44 years [7]. Moreover, 
compared to SCC, ADC is mainly diagnosed in more 
advanced stages, appears to be less sensitive to (chemo)
radiation therapy and is associated with a worse prognosis 
[9–12].

Both the upward trend in relative incidence as well 
as delayed detection of ADC are probably due to the 
present population-based screening programs, which are 
more effective in the detection of the precursors of SCC 
than those of ADC. This may be because ADC arises in 
a more cranial localization in the cervix where it is more 
difficult to either obtain representative cytology samples 
or to detect ADC or its precursors by colposcopy [13]. 
High-risk human papillomavirus (hrHPV) is widely 
accepted as the predominant etiological agent of cervical 
cancer [14] and its detection is clinically more sensitive 
for the detection of cervical adenocarcinoma in situ 
(AdCIS) and ADC compared to cytology [15]. As hrHPV 
testing has a relatively low positive predictive value in 
population-based screening programs [16, 17], women 
who are tested positive will require an additional test 
that is equally sensitive to detect SCC and ADC and can 
also sufficiently detect their precursors to ensure correct 
referral to the gynecologist for colposcopy [18]. Therefore, 
novel biomarkers for cervical cancer are required that 
ideally will identify both ADC and SCC as well as their 
precursors with high sensitivity.

Aberrant gene expression caused by epigenetic 
mechanisms is a prominent feature of many types of 
cancer [19], and DNA promoter methylation of tumor 
suppressor genes (TSG) has been reported to be an early 
event in carcinogenesis [20]. DNA methylation markers 
might be exploited in cancer diagnosis as variations in 
DNA methylation are observed more frequently than other 
genetic variations [21]. Although we [22, 23] and others 
[24] have reported many methylation markers associated 
with cervical cancer, many of these markers are more 
frequently methylated in SCC compared to ADC [23]. 
Moreover, so far only a limited number of methylated 
genes have been identified that are specifically associated 
with ADC. Most of these markers have lower sensitivity 
for both ADC and SCC or either one [25–27].

In the past ten years, advances in whole-genome 
methylation profiling technologies have revolutionized 
the field of cancer research. In order to identify cervical 
cancer-specific methylation markers, approaches such as 
a pharmacological unmasking expression microarray [28] 
or immunoprecipitation combined with oligonucleotide 
microarrays have been performed [29–31]. Nevertheless, 
microarray-based screening has drawbacks regarding 
their design and production, and also the inaccurate 
hybridization signals and variable immunoprecipitation 
step leave room for further improvement. Reductions 

in costs have spurred the adoption of next-generation 
sequencing (NGS) platforms with higher sensitivity and 
accuracy compared to traditional microarray profiling 
[32]. Recently, an affinity-based methylation capture 
assay using methyl-binding domain (MBD) complexes 
coupled with NGS (MethylCap-seq) has been reported to 
be an effective technique to comprehensively analyze the 
methylome in lung cancer, ovarian cancer, head and neck 
cancer, and high-grade cervical intraepithelial neoplasia 
(CIN) [33–37]. These technologies have facilitated the 
discovery of potential DNA methylation biomarkers 
for disease development and progression as well as our 
understanding of the complex, underlying molecular 
mechanisms that lead to cancer.

Until now, no cervical cancer DNA methylome 
analysis has been performed using ADC. In this study, 
MethylCap-seq was applied to perform a genome-wide 
DNA methylation screening of cervical cancer, including 
both ADC and SCC, and normal cervix tissues. With this 
approach, we sought to identify genome-wide aberrant 
methylation patterns of cervical cancer-specific markers 
with high sensitivity to detect both ADC and SCC and 
their precursors in cervical scrapings.

RESULTS

Identification of methylated candidates by 
MethylCap-seq

To discover markers that are methylated in both 
SCC and ADC, but not in normal cervix, we generated 
a methylome of 6 SCC and 6 ADC and used a stepwise 
selection approach as outlined in Figure 1. In total, 6,231 
candidate differentially methylated regions (DMRs) for 
ADC compared to normal cervices and 10,724 candidate 
DMRs for SCC compared to normal cervices were 
identified after applying our selection criteria (see methods 
section for detailed description of the identification step, 
Figure 2). In ADC as well as in SCC hypomethylation was 
more frequently observed compared to hypermethylation 
(Figure 3). We focused on the hypermethylated DMRs, as 
these are more easily translated into methylation-specific 
PCR (MSP) assays, which can be implemented as clinical 
diagnostic tests. Overall 446 candidate hypermethylated 
DMRs, comprising 357 genes, were identified in ADC and 
93 DMRs, comprising 89 genes, in SCC. Gene ontology 
(GO) functional analysis for these DMRs was performed 
to determine if similar pathways were affected in both 
cancer histological types. There were in total 328 and 
49 GO terms enriched in ADC and SCC, respectively 
(Supplementary Table S1 and S2). Most GO terms 
enriched in SCC were also enriched in ADC, as 37/38 of 
the biological processes, 4/5 of the cellular components 
and 5/6 of the molecular functions, were also shown in 
ADC. This observation suggests that similar pathways are 
disrupted in the carcinogenesis of both histological types. 
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Figure 4 shows the most significant GO terms enriched 
in ADC together with the associated significance in SCC. 
We identified 53 regions, comprising 50 genes that were 
hypermethylated in both ADC and SCC (Figure 2).

Verification and validation of the top 15 
candidates

After identification of 53 candidate regions, the 
top 15 regions (Supplementary Table S3) were selected 
for verification of the MethylCap-seq data by either 
MSP or pyrosequencing analysis. To obtain the top 15 
genes, candidate regions were ranked on the number of 
(i) methylated ADC, (ii) methylated SCC, and on (iii) 
unmethylated normal cervices. Using the same DNA 
as used for MethylCap-seq, 10 genes (SOX1, GFRA1, 
SLC6A5, TBX5, OLIG2, AC004963.1, TBX20, RP11-
100E13.1, RP1-241P17.1, and SOX14) showed a 
significant correlation between MSP or pyrosequencing 
and the number of reads from the MethylCap-seq 
(Supplementary Table S4).

MSP primers were designed for these 10 markers. 
Four MSP assays showed high methylation levels in DNA 
from leukocytes and whole-genome amplified (WGA) 
DNA and were therefore excluded from further validation 
(Supplementary Table S4). MSP of the remaining 6 genes 
was performed on DNA from an independent series of 
17 normal cervix and 13 cervical cancer formalin-fixed 
paraffin-embedded (FFPE) tissue samples (6 ADC and 7 
SCC). Except for TBX5, all 5 genes (GFRA1, SLC6A5, 
SOX1, SOX14 and TBX20) were significantly differentially 
methylated between normal and cancer tissues with a high 
methylation frequency in both ADC and SCC (Table 1).

Diagnostic evaluation on scrapings from healthy 
cervices and cervical cancer scrapings

QMSP was designed for 5 genes (GFRA1, SLC6A5, 
SOX1, SOX14, TBX20) and their diagnostic potential was 
evaluated on scrapings from a large series of cervical cancer 
patients (n=125: 57 ADC and 68 SCC) and controls with 
similar age. The level of DNA methylation for all five genes 

Figure 1: Flow scheme for the identification of new cervical cancer markers.
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Figure 2: Identification of methylated candidates by MethylCap-seq.

Figure 3: Frequencies of hyper- and hypomethylated regions in ADC and SCC.
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was significantly different in cancer scrapings compared to 
normal scrapings (each P < 10-24), while methylation levels 
in ADC and SCC (Figure 5) were similar (all P > 0.10). 
Because many markers were also methylated in normal 
scrapings, albeit at lower levels as observed in cancer 
scrapings, a threshold was set by maximizing Youden´s 
index J using receiver-operator characteristic (ROC) 

analysis of the individual genes. Hereafter, the specificity 
and the sensitivity for ADC and SCC were determined 
for all individual genes (Table 2). The sensitivity of the 
5 QMSP assays ranged from 79% to 88%, while the 
specificity ranged from 94% to 99%. Except for GFRA1, 
all markers (SLC6A5, SOX1, SOX14 and TBX20) detected 
ADC and SCC with a similar sensitivity.

Figure 4: For three GO themes the five most significant GO terms enriched in ADC are shown along with the P-value 
of that term in SCC. Within the cellular component GO terms, only 4 terms were significant in both ADC and SCC. All depicted 
P-values are below 0.05.
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Table 1: MSP positivity in the external validation cohort of FFPE tissue samples

Gene Normal Cancer ADC SCC

TBX5 56% (9/16) 67% (8/12) 60% (3/5) 71% (5/7)

SOX14* 25% (4/16) 85% (11/13) 83% (5/6) 86% (6/7)

SOX1* 0% (0/15) 92% (11/12) 100% (5/5) 86% (6/7)

TBX20* 6% (1/17) 83% (10/12) 100% (5/5) 71% (5/7)

SLC6A5* 7% (1/15) 83% (10/12) 100% (5/5) 71% (5/7)

GFRA1* 0% (0/11) 83% (10/12) 83% (5/6) 83% (5/6)

* the positive rates in normal and cancer samples differ (P < 0.05).

Figure 5: DNA methylation levels in normal and cancer scrapings determined by QMSP. The horizontal lines represent 
optimal thresholds (see Table 2). The positive rate is depicted below the class labels.
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Diagnostic evaluation on scrapings of women 
referred with an abnormal smear

In the second diagnostic evaluation 229 scrapings 
were analyzed for SLC6A5, SOX1, SOX14 and TBX20 
hypermethylation using the QMSP threshold values that 
were set in the normal and cancer samples (Table 2). For 
each gene both the QMSP ratios and the positive rates 
increased with the severity of the underlying lesion (P 
< 10-9 for each gene, Figure 6). Also in this cohort no 
differences in QMSP levels and positivity between ADC 
and SCC were found (data not shown). Of note, 10 to 
13 out of 14 AdCIS scrapings were methylation positive 
(Figure 6).

Analysis of the sensitivity and specificity of 
individual genes indicated that SOX1 was the most 
sensitive, whereas SLC6A5 and TBX20 were the most 
specific (Table 3, Supplementary Table S5). Next, all 
possible gene combinations were generated in order to 
improve the diagnostic performance. The combination 
with the highest sensitivity and specificity was SOX1/
SOX14/TBX20 methylation, in which SLC6A5 was not 
additive. The best 2 gene combination was SOX1/SOX14.

Analysis of hrHPV in the same scrapings revealed 
that hrHPV detection was more frequent when the 
underlying lesion was more severe (P = 0.005, see Table 
3, Supplementary Table S5). Also, hrHPV was detected 
at similar rates in both ADC and SCC (75% vs. 68% 
respectively, P > 0.7, data not shown).

The hrHPV test classified samples differently 
than SOX1/SOX14 hypermethylation (P < 10-4). In this 
population of women referred with abnormal cytology, 
methylation analysis was less sensitive to detect CIN2+ 
(P < 0.001), however, equally sensitive for CIN3+ (P > 
0.2), and produced less false-positives compared to hrHPV 
analysis (P < 10-5).

DISCUSSION

In our study, we used a genome-wide DNA 
methylation screening strategy detecting ADC as well 
as SCC with its precursor lesion in cervical scrapings. 
In addition, many differentially methylated regions were 

observed when normal cervices were compared with both 
ADC and SCC. The observation that some regions were 
differentially methylated exclusively in ADC or SCC 
could reflect exposure to different environmental factors 
[38]. Specifically, this observation may be explained by 
the difference in risk factors – smoking and high parity 
are risk factors for SCC [39] and obesity is a risk factor 
for ADC [40].

GO analysis pointed out that most of the pathways 
affected by hypermethylation in SCC were also affected 
in ADC, indicating similar pathways are deregulated by 
hypermethylation during carcinogenesis independent of 
histological cancer subtype. Pathways identified were 
all known to be involved in carcinogenesis [41–43]. Of 
the 53 differentially methylated candidates that were 
found in both ADC and SCC, 20 genes (Supplementary 
Table S3) were described previously in literature as 
being more frequently methylated in cancer, and 6 genes 
in (squamous-cell) cervical cancer (SOX1, SOX14, 
ONECUT1 and WT1) [44] or high-grade CIN (GFRA1, 
SOX1 and TBX20) [34, 45].

Compared to the gene panels recently reported 
by our group [34] the combination of SOX1/SOX14 
methylation showed less positive test results, both in 
scrapings from women without cervical disease and in 
women with high-grade CIN, but not in women with 
cervical cancer. Further research (e.g. by decision tree 
algorithms or latent structure analysis) is necessary to 
evaluate whether these markers are additive to each other. 
Furthermore, we cannot exclude the possibility that other 
interesting candidate genes are present in the highest 
ranking genes beyond the top 15 regions (Supplementary 
Table S3). Alternatively unmethylated CIN2+ samples 
may be analyzed by genome-wide methods to develop 
complementary assays that increase the clinical sensitivity. 
In addition, it can be hypothesized that the positive 
CIN2/3 samples are more similar to the cervical cancer 
lesions compared to the negative CIN samples; possibly 
reflecting the percentage of women which might develop 
cancer when left untreated.

In this study, we used MethylCap-seq to draw 
detailed methylome maps. Enrichment for methylated 
DNA by either MBD proteins (MethylCap) or antibodies 

Table 2: Diagnostic performance of five QMSPs on normal and cancer scrapings

Gene AUC (95% CI) J Cutoff Positive 
normal

Positive 
cancer P† Positive 

ADC
Positive 

SCC P‡

SOX1 0.96 (0.93–0.99) 0.885 19 1% 90% 10-37 88% 91% 0.528

SOX14 0.96 (0.93–0.99) 0.883 70 4% 92% 10-36 88% 95% 0.118

TBX20 0.94 (0.90–0.97) 0.802 140 6% 86% 10-29 82% 89% 0.266

SLC6A5 0.93 (0.89–0.96) 0.789 315 2% 81% 10-28 82% 80% 0.760

GFRA1 0.92 (0.88–0.96) 0.781 41 2% 80% 10-28 70% 89% 0.007

CI is the confidence interval, † frequency normal vs. cancer, ‡ frequency ADC vs. SCC.
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(MeDIP) allows comparable distinction between 
methylated and unmethylated regions as bisulfite-
based methods, but is less accurate to quantify the DNA 
methylation levels in partially methylated genomic 
regions. However, MethylCap is able to detect roughly 
twice as many DMRs compared to MeDIP at comparable 
sequencing depths [46]. Recent data showed that although 
MethylCap-seq was less sensitive compared to the 
array-based method of Infinium, more regions could be 
identified genome-wide [47]. Pyrosequencing did offer 
single-base resolution and could verify the MethylCap-
seq results. Subsequently, primers for (Q)MSP were 
designed as these assays are more appropriate for high-
throughput diagnostics. All five identified candidate 
markers discriminated between normal epithelium and 
cancer. A relatively good specificity was observed when 
using a threshold.

When we further validated the best four QMSPs on 
a series of scrapings of women referred with an abnormal 
smear, we observed that SOX1 and SOX14 provided a 
relatively good sensitivity, whereas TBX20 and SLC6A5 
provided a relatively good specificity. Combining 
biomarker test results is a common choice to enhance 
the accuracy of clinical diagnosis [48]. Combining only 

SOX1 and SOX14 seems to be sufficient to provide the 
highest sensitivity and specificity. As to cervical cancer 
diagnostics, an important advantage of DNA methylation 
markers is that they can be tested on the same material 
as used for HPV analyses [49, 50]. When comparing 
the detection of disease using hrHPV testing with the 
gene combination SOX1 and SOX14, we observed no 
difference in CIN3+ sensitivity, but a higher specificity 
in the methylation test. However, these findings need 
to be validated in population-based screening cohorts; 
particularly because this population is not representative 
of a referral population. Besides, the remaining 20% 
of CIN2+ samples are considered by us as hrHPV test-
negative and not definitely hrHPV-negative [51]. Possibly 
these samples were infected with a HPV type that is not 
detected by the assays or infected with multiple types (e.g. 
high-risk and low-risk) leading to a reduced sensitivity 
[52].

So far only a limited number of methylated genes 
have been examined in ADC, especially using cervical 
scrapings in a large series. These studies revealed markers 
with a different clinical utility, i.e. with a lower sensitivity 
for both ADC and SCC or either one [24, 26, 27, 53–58]. 
Two genes of the Wnt pathway, DKK3 and SFRP2, showed 

Figure 6: Methylation levels in cervical scrapings of women referred with an abnormal smear. The positive rate is depicted 
below the histological class labels.
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more methylation in ADC tissue compared to SCC tissue 
(82% vs. 18% and 84% vs. 39%) and combined analysis in 
cervical scrapes (n=8) detected all AdCIS and ADC [27]. 
Recently, PAX1, PTPRR, SOX1 and ZNF582, previously 
reported to be frequently methylated in scrapings of SCC 
patients, were also analyzed in scrapings of ADC patients 
and showed a sensitivity of the single genes of 82% - 93% 
with a specificity of 81% - 95% in a Taiwanese population 
[26]. However, data on screening large cohorts with these 
markers is currently unavailable.

All of the 4 genes that we identified have previously 
been reported to be methylated in cancer. SOX1 and SOX14 
belong to the SOX family of transcription factors having 
similar DNA binding specificities yet with divergent 
functions [59]. SOX1 encodes a transcription factor 
implicated in the regulation of embryonic development 
and in the determination of cell fate. DNA methylation 
of SOX1 in cervical cancer has been reported by Lai 
et al. [26, 44] albeit in a different region. Furthermore, 

SOX1 was identified as a tumor suppressor gene, because 
it interfered with Wnt/β-catenin signaling in cervical 
cancer cells [60] and hepatocellular carcinoma [61]. 
Hypermethylated SOX1 was also found in ovarian cancer 
cells that are chronically exposed to cisplatin [62]. SOX1 
methylation, at least in part, is responsible for cisplatin 
resistance in human non-small cell lung cancer (NSCLC) 
[25, 63]. SOX14, in contrast to our data, has been reported 
to be a potential marker to differentiate between ADC 
and SCC, with more methylation or mutation in SCC as 
determined by NotI-microarrays [55].

T-box (TBX) transcription factors belong to an 
ancient gene family with critical roles in embryogenesis, 
in early cell fate decisions and in control of differentiation 
and organogenesis [64]. TBX20 methylation has previously 
been related to specific bladder cancers [65], late stage 
hepatocellular carcinoma development [66], recurrence of 
lung adenocarcinoma [67] and cervical cancer [45]. TBX20 
expression has been related to colorectal cancer [68].

Table 3: Diagnostic performance of individual genes, gene combinations and hrHPV detection in cervical scrapings 
of women referred with an abnormal smear (ranked on sensitivity CIN3+)

specificity 
CIN0/1

sensitivity
P˘

CIN2+ CIN3+ (mi)Ca

Individual genes

SOX1 88% 59% 71% 80% 5×10-15

SOX14 88% 50% 60% 69% 8×10-11

TBX20 97% 40% 52% 58% 2×10-12

SLC6A5 98% 28% 36% 51% 4×10-10

Gene combinations

SOX1/SOX14/TBX20 84% 63% 76% 83% 8×10-15

SLC6A5/SOX1/SOX14/TBX20 84% 63% 76% 83% 8×10-15

SOX1/SOX14 84% 63% 75% 83% 1×10-14

SLC6A5/SOX1/SOX14 84% 63% 75% 83% 1×10-14

SOX1/TBX20 87% 60% 72% 81% 4×10-15

SLC6A5/SOX1/TBX20 87% 60% 72% 81% 4×10-15

SLC6A5/SOX1 87% 58% 71% 81% 1×10-14

SOX14/TBX20 88% 53% 64% 69% 2×10-11

SLC6A5/SOX14/TBX20 88% 53% 64% 69% 2×10-11

SLC6A5/SOX14 88% 50% 60% 69% 8×10-11

SLC6A5/TBX20 97% 40% 52% 58% 2×10-12

hrHPV detection

GP5+/6+ and Cobas 42% 80% 80% 72% 5×10-3

˘ linear-by-linear association test.
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So far, methylation of SLC6A5 (also known as the 
glycine transporter gene GLYT2) was associated with 
glioma [69], prostate cancer [70, 71], oral and pharyngeal 
cancer [72]; and the expression was down-regulated 
during rat liver regeneration [73]. Additionally, the 
SLC6A5 gene can form multigene complexes under the 
influence of TNF signaling, and is subsequently activated 
by the NF-κB transcription factor [74].

Overall, our approach resulted in four new cervical 
cancer methylation markers with high specificity and high 
sensitivity for both cervical ADC and SCC. These results 
indicate that especially SOX1 and SOX14 are meaningful 
for cervical cancer screening.

MATERIALS AND METHODS

General strategy

In order to identify and validate cervical cancer-
specific methylation markers both for ADC and SCC, 
the following strategy was applied (schematically 
represented in Figure 1). Step 1, DNA from snap-frozen 
tissue of 12 cervical cancers (ADC=6, SCC=6) and 20 
normal cervices was analyzed using MethylCap-seq. 
Subsequently, the differentially methylated regions 
(DMRs) were identified between normal cervices and 
both cancer subtypes. Step 2, among the methylation 
candidates, the top 15 was selected for verification by 
methylation-specific PCR (MSP) or pyrosequencing on 
the same frozen tissues from step 1. Step 3, using the 
selected candidates from step 2, MSP was performed on 
DNA of FFPE tissues from an independent series of 17 
normal and 13 cancer samples (ADC=6, SCC=7). Step 
4, the candidate regions that showed more methylation 
in cancer tissues were selected for further clinical 
validation by quantitative MSP (QMSP) on cervical 
scrapings from a large series of cervical cancer patients 
(n=125: comprising 57 ADC and 68 SCC) and 89 
controls of comparable age. Step 5, the markers that 
best distinguished scrapings from normal cervices and 
cervical cancers were selected for a second diagnostic 
evaluation, provided the markers could sufficiently 
detect both ADC and SCC. QMSP was performed on 
scrapings of women referred with an abnormal smear and 
with known histological diagnosis (n=229: no CIN=27, 
CIN1=38, CIN2=45, CIN3=61, AdCIS=14 and (mi)
Ca=44: ADC=12, SCC=29, adenosquamous=3).

Patients

Patients with cervical cancer referred to the 
outpatient clinic of the University Medical Centre 
Groningen (UMCG) are asked to participate in our on-
going ‘Methylation study’ that has been approved by the 
Institutional Review Board of University Medical Centre 
Groningen, the Netherlands. All patients from whom 

material was obtained gave written informed consent. 
Snap-frozen tissue, FFPE tissue and scrapings for this 
study are prospectively collected and stored in our tissue 
bank.

Within our ‘Methylation study’, normal tissue 
samples and normal scrapings are also collected from 
patients planned to undergo a hysterectomy for non-
malignant reasons. All cervical tissue that was used for 
the normal control group was judged as histopathological 
normal. Additionally, all women without cervical disease 
never had an abnormal cervical smear prior to inclusion. 
Patients referred with cervical cancer are staged according 
to the FIGO criteria with pelvic examination and 
biopsies under general anesthesia. All cervical scrapings 
are collected prior to treatment. All cervical tissue 
samples were scored by an experienced gynecologic 
pathologist and the histological classification was used 
as the reference standard. All clinicopathological data 
were retrieved from patient files and stored in our large 
anonymous password-protected institutional Gynecologic 
Oncology database.

For MethylCap-seq and pyrosequencing, frozen 
tissue specimens were collected from 20 patients with 
a normal cervix (median age: 43 years, IQR 33-45) and 
12 cancer patients (median age: 44 years, IQR 27-69) 
composed of 6 SCC and 6 ADC. For MSP analysis, FFPE 
tissue was collected from 17 patients with a normal cervix 
(median age: 43 years, IQR 40-44) and 13 cervical cancer 
patients (median age: 49 years, IQR 42-54) including 6 
ADC and 7 SCC. For QMSP, scrapings were collected 
from 89 patients with normal cervices (median age: 47 
years, IQR 43-53), and from 125 cervical cancer patients 
(median age: 49 years, IQR 39-63, P=0.32) comprising 
68 SCC and 57 ADC. See Supplementary Table S6 for 
the histological classification, age and FIGO stage of all 
cervical cancer patients in this study.

Likewise, scrapings were selected from women in 
whom an abnormal cervical smear was found (n=229). 
These scrapings are prospectively collected from women 
referred to our outpatient clinic for colposcopy after 
being tested with an abnormal smear in the population-
based screening program. Here we randomly selected 
scrapings – i.e. within each diagnosis group – from 27 
women diagnosed without CIN (median age: 36, IQR 
30-48), 38 with CIN1 (median age: 40, IQR 31 to 45), 
45 CIN2 (median age: 35, IQR 31-40), 61 CIN3 (median 
age: 35, IQR 32-40), 14 adenocarcinoma in situ (AdCIS) 
(median age: 36, IQR 32-44) and 44 with (micro-invasive) 
carcinoma (median age: 40, IQR 36-50). Of the AdCIS 
scrapings 3 were collected at the Meander Medical Centre 
(Amersfoort, the Netherlands) and 6 at the VU University 
Medical Centre (Amsterdam, the Netherlands) [75, 76]. 
The (mi)Ca cases comprised 12 ADC (median age: 40, 
IQR 36 to 49), 29 SCC (median age: 40, IQR 36 to 50) 
and 3 adenosquamous carcinomas (see Supplementary 
Table S5).
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Sample collection and DNA isolation

Preparation of tissue slides, enrichment for 
epithelial (tumor) cells by macrodissection, collection and 
processing of cervical scrapings, the DNA isolation and 
the assessment of the DNA’s structural integrity were as 
described previously [22, 23, 77, 78]. DNA concentrations 
and 260/280 ratios were measured using a Nanodrop ND-
1000 spectrophotometer (Thermo Scientific, Waltham, 
MA, USA). A 260/280 ratio around 1.8 and the capability 
to produce amplicons of at least 300 base pairs (bp) was 
required for all DNA samples. For the MethylCap-seq 
samples, DNA concentrations were measured using the 
Quant-iT™ PicoGreen® dsDNA Assay kit (Invitrogen, 
Carlsbad, CA, USA).

MethylCap-seq

To assess genome-wide methylation patterns, 
MethylCap-seq was performed at the University of Ghent 
using the MethylCap kit according to manufacturer’s 
instructions (Diagenode, Liège, Belgium) as previously 
described [33, 34]. Briefly, DNA samples (500 ng) were 
sheared to a size range of 300 - 1000 bp using a Bioruptor™ 
UCD-200 (Diagenode, Liège, Belgium) and fragments 
of approximately 300 bp were isolated and subsequently 
captured. Captured DNA was paired-end-sequenced on 
the Illumina Genome Analyzer II platform according to 
protocol (Illumina, San Diego, CA, USA). Leukocyte 
DNA of 4 healthy women was also included in 2 sets of 
2 samples. Results were mapped using Bowtie software 
[79], visualized using BioBix' H2G2 browser (http://h2g2.
ugent.be/) and processed using the human reference genome 
(NCBI build 37). The paired-end fragments were unique 
and located within 400 bp of each other [80].

MethylCap-seq analysis

Read data of the promoters and exons were retrieved 
and dichotomized into methylation positive (if ≥ 3 reads) or 
methylation negative (if 0 or 1 read). Subsequently, Fisher’s 
exact test was performed to identify DMRs between ADC 
and normal and between SCC and normal. To downsize the 
number of DMRs and to pinpoint candidate methylation 
markers in cervical cancer the following additional criteria 
were applied (depicted in Figure 2): 1) at least 75% (15/20) 
of the normal cervix group was methylation negative; 2) at 
least 50% (3/6) of ADC as well as at least 50% (3/6) of SCC 
was methylation positive; 3) no methylation in leukocytes, 
i.e. no more than 1 read for both sample pools or more than 
2 reads for any individual leukocyte pool; 4) the region is 
at least 30 bp long.

Gene ontology analysis

The Ensembl gene identifiers that were coupled to 
the DMRs were used for functional classification and GO 

analyses using DAVID v6.7 [81] including the annotated 
hypermethylated DMRs in ADC or SCC.

Bisulfite treatment

Sodium bisulfite modificationof denatured genomic 
DNA was performed as previously reported [82]. One 
microgram of genomic DNA per sample was converted using 
the EZ DNA methylation kit (Zymo Research Corp, Irvine, 
US-CA). Leukocyte DNA from healthy women and WGA 
(illustra ready-to-go GenomiPhi HY kit, GE healthcare, Little 
Chalfont, UK), were used as negative controls for methylation, 
whereas in vitro methylated leukocyte DNA, produced using 
M. SssI methyltransferase (New England Biolabs, Ipswitch, 
US-MA), served as a positive control.

Pyrosequencing

Bisulfite-modified DNA (BS-DNA) was amplified 
using PyroMark PCR kit reagents and conditions (Qiagen, 
Hilden, Germany), yet we used a universal biotinylated 
primer as previously described [33, 83]. Sample 
preparation and pyrosequencing was performed on a 
PyroMark Q24 platform using PyroGold Q24 reagents 
(Qiagen, Hilden, Germany). Experiments were designed 
with PyroMark Assay Design 2.0; primers were checked 
for specificity with BiSearch [84] and sequences are 
available upon request. Non-template control (water), 
positive and negative controls were used in each reaction. 

Methylation-specific PCR

Each reaction was performed in 30 μl total reaction 
volume, containing 600 nM of each primer, 1.5 μl BS-
DNA (approximately 15 ng), and 0.5 U AmpliTaq Gold 
DNA polymerase (Applied Biosystems, Carlsbad, CA, 
USA). The thermal profile of the MSP was 10’ hot-start 
at 95°C, 40 cycles of 95°C for 60”, 60°C for 60”, 72°C 
60”, and finally an elongation step of 7’ at 72°C. PCR 
products were separated on a 2.5% agarose gel, pre-
stained with 0.5 μg/ml ethidium bromide and visualized 
by UV transillumination. Non-template control (water) 
and positive/negative controls were used in each reaction. 
MSP primers were designed with Methyl Primer Express 
version 1.0 (Applied Biosystems, Carlsbad, CA, USA), 
were checked for specificity with BiSearch [84] and are 
available upon request. Separate reactions were performed 
to detect either unmethylated or methylated template.

Quantitative methylation-specific PCR

QMSP was performed as we described previously 
[22] with a double-quenched hybridization probe 
(Integrated DNA Technologies, Leuven, Belgium). 
Probe sequences are available upon request. The ACTB 
gene was used as a methylation independent reference 
reaction. QMSP was performed in 10 μl containing 300 
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nM of each primer, 200 nM probe, QuantiTect Probe PCR 
Master Mix (Qiagen, Hilden, Germany) and 2.5 μl BS-
DNA (approximately 25 ng). Each sample was analyzed 
in triplicate by ABI PRISM® 7900HT Sequence Detection 
System (Applied Biosystems, Carlsbad, CA, USA). Serial 
dilutions of in vitro methylated leukocyte DNA enabled 
absolute quantification of (methylated) template. A DNA 
sample was considered methylated if at least 2 out of the 
3 wells were methylation positive with a Cq below 50 
with at least 225 pg ACTB input. The relative level of 
methylation of the region of interest was expressed as: 
(average quantity of methylated DNA / average quantity 
of ACTB) x 10000 [85].

High-risk HPV testing

The presence of clinically relevant levels of hrHPV 
DNA was assessed using GP5+/6+ PCR and subsequently 
by Cobas HPV PCR as described previously [34]. The 6 
AdCIS samples that were collected at the VU University 
Medical Centre (Amsterdam, the Netherlands) were 
previously tested hrHPV-positive with a GP5+/6+ enzyme 
immunoassay [86].

Statistical analysis

Statistical analysis was performed using IBM SPSS 
Statistics 22 (IBM Corporation, New York, US-NY). 
Chi-square test and Fisher’s exact test for small numbers 
were used to analyze the different methylation frequency 
between normal and cancer. The average methylation 
level of each frozen tissue sample and MethylCap-seq 
reads were correlated using Spearman’s rank test. The 
Mann-Whitney U test was used to determine differences 
in median methylation levels between 2 groups. The 
sensitivity, specificity, ROC curves and area under the 
ROC curve (AUC) were calculated for the first diagnostic 
evaluation (normal vs. cervical cancer) [87]. The optimal 
threshold was calculated based on the largest Youden’s 
index J [88, 89]. The Jonckheere-Terpstra test was used 
to assess whether the methylation levels changed with the 
severity of the underlying lesion. The chi-square linear-by-
linear test was applied to analyze the dichotomous results 
across histological types. The McNemar-Bowker test was 
employed to assess differences in test classification, and 
the McNemar Χ² test was subsequently used to attribute 
differences to either sensitivity or specificity or both. A 
gene combination labeled a sample positive if at least one 
of those QMSPs produced a positive test. A P-value below 
0.05 was considered to be significant.
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