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Abstract: Microcapsules have been widely studied owing to their biocompatibility and potential
for application in various areas, particularly drug delivery. However, the size of microcapsules is
difficult to control, and the size distribution is very broad via various encapsulation techniques.
Therefore, it is necessary to obtain microcapsules with uniform and tailored size for the construction of
controlled-release drug carriers. In this study, emulsification and solvent evaporation methods were
used to prepare a variety of ovalbumin-loaded poly (lactic-co-glycolic acid) (PLGA) microcapsules to
determine the optimal preparation conditions. The particle size of the PLGA microcapsules prepared
using the optimum conditions was approximately 200 nm, which showed good dispersibility with an
ovalbumin encapsulation rate of more than 60%. In addition, porous microcapsules with different
pore sizes were prepared by adding a varying amount of porogen bovine serum albumin (BSA) to the
internal water phase. The release curve showed that the rate of protein release from the microcapsules
could be controlled by adjusting the pore size. These findings demonstrated that we could tailor the
morphology and structure of microcapsules by regulating the preparation conditions, thus controlling
the encapsulation efficiency and the release performance of the microcapsule carrier system. We
envision that this controlled-release novel microcapsule carrier system shows great potential for
biomedical applications.

Keywords: PLGA; microcapsule; encapsulation rate; sustained release

1. Introduction

Encapsulation technology refers to the process of encapsulating a substance in a
suitable capsule material to form nano-, micro-, or millimeter-sized particles [1]. Numerous
materials can be used for encapsulation and the choice of capsule material determines the
physical and chemical properties of the capsule. Encapsulating an active material has the
following advantages: The capsule material (1) keeps the active material from contacting the
external environment and prevents its degradation and the loss of its activity [2]; (2) extends
the half-life of the active material [3]; (3) allows sustained release [4]; and (4) reduces the
evaporation and degradation of volatile substances [5]. Owing to these desirable properties,
microcapsules have been widely used in pollutant adsorption, food quality preservation,
stem cell culture and biomedicine [6–9]. It is important to prepare microcapsules with
stable encapsulation and release efficiency using suitable methods [10]. Commonly used
microcapsule preparation methods include the complex coacervation method, the ionic gel
method, the microemulsion polymerization method, the layer-by-layer assembly method,
and the air-suspension method [11–15]. Although many preparation technologies are
suitable for microcapsules, no encapsulation method is suitable for all situations. The
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physical and chemical properties of the core and capsule materials, as well as the expected
application of the product, dominate the choice of microcapsule technology [14].

Vectors commonly used in clinical practice are currently virus derived vectors. How-
ever, lentiviral and retroviral vectors, which are designed for insertion into the genome,
introduce a high risk of gene disruption [16]. Therefore, non-viral vectors are considered
to be promising alternatives. Microcapsule carriers can enhance the absorption of drugs,
prolong the complex circulation time, provide sustained drug release, and improve thera-
peutic effects and safety [17]. In addition, the surface of carriers can be functionalized with
antibodies, peptides or other biological molecules so that they are specifically recognized
and bind to receptors expressed on the cell surface to achieve targeted drug delivery [18].
Numerous materials can be used for encapsulation, and the choice of capsule material de-
termines the physical and chemical properties of the capsule. Important factors, such as the
product requirements, environmental conditions, release characteristics and compatibility,
must therefore be considered when choosing the encapsulation material. Polylactic acid
(PLA) and poly(lactic-co-glycolic acid) (PLGA) are biocompatible, biodegradable, func-
tional polymers with good encapsulation properties that can be metabolized in the body.
Moreover, their strong plasticity, low price and versatility have enabled the development
of various systems comprising PLA, PLGA, and their mixtures for biomedical applications,
for example, as bio-carriers to control drug release in precision therapy and as scaffold ma-
terials for regenerative medicine [19–22]. Ren et al. loaded IL-1ra into PLGA microspheres,
which significantly prolonged its half-life and produced a beneficial anti-inflammatory ef-
fect on macrophages. The carrier system was found to be effective against periodontitis [23].
Herrera et al. used the emulsification–solvent evaporation method to prepare ofloxacin and
vancomycin-loaded PLA nanoparticles that resulted in strong antibacterial activity against
Escherichia coli and methicillin-resistant Staphylococcus aureus, indicating their potential
use as antibacterial agents [24]. Ghasemi synthesized three types of PLA nanoparticles by
controlling the ratio of PLA and polyethyleneimine glycol. These nanoparticles exhibited
good encapsulation efficiency and sustained-release of human growth hormone [25].

The particle sizes, structure and homogeneity of microcapsules affect their encap-
sulation rate, delivery behavior, absorption efficiency and release kinetics. A profound
understanding of how these physicochemical properties regulate the fates and functions
of microcapsules has become an important requirement. The optimization of preparation
conditions for homogeneous microcapsules laid a foundation for their clinical applications.
In this study, we developed a novel, biodegradable and controlled-release PLGA microcap-
sule carrier system via an emulsification and solvent evaporation method. The optimal
conditions for the preparation of PLGA microcapsules and porous PLGA microcapsules
were determined. The influence of factors, such as the volume ratio of the inner water phase
to the oil phase, the volume ratio of the oil phase to the external water phase, the oil phase
concentration, the external water phase concentration, and the surfactant concentration,
on the morphology, particle size and dispersibility of the microcapsules were investigated.
The morphologies of the microcapsules were observed with scanning electron microscopy,
the particle size and dispersibility index of the microcapsules were measured with a nano
laser particle sizer, and the drug loading and encapsulation efficiency of the microcapsules
were determined with a BCA kit and microplate reader. The sustained release properties of
PLGA microcapsules and porous PLGA microcapsules loaded with ovalbumin were further
investigated. The release behaviors of ovalbumin could be precisely controlled by regulat-
ing the size and surface morphology of PLGA microcapsules. The prepared microcapsules
that exhibited suitable particle size, size uniformity, good dispersibility, high ovalbumin
encapsulation rate and sustained-release, are therefore expected to be appropriate carriers
for protein drugs or vaccines in a wide range of applications. These results founded a
theoretical basis for the future design of polymeric particle-based carrier systems.
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2. Materials and Methods
2.1. Materials

Polyvinyl alcohol (PVA) was purchased from Johnson and Johnson Technology Co.,
Ltd. (Beijing, China), dichloromethane (DCM) was purchased from China Pharmaceutical
Co., Ltd. (Shanghai, China), fetal bovine serum and ovalbumin were purchased from Gibco
(Darmstadt, Germany). The unmodified mica flakes were purchased from Electron Mi-
croscopy China Co., Ltd. (Beijing, China). PLGA was purchased from Jinyue Biotechnology
Company (Beijing, China). The BCA protein detection kit was purchased from Jiancheng
Bio-Technology Co., Ltd. (Nanjing, China).

2.2. Methods
2.2.1. Preparation of PLGA Microcapsules

We used the emulsification and solvent evaporation method to prepare PLGA mi-
crocapsules and explored the effects of varying the preparation conditions—including
the PLGA concentration, phase ratios, and shear rate—on the microcapsule properties.
Ovalbumin was dissolved in distilled water to obtain the internal water phase (20 mg/mL),
PLGA was completely dissolved in DCM to obtain the oil phase (20 mg/mL, 40 mg/mL or
60 mg/mL), and PVA was dissolved in distilled water (stirring at 500 rpm and 80 ◦C) to
obtain the external water phase (1 mg/mL, 3 mg/mL or 5 mg/mL). At a given shear rate
(8000 rpm, 10,000 rpm or 12,000 rpm), the internal water phase was slowly added to the
oil phase in given proportions to obtain a water-in-oil emulsion (internal water phase/oil
phase = 1:3, 1:5 or 1:7). Then, the emulsion was poured into the external water phase
with shearing. Shearing was continued for 5 min and then the sample was subjected to
ultrasound in an ice bath for 3 min. The double emulsion was then placed in a fume hood
and stirred overnight to allow the solvents to evaporate. After the DCM was completely
evaporated, the obtained microcapsules were centrifuged at 10,000 rpm and the bottom
layer was collected and dissolved in water. The centrifugation step was repeated three
times, discarding the supernatant. The remaining sample was freeze-dried to obtain the
ovalbumin-loaded microcapsules.

2.2.2. Preparation of Porous PLGA Microcapsules

During the preparation of PLGA microcapsules, the addition of porogen BSA in
the inner water phase was favorable for forming porous microcapsules. The ovalbumin
(20 mg/mL) and an appropriate amount of BSA solution (10%, 15%, 20%) were added to
distilled water to give the internal water phase. The PLGA was completely dissolved in
methylene chloride to obtain the oil phase. PVA was dissolved in distilled water (stirring
at 500 rpm and 80 ◦C) to obtain the external water phase (5 mg/mL). At the shear rate
of 10,000 rpm, the internal water phase was slowly added to the oil phase to obtain
a water-in-oil emulsion. The emulsion was then poured into the external water phase
with shearing. Shearing was continued for 5 min and then the sample was subjected to
ultrasound in an ice bath for 3 min. The double emulsion was then placed in a fume hood
overnight with stirring to allow the solvents to evaporate. After the DCM had completely
evaporated, the obtained microcapsules were centrifuged at 10,000 rpm, then the bottom
layer was collected and dissolved in water. The centrifugation step was repeated three
times, discarding the supernatant. The remaining sample was freeze-dried to obtain the
ovalbumin-loaded microcapsules.

2.2.3. Characterization of PLGA Microcapsules

The morphology of the PLGA microcapsules was observed using scanning electron
microscopy. The freeze-dried microcapsules were suspended in water and dropped onto
a silicon wafer and dried overnight. After coating with a thin layer of platinum using a
sputtercoater (EM ACE600, Leica, Vienna, Austria), the samples were characterized by
scanning electron microscope (SEM, HITACHI, Su-8010, Tokyo, Japan). The accelerating
voltage used was 10.0 kV, and the current was 5.0 µA. A laser particle size analyzer (DLS
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Zetasizer Nano ZS90, Malvern Instruments, Worcestershire, UK) was used to measure the
particle size and polydispersity index of the microcapsules at room temperature. PLGA
microcapsules were diluted to a concentration of 1 µg/mL using distilled water. The final
values were the average of three measurements.

2.2.4. Determination of Encapsulation Efficiency

The encapsulation efficiency of the prepared microcapsules was determined using a
BCA trace protein detection kit (Jiancheng Bio-Technology Co., Ltd., Nanjing, China). The
sample solution was prepared as follows: A given quantity of freeze-dried microsphere
powder was added to a distillation flask, DCM was added, and then the solution was
evaporated to dryness at 40 ◦C. Distilled water was added to suspend the microcapsules
and then the sample was filtered with a water membrane to remove impurities and was
diluted to a volume of 25 mL with distilled water for later use. There were 3 blank wells
(10 µL distilled water + 250 µL working solution) and 3 standard wells (10 µL standard
solution + 250 µL working solution) in the 96-well plate, and the remaining wells were
sample wells (10 µL sample solution + 250 µL working solution). The solution in each well
was mixed and the absorbance at 562 nm was measured with a microplate reader (Thermo
Fisher Scientifc, Inc., Waltham, MA, USA). Three replicates of each sample were measured.
The formula for calculating the protein concentration in the sample was as follows:

protein concentration =
ODm − ODb
ODs − ODb

× standard product concentration (563 µg/mL). (1)

(ODm: measured OD value, ODb: blank OD value, ODs: standard OD value). Based
on the measured protein concentration, the encapsulation efficiency of the microcapsules
was obtained by conversion.

2.2.5. Release Properties of the PLGA Microcapsules

The standard protein was dissolved in physiological saline to give solutions with
concentrations of 0, 50, 100, 250, and 500 µg/mL. After shaking, the absorbance at 562 nm
was measured to establish a standard curve.

A given quantity of microcapsules was placed into a dialysis bag with a molecular
weight cut-off of 40,000–50,000 Da. After sealing, the bag was placed in a glass bottle filled
with physiological saline and shaken at 37 ◦C and 100 rpm. At specific time points, 1 mL of
the solution was removed for measurement, and 1 mL of physiological saline was added
to maintain the volume. The release was monitored over 28 days. The concentration of
ovalbumin in the sample at each time point was determined based on the standard curve,
and the cumulative release curves of the microcapsules in vitro over time were established.

3. Results
3.1. Effect of PLGA Concentration on Microcapsule Morphology

To study the effect of the PLGA concentration on the morphology of microcapsules,
the following PLGA microcapsule preparation conditions were investigated: concentration
of ovalbumin in the internal aqueous phase, 20 mg/mL (the same concentration was used
for the following experiment except where specifically mentioned); concentration of PLGA
in the oil phase, 20, 40, or 60 mg/mL; volume ratio of the inner water phase to the oil phase,
1:5; concentration of PVA in the external water phase, 5 mg/mL; volume ratio of the oil
phase to the external water phase, 1:5; and shear rate, 10,000 rpm. The results showed
that the PLGA concentration influenced the prepared microcapsules’ particle size and
uniformity (Figure 1); 20 mg/mL PLGA produced prepared PLGA microcapsules with
a diameter of 245 nm and a thickness of the microcapsule wall of 25 nm, and all showed
good uniformity. When the concentration was increased to 40 mg/mL, the particle size
increased to 631 nm, the thickness of the microcapsule wall increased to 60 nm, and the
uniformity was slightly reduced. When the concentration was increased to 60 mg/mL,
the particle size and the thickness of the microcapsule wall were further increased and
the uniformity decreased markedly (Table 1). Therefore, 20 mg/mL PLGA was chosen for
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the follow-up experiments. The results indicated that the higher concentrations of PLGA
resulted in a higher viscosity of the oil phase and larger oil droplets dispersed in the water,
thus causing the particle size and the thickness of the microsphere wall to increase.

Figure 1. Effect of PLGA concentration on microcapsule morphology. PLGA concentrations of; (a) 20 mg/mL; (b) 40 mg/mL;
and (c) 60 mg/mL.

Table 1. Effect of PLGA concentration on microcapsule particle size and wall thickness.

PLGA Concentration (mg/mL) 20 40 60

Size(nm) 245 ± 7 631 ± 5 1246 ± 7
Thickness of the microcapsule wall(nm) 25 ± 3 60 ± 6 135 ± 7

3.2. Effect of Polyvinyl Alcohol Concentration on Microcapsule Morphology

To investigate the effect of PVA concentration on microcapsule morphology, the
following PLGA microcapsule preparation conditions were used: volume ratio of the oil
phase to the external water phase, 1:5; concentration of PVA in the external water phase, 1,
3, or 5 mg/mL; volume ratio of the oil phase to the external water phase, 1:5; and shear rate,
10,000 rpm. Results suggested that a higher PVA concentration led to a smoother surface
and a smaller particle size of the PLGA microcapsules (Figure 2). When 1 mg/mL PVA was
employed, the surfaces of the prepared PLGA microcapsules were rough and the particle
size was 648 nm. When the concentration was increased to 3 mg/mL, there were fewer
cracks on the surfaces, and the particle size decreased to 478 nm. When the concentration
was increased to 5 mg/mL, the particle size of the PLGA microcapsules further decreased
to 264 nm and the surface was smoother (Table 2). Thus, 5 mg/mL PVA was determined.
PVA molecules can quickly adsorb on the oil–water interface, which effectively prevents
emulsion drops’ aggregation. If the concentration of PVA is low, it is difficult to keep the
stability of the emulsion droplet, resulting in a rough surface of the microcapsules.

Figure 2. Effect of PVA concentration on microcapsule morphology. PVA concentrations of; (a) 1 mg/mL; (b) 3 mg/mL;
and (c) 5 mg/mL.
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Table 2. Effect of polyvinyl alcohol concentration on microcapsule particle size.

PVA Concentration (mg/mL) 1 3 5

Size(nm) 648 ± 6 478 ± 4 264 ± 3

3.3. Effect of the Volume Ratio of the Internal Water Phase to the Oil Phase on the Microcapsule Morphology

The volume ratio of the internal water phase to the oil phase will affect the structure
and encapsulation rate of the microcapsules and microspheres [26]. PLGA microcapsules
were prepared under following conditions to explore the effect of the volume ratio of the
internal water phase to the oil phase on the microcapsules’ morphology: the volume ratio
of the inner water phase to the oil phase, 1:3, 1:5, or 1:7; PVA concentration of the outer
water phase, 5 mg/mL; volume ratio of the oil phase to the outer water phase, 1:5; and
shear rate, 10,000 rpm. The results indicated that both 1:5 and 1:7 volume ratios of the
internal water phase to oil phase produced smaller and more uniform PLGA microcapsules
(Figure 3). The 1:3 volume ratio resulted in a 458 nm average particle size of the prepared
PLGA microcapsules. When the volume ratio of the oil phase was 1:5 or 1:7, the particle
size was approximately 270 nm (Table 3), the surfaces were smooth, and the size uniformity
was good.

Figure 3. Effect of the volume ratio of the internal water phase to the oil phase on microcapsule morphology. Internal water
phase/oil phase ratios of: (a) 1:3; (b) 1:5; and (c) 1:7.

Table 3. Effect of volume ratio of water phase to oil phase on particle size.

Internal Water Phase/Oil Phase 1:3 1:5 1:7

Size(nm) 458 ± 8 264 ± 6 276 ± 6

3.4. Effect of the Volume Ratio of the Oil Phase to the External Water Phase on Microcapsule Morphology

According to the result in 3.3, the 1:5 volume ratio of the inner water phase to the
oil phase was chosen for studying the effect of the volume ratio of the oil phase to the
external water phase on the microcapsules’ morphology. The 1:3, 1:5 or 1:7 volume ratios of
the oil phase to the external water phase were tested, respectively, and the shear rate was
10,000 rpm. The results are shown in Figure 4 and Table 4. When the volume ratio of the oil
phase to the external water phase was 1:3, the prepared microcapsules were polydispersed
particles and showed agglomeration. When the volume ratio of the oil phase to the external
water phase was 1:5 or 1:7, the particle size of the microcapsules decreased significantly, the
dispersion was good, and the microcapsules were relatively uniform in size. This finding
clearly indicates that we could tailor the morphology of microcapsules by regulating the
volume ratio of the internal water phase to the oil phase and the volume ratio of the oil
phase to the external water phase, thus controlling the encapsulation efficiency and the
release performance of the microcapsule carrier system.
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Figure 4. Effect of the volume ratio of the oil phase to the external water phase on the microcapsule morphology. Oil
phase/external water phase of; (a) = 1:3; (b) 1:5; and (c) 1:7.

Table 4. Effect of the volume ratio of the oil phase to the external water phase on microcapsule
particle size.

Oil Phase/External Water Phase 1:3 1:5 1:7

Size(nm) 878 ± 9 234 ± 6 203 ± 8

3.5. Effect of Shear Rate on Microcapsule Morphology

To investigate the effect of shear rate on the microcapsule morphology, we used
the following PLGA microcapsule preparation conditions: 8000, 10,000, or 12,000 rpm
shear rate; volume ratio of the oil phase to the external water phase, 1:5. As the shear
rate increased, the particle size of the prepared microcapsules decreased; however, when
the rotation speed was increased to 12,000 rpm, pores appeared on the surfaces of the
microcapsules and their shapes were deformed (Figure 5). A high shear rate makes it easier
to obtain microspheres with a small particle size, but the microspheres are easily deformed
(Table 5). Consequently, a 10,000 rpm shear rate was chosen for the following experiments.

Figure 5. Effect of shear rate on the microcapsule morphology. Shear rates of: (a) 8000 rpm; (b) 10,000 rpm; and (c) 12,000 rpm.

Table 5. Effect of shear rate on microcapsule particle size.

Shearing Rate (rpm) 8000 10,000 12,000

Size(nm) 378 ± 4 224 ± 7 257 ± 3

3.6. Effect of the Volume Ratio of Each Phase on the Encapsulation Efficiency of PLGA Microcapsules

The particle size and uniformity of the ovalbumin-loaded PLGA microcapsules are
important properties that affect their distribution in the body. Therefore, by investigating
different preparation conditions, we determined that the optimum conditions for preparing
PLGA microcapsules with a small particle size, good dispersion, and size uniformity
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were as follows: concentration of ovalbumin in the internal water phase, 20 mg/mL;
concentration of PLGA in the oil phase, 20 mg/mL; volume ratio of the internal water
phase to the oil phase, 1:5 or 1:7; volume ratio of the oil phase to the external water phase,
1:5 or 1:7; PVA concentration of the external water phase, 5 mg/mL; shear rate, 10,000 rpm.
Of these conditions, the volume ratios of the inner water phase, oil phase, and external
water phase were particularly important as they determined the encapsulation efficiency of
the PLGA microcapsules. Therefore, we further investigated microcapsules with a volume
ratio of the inner water phase to the oil phase of 1:5 and 1:7; and a volume ratio of the oil
phase to the external water phase of 1:5 and 1:7. PLGA microcapsules were prepared using
four different sets of conditions and the encapsulation efficiency of the four microcapsule
varieties were measured using a BCA kit. The results are shown in Table 6. The findings
showed that the encapsulation efficiency of the microcapsules was most greatly affected by
the ratio of the internal water phase to the oil phase and, within a certain range, the higher
the ratio of the oil phase, the greater the encapsulation efficiency of the microcapsules. The
ratio of the oil phase to external water had a relatively small effect on the encapsulation
efficiency of the microcapsules. This may be because when the amount of the oil phase
was sufficient, the viscosity of the emulsion was high and the resistance of the drug to the
external conditions was high, so the amount of migration was reduced, which would be
conducive to encapsulation [27].

Table 6. Effect of each phase volume ratio on the encapsulation efficiency of PLGA microcapsules.

Phase Volume Ratio Encapsulation Rate

internal water phase/oil phase = 1:5
oil phase/external water phase = 1:5 61.47%

internal water phase/oil phase = 1:5
oil phase/external water phase = 1:7 63.68%

internal water phase/oil phase = 1:7
oil phase/external water phase = 1:5 68.75%

internal water phase/oil phase = 1:7
oil phase/external water phase = 1:7 69.45%

3.7. Effect of Different Phase Volume Ratios on the Sustained Release Performance of PLGA Microcapsules

The sustained release properties are an important indicator for evaluating the perfor-
mance of drug carrier systems. It can be seen from the results in Figure 6 that the cumulative
release curves of the microspheres could be divided into three stages: initial burst release,
slow release, and long-term sustained release. Within two days of the initial release, the
four microcapsule types all exhibited a clear burst effect. The ratio of the internal water
phase to the oil phase was found to give the greatest impact on the burst effect. The burst
releases of microcapsules prepared with the internal water phase/oil phase ratio of 1:7 were
45.36% and 47.26%, which were higher than the releases exhibited by capsules prepared
with internal water phase/oil phase ratio of 1:5, which were 42.56% and 37.56%. This may
be owing to the high encapsulation efficiency of microcapsules prepared with the internal
water phase/oil phase ratio of 1:7, and because the large difference in drug concentration
between the microcapsules and the external environment promoted the release of a large
amount of protein from the microcapsules. In terms of the release after the burst effect ends,
the cumulative release rate from microcapsules prepared with an internal water phase/oil
phase ratio of 1:5 was approximately 58% at 28 days, which is considerably lower than
the 77% observed for microcapsules with an internal water phase/oil phase ratio of 1:7.
This indicates that microencapsulated ovalbumin formed with a low oil phase ratio was
released more slowly and the release lasted longer.
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Figure 6. Cumulative release curves for microcapsules prepared under different conditions. (a) Inter-
nal phase/oil phase = 1:5; oil phase/external water phase = 1:5; (b) Internal phase/oil phase = 1:5;
oil phase/external water phase = 1:7; (c) Internal phase/oil phase = 1:7; oil phase/external water
phase = 1:5; (d) Internal phase/oil phase = 1:7; oil phase/external water phase = 1:7.

3.8. Preparation of Porous PLGA Microcapsules

Generally, the capsule material of microcapsules is relatively strong and dense, which
leads to unsatisfactory release of the core material. Porous microcapsules have a larger
specific surface area than solid microcapsules, and the release rate can be controlled by
adjusting the number of pores. Therefore, they have potential applications in drug delivery,
agriculture, catalysis and food technology [28]. The addition of porogen BSA to the inner
water phase was favorable for forming porous microcapsules. Under the osmotic pressure,
water molecules in the external water phase are inclined to transfer into the inner water
phase and form a water zone in the oil phase. As the organic solvents evaporate and oil
droplets solidify, the retained water zone would form pores in the microcapsules after
drying [29]. We investigated the best preparation conditions for PLGA microcapsules and
obtained microcapsules with a high encapsulation efficiency, a small particle size, and
uniformity. Under these optimal conditions, we prepared porous PLGA microcapsules by
adding an appropriate amount of bovine serum albumin to the internal water phase. As
shown in Figure 7, as the proportion of BSA solution in the internal water phase increased,
the diameter of the pores on the microcapsule surface increased, the particle size of the
porous microcapsules did not increase, but the uniformity was affected. More pores on the
microcapsule’s surface would accelerate the penetration and release of the loaded drugs
due to a larger surface area. As water molecules move into the inner, this also results in the
formation of a hollow cavity that is bigger than the microcapsules [30].

Figure 7. Scanning electron micrographs of porous PLGA microcapsules. (a) 10% BSA solution; (b) 15% BSA solution;
(c) 20% BSA solution.
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3.9. Effect of BSA Volume on the Encapsulation Efficiency of PLGA Microcapsules

The volume of BSA solution not only affected the surface pore size and quantity of
porous microcapsules, but also their encapsulation efficiency. The encapsulation efficiency
of microcapsules measured using the BCA method is shown in Table 7. The addition
of BSA solution reduced the encapsulation efficiency of the microcapsules and, as the
added volume increased, the decrease became more pronounced. This may be due to the
formation of pores allowing protein to diffuse into the external aqueous phase, but the
microcapsules still maintained an encapsulation rate of more than 50%.

Table 7. The effect of different volumes of BSA solution on the encapsulation efficiency of microcapsules.

Proportion of BSA Solution 10% 15% 20%

encapsulation rate 58.23% 55.24% 52.68%

3.10. Effect of BSA Volume on the Sustained Release of PLGA Microcapsules

In recent years, to meet various application requirements, different approaches for
regulating the release of cargo from microcapsules have been attracting increasing attention.
Among the investigated approaches, adjusting the porosity of microcapsules is a simple
and effective method [30]. Therefore, we prepared three types of porous microcapsules with
different surface porosities by adding different amounts of BSA solution, and evaluated
their sustained release. The results are shown in Figure 8. In general, the release curves of
the porous microcapsules show the same release behavior as described above for the solid
particles. As the amount of BSA increased, the burst release rate of the microcapsules rose.
When the amount of BSA added was 10%, the duration of the burst release phase increased
from one to two days. In terms of the release stage after the burst effect ended, the three
different microcapsules showed a similar release rate from the fifth day onwards, and the
cumulative release rates at 28 days were 77.68%, 72.03%, and 62.34% for the 20%, 15%, and
10% BSA solution capsules, respectively. These results indicate that the increase in pore
size was the main factor that promoted the release from microcapsules, and the sustained
release of the microcapsules could be controlled by adjusting the size of the pores.

Figure 8. Cumulative release curves for porous microcapsules.

4. Conclusions

The use of nanoparticles as carriers for drug delivery has been extensively studied.
Nanoparticles can prevent the premature degradation of drugs, increase drug uptake and
reduce toxic side effects [16]. In addition, the sustained release and targeting properties of
nanoparticles can prolong the therapeutic effect and allow drugs to be transported through
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biological barriers and reach a specific site of action [29]. As a capsule material with good
biocompatibility, PLGA has been widely applied in the field of biomedicine; however, the
particle size affects the efficiency of drug delivery and absorption, while the thickness
of the capsule wall affects their release rate. There are therefore many studies that focus
on optimizing the preparation of microcapsules. Various encapsulation techniques have
been developed such as double emulsion, in situ polymerization, nanoprecipitation and
premix membrane emulsification. It is necessary to obtain microcapsules with a uniform
and tailored size for the construction of controlled-release drug carriers [29,30].

In this study, we prepared a variety of PLGA microcapsules by encapsulating ovalbu-
min using different conditions. The best preparation conditions were selected as follows:
concentration of PLGA in the oil phase, 20 mg/mL; concentration of PVA in the external
water phase, 5 mg/mL; volume ratio of inner water phase to oil phase, 1:5; volume ratio of
oil phase to external water phase, 1:5; and shear rate, 10,000 rpm. The average particle size
of the PLGA microcapsules prepared under these conditions was approximately 200 nm,
and they showed a uniform size, smooth surfaces without cracks, good dispersion, and
no aggregation. The ovalbumin encapsulation rate for these PLGA microcapsules was
more than 60%, indicating that they have the potential to be used as protein drug carriers.
In addition, to obtain microcapsules with controlled release rates, we prepared PLGA
microcapsules with pores on the surface by adding BSA to the internal aqueous phase
under the above conditions. The microcapsule pore diameter, and hence the drug release
rate, could be precisely controlled by adjusting the concentration of BSA. The porous PLGA
microcapsules are therefore expected to be useful carriers for a variety of protein drugs.

This study investigated the optimal conditions for PLGA microcapsules’ preparation
and their protein encapsulation as well as their sustained release properties. The experi-
mental results showed that PLGA is an effective protein drug carrier material. In future
work, the same method will be used to explore the ability of PLGA to encapsulate and
deliver drugs such as DNA vaccines, proteins and antigens, to expand the applications of
PLGA carriers. Further research will be essential for discovering the specific mechanisms
of this delivery system.
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