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Abstract

Background: Assembly and function of neuronal synapses require the coordinated expression of a yet
undetermined set of genes. Although roughly a thousand genes are expected to be important for this function
in Drosophila melanogaster, just a few hundreds of them are known so far.

Results: In this work we trained three learning algorithms to predict a “synaptic function” for genes
of Drosophila using data from a whole-body developmental transcriptome published by others. Using statistical and
biological criteria to analyze and combine the predictions, we obtained a gene catalogue that is highly enriched in
genes of relevance for Drosophila synapse assembly and function but still not recognized as such.

Conclusions: The utility of our approach is that it reduces the number of genes to be tested through hypothesis-
driven experimentation.
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Background
Neuronal synapses are specialized contacts through
which neurons communicate with each other or with
other cells and are thus fundamental for our under-
standing of nervous system function. The assembly,
function, plasticity and maintenance of synapses require
the coordinated expression of a yet undetermined set of
genes, which for simplicity we call here “synaptic genes”.
Hundreds of synaptic genes have been identified, but
there is a broad consensus that these are only a fraction
of the total number [1–4] and diverse approaches should
be tested to advance in this direction. The basic frame-
work of synapse organization was completed early in
metazoan evolution [5–7]. A high degree of conservation
among synaptic genes have been found, suggesting rela-
tively little diversification among proteins important for
synaptic transmission and demonstrating that knowledge
obtained from studies in model organisms is also rele-
vant for other species, including humans [5, 8].

The traditional method to assign a function to a gene
involves extensive genetic and biochemical analyses. The
generation of catalogues composed of genes with a
high probability of having the function of interest nar-
rows this search, thus saving time and resources. New
methods for the prediction of gene function have
become available with the completion of genome
projects and the boom of microarray experiments and
predicting gene function is one of the main goals in
systems biology and functional genomics [9–11]. As
overwhelming volumes of information begun to be
stored in large-scale datasets, automatic learning methods
emerged as a good strategy to predict gene function. The
analysis of microarray expression data through automatic
learning methods showed that genes with similar function
frequently display similar expression patterns. This sug-
gests a functional relationship among genes whose ex-
pression fluctuates in parallel [12–15]. This correlation
between biological function and expression pattern sug-
gests that machine learning algorithms could be suc-
cessfully applied to predict function from expression
data [16–20].
Automatic learning methods can be divided into

unsupervised and supervised learning. A supervised
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method “learns” the distinctive features of a given bio-
logical function from a training set of genes, in which
some of them are known to have the function of inter-
est and others are supposed not to have it. The
learned definition is called a “classifier”, and is then
used to decide whether or not a gene still not associ-
ated with that biological function may have it. Import-
antly, the predictive quality of the classifier can be
objectively estimated in several ways [16].
There is no universally best learning algorithm since

even those with the best average performance in a
variety of studies perform poorly on other problems or
metrics [21, 22]. Ensemble techniques, in which a set of
different predictive models is constructed and then their
predictions are combined in different ways, have been
shown to improve the classification performance [10, 23].
Here we reached very good results applying a very simple
ensemble technique by intersecting the classifications of
three methods, K- Nearest Neighbors [24], Random Forest
[25] and Support Vector Machine [26], that are widely
used and are among those with the best average perform-
ance when applied to biological data [21, 22]. The predict-
ive quality of a classification task also depends strongly on
the training set. We carefully selected the positive samples
among those Drosophila genes for which a synaptic func-
tion was already well demonstrated by independent
methods, and the negative samples using clear biological
criteria (see Methods).
The fly Drosophila melanogaster is one of the model

organisms that have contributed the most to our under-
standing of synapses, for which many synapse genes are
already identified through experimental studies [3, 27, 28]
and has one of the best annotated genomes [29]. It has
an additional advantage for the aim of this study: along
its life cycle there are two periods of massive synapse
formation [30]. Regarding the quality of the input data,
next-generation sequencing technologies (NGST) have
overcome some important limitations of microarray
technologies, as for example their relatively high rates of
false positives and their low accuracy in measurements of
transcripts present in low abundance [31]. As input data
we used the developmental transcriptome of Drosophila
published by the MODENCODE Project [32]. This data
set, was generated with NGST and has been successfully
used for several investigations [33–36]. It appears to be
the best available for our objective because it comprises
samples corresponding to a period in which there are no
synapses, samples corresponding to the two phases of
massive and intense synapse formation and samples corre-
sponding to a phase of massive synapse disassembly [30].
A final issue to consider in this type of studies is the

estimated number of genes predicted to have the bio-
logical function under scrutiny. A synaptic function has
been assigned to many Drosophila genes by means of

genetic screens [37–46] and other experimental ap-
proaches (see for example [27]). The proteomic analysis of
cellular fractions enriched in synapses has also resulted in
catalogues of proteins with a strong probability of being
necessary for the synapse. Technical difficulties have so
far hampered this option in the fly, but the development
of a method adapted to Drosophila synaptosomes [47]
indicates that this approach will soon lead to the discovery
of new synaptic genes. Catalogues of synaptic genes
including annotations based on proteomic studies of
synaptic components, sequence homology across ani-
mal species, protein domains and other bioinformatic
approaches such as Gene Ontology [48], SynDB [49]
and SynaptomeDB [50] range from a few hundreds to a
few thousands genes. By May 2015, SynaptomeDB [50]
listed a total of 1886 genes for human synapses and
SynDB [49] listed 1073 genes for Drosophila synapses
and 3249 genes for human synapses. At the beginning
of this study, 350 genes were associated with some
degree of experimental support to at least one synapse-
related Gene Ontology Biological Process (GO BP) in
Drosophila. Thus, according to a conservative view of
the available data, the expected number of synaptic
genes in Drosophila could be set around 1000 for the
purpose of the approach tested here.
The aim of this study was to test whether catalogues

enriched in genes with a certain biological function can
be generated solely from transcription data with a group
of supervised learning algorithms. Our objective was to
obtain a catalogue of Drosophila genes with high prob-
ability of having a synaptic function. The approach was
fruitful and we present a catalogue that according to
several biological criteria appears to be greatly enriched
in new synaptic genes.

Results
Pre-processing of the original dataset
We used the developmental transcriptome of Drosophila
melanogaster published by the MODENCODE Project
[32], but we considered only the 13,642 genes that
showed transcript levels above zero at least in one of the
24 samples corresponding to the embryo, the larva and
the pupa (see Methods). The absolute and the normal-
ized transcription profiles of these 13,642 genes are
shown in Fig. 1a and b respectively. We then used 489
of these genes to train our algorithms and classify the
remaining 13,153 genes into either “synaptic genes” or
“non synaptic genes”.

Construction of the training set
To train our classifiers we defined the labels “synaptic
genes” and “non-synaptic genes”. The 92 genes that we
labeled as “synaptic genes” (see Methods) and the cor-
responding bibliographic references are presented in
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Additional file 1. The corresponding normalized tran-
scription profiles are shown in Fig. 1c. The 397 genes
that fulfill at least one of the two biological criteria
defined to label a gene as “non-synaptic” (see Methods)
are shown in Additional file 2 and Fig. 1d shows their
normalized transcription profiles.

Model adjustment
The mean error and dispersion for the three adjusted
models after 10-fold cross validation over the training
set are shown in Fig. 2. The three classifiers reached
error rates below 5 %. For the details on the adjust-
ment of each model see Methods. The area under the
ROC curve of each classifier reached values above 0.97
in the three cases (Additional file 3).

Initial classification of the three models
After adjusting the three models we classified our data-
set and obtained three initial catalogues of putative
synaptic genes (Fig. 3). The three classifications display
a high degree of coincidence, with k-NN, the model
that produces the more divergent catalogue of genes,
showing more than 83 % of coincidence with the other
two models. The genes classified as synaptic by the
three models represent a consensus catalogue of 4872
genes. This initial consensus catalogue is much bigger
than what is expected for a catalogue of synaptic genes,
as discussed in the Background section.

Sequential increase of the classification threshold
To reduce the size of the initial consensus catalogue, as
well as to improve its statistical strength, we sequentially

Fig. 1 Transcription profiles of the Drosophila genes to be classified and of the training set. a–b Temporal expression profiles of the 13,642 Drosophila
genes that show transcription level above zero in at least one sample during embryonic, larval or pupal stages. Graphs were constructed with absolute
values (FPKM, a) and with the same values after normalization between 0 and 1 (b, see Methods). c Transcription profiles of the 92 “synaptic genes”
of the training set after normalization of the original values between 1 and 0. A clear correspondence is observed between what is expected for the
mean transcription profile of Drosophila synaptic genes and the actual expression profiles of the genes of our training set. Along the life cycle of
Drosophila a first wave of massive synaptogenesis takes place during the second half of embryonic life (samples 7–12), and a second wave occurs in
the pupa (samples 19–24), when the synapses of the adult brain are being formed. Between these two waves of synaptogenesis a period of massive
synapse disassembly takes place. The yellow line corresponds to the mean expression levels of the 92 synaptic genes and matches these three
features. d Transcription profiles of the 397 “non-synaptic genes” of the training set, after normalization of the original values between 1 and 0. The
green line corresponds to the mean expression levels of the 397 non-synaptic genes. (Original values published by Graveley et al. [32] and adapted
as explained in Methods)
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increased the classification threshold, excluding those
genes whose classifications have higher probabilities of
being false positives (see Methods). This procedure gener-
ates a series of catalogues of gradually decreasing size for
which a biological characterization done a posteriori can
provide additional support. The number of genes classified

as synaptic by each model as the threshold increases, as
well as the degree of coincidence between the classifications
are shown in columns 2 to 5 of Fig. 3. The increment of the
classification threshold was associated with an increment of
the global error rate (Additional file 4).

Functional enrichment analysis
We evaluated the functional enrichment of our cata-
logues in synapse-related GO BP terms. All our cata-
logues were enriched in several of these terms, and the
degree of enrichment increased with the increase of the
classification threshold. This direct relationship be-
tween threshold and enrichment is illustrated in Fig. 4,
which shows the enrichment in a representative selec-
tion of synapse-related GO BP terms found in the series
of catalogues produced by each of the three learning
algorithms as well as in the corresponding consensus
catalogues.

Genes with Tissue-Specific Differential Expression
(GTSDEs)
Among the 13,153 genes committed to the classifiers,
there are 686 that have tissue-specific differential expres-
sion (as defined in Methods, complete list is provided as
Additional file 5). The percentage of GTSDEs we found
in each tissue is roughly 24 % for the Central Nervous
System (CNS), 4 % for the salivary glands, 12 % for the
fat body, 37 % for the digestive system and 23 % for the
carcass. Since the overwhelming majority of synapses are
formed by neurons inside the CNS, a catalogue of synap-
tic genes is expected to have an over-representation of
GTSDEs in this tissue. On the other hand, we expect the

Fig. 2 Misclassification error rates of the three adjusted models after
10-fold cross validation. Box plots of misclassification error rates of
the three adjusted models: Random Forest (RF), Support Vector
Machine (SVM) and k-Nearest Neighbors (k-NN), estimated by 10-fold
cross validation as described in the text. In each box plot the black
horizontal line represents the median value and the points outside
the box correspond to values over or lower to 1.5 times interquartile
range than the third or first quartile respectively

Fig. 3 Number of genes classified as synaptic by each method as the classification threshold increases. Each column corresponds to the threshold
that a gene’s estimated probability of being synaptic must exceed to be labeled as synaptic. Each row corresponds to one of the adjusted models or
to one of their combinations. The last row shows the number of genes classified as synaptic by the three models. In the bottom panel the color areas
of the Venn diagrams are proportional to the number of genes that they represent. The 13,153 genes to be classified are represented by the black
circles and the number of genes classified as synaptic by each model, or combinations thereof, are represented in agreement with the color code
shown to the left
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GTSDEs in the salivary glands or fat body (tissues
without synapses) to be under-represented in our cata-
logues. The results of this test are shown in Fig. 5. In all
the catalogues there is a great over-representation of
GTSDEs in the CNS. This enrichment increases with
higher threshold. At the same time, the enrichment in
GTSDEs in those tissues without synapses (the salivary
gland and the fat body) or in tissues with much fewer
synapses (digestive system and carcass) decreases.

Final catalogue of 893 putative Drosophila synaptic genes
Our consensus catalogue corresponding to a classification
threshold of 0.9 comprises 988 Drosophila genes that, ac-
cording to the three adjusted algorithms, have a probabil-
ity above 90 % of being involved in synapse assembly and
function. Among all the catalogues obtained in this study,
this is the one showing the highest enrichment in
synapse-related GO BP terms, as well as the highest pro-
portion of GTSDE in the CNS. The functional enrichment
of this catalogue is explained by the presence of 95 genes
that were already annotated as relevant for synapse

assembly or function in the GO database by July 2014.
Excluding these genes, we obtain our final catalogue of
893 putative synaptic genes. This catalogue is provided as
Additional file 6. Additional file 7 contains the predicted
probability of being synaptic for all the genes in the data
set and Additional file 8 shows the transcription profiles
of the genes classified as synaptic at each threshold.

Genes of our final catalogue have human homologues
already described as synaptic genes
We found that 607 genes of the 893 in our final catalogue
have at least one homologue in Homo sapiens [51]. Of
these 607 Drosophila genes, 11 % (66 genes) have a human
homologue with a synapse related annotation [52]. This is
relevant because these human synaptic genes are homo-
logues of Drosophila genes belonging to a catalogue from
which any gene already annotated as synaptic was select-
ively excluded. The FlyBase IDs and the symbols of these
66 genes, as well as their human homologues with their
corresponding synapse-related GO annotations are shown
in Table 1.

Fig. 4 Enrichment in selected synapse-related BP GO terms as the classification threshold increases. a–d show the enrichment of the catalogues
generated by each classifier, in a representative selection of GO terms of relevance for the biological function “synapse”. For all classifiers, elevation
of the threshold resulted in increased enrichment. This increase in functional enrichment is accentuated in the consensus catalogues, showing
how the combined methods improved the three individual classifiers. a k-NN catalogues, b Random Forest catalogues, c SVM catalogues,
d catalogues of genes classified as synaptic by the three classifiers. All enrichment values have an associated p-value lower than 10−4 and
a FDR q-value lower than 10−3
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As a way to estimate the statistical relevance of this
result, one should construct a list of 988 Drosophila
genes randomly selected from the initial set of genes to be
classified, and then determine (after excluding from the
list all the genes with any synapse related annotation),
how many genes have at least one human homologue with
any synapse related annotation. After repeating this pro-
cedure three different times, we obtained a much lower
number of genes (25 genes in each case). This result rein-
forces the conclusion that our final catalogue is enriched
in genes of importance to the synapse in both species.

Comparison with a list of rat synaptic proteins
In a recently published paper [53], Wilhelm and collabora-
tors selected a set of rat proteins for which localization in
the synapse had been well established. As their aim was to
obtain a three-dimensional reconstruction of the synapse,
the list includes not only the kind of proteins that we have
defined as “synaptic” in our study, but also more ubiqui-
tous proteins. As an additional way to evaluate our results,
we “translated” [51, 52] Wilhelm’s list of rat proteins into

a list of Drosophila “synaptic genes”. After excluding those
genes not fulfilling our definition of synaptic genes (as for
example cytoskeletal and mitochondrial proteins) or with-
out homologues in Drosophila, we obtained a list of 53
Drosophila genes, whose rat homologues have a well
established synaptic function.
We found that 14 of these 53 genes had been included

in our training set and 28 of the remaining genes were
already annotated with at least one synapse related GO
term in Drosophila (and so they were selectively ex-
cluded from the data set we were classifying). There are
then 11 genes in Wilhelm’s list that are neither in our
training set nor already annotated as synaptic genes in
Drosophila. If there is good conservation between mam-
mals and Drosophila synaptic proteins one could expect
our classifiers to label as synaptic genes at least some of
these 11 genes. This turned to be the case, as 9 of these
11 genes belong to our initial consensus catalogue and 5
belong to our final catalogue of putative synaptic genes.
We believe these results (showed in Table 2) reinforce
the reliability of our approach.

Fig. 5 Relation between percentages of genes with tissue-specific differential expression by tissue and classification thresholds. a–d show the relationship
between tissue-specific differential expression, classification methods, and classification thresholds. Regardless of the classification method, all catalogues
are enriched in genes expressed in the CNS at much higher levels than in tissues with fewer or none synapses. Notice that increasing the threshold
did not result in an increment of the proportion of genes differentially expressed in tissues other than the CNS. a k-NN catalogues, b Random Forest
catalogues, c SVM catalogues, d consensus catalogues. The threshold values are shown in the horizontal axis, with 0 corresponding to the initial set of
genes to be classified. Each colored line corresponds to one of the five analyzed tissues according to the color code shown at the bottom
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Table 1 Putative synaptic genes with no synapse-related annotation in Drosophila and homologues annotated as synaptic
in Homo sapiens

Annotation symbol Gene symbol Mean prob. Human homologue HGI GO term (in Homo sapiens)

CG7392 Cka 1.00 STRN ENSG00000115808 CC: postsynaptic membrane

CG9634 NA 1.00 MME ENSG00000196549 CC: synaptic vesicle

CG8529 Dyb 0.99 DTNA ENSG00000134769 BP: synaptic transmission

CG7023 Usp12–46 0.99 USP46 ENSG00000109189 BP: regulation of synaptic transmission

CG16973 msn 0.99 MINK1 ENSG00000141503 BP: synaptic transmission

CG6593 Pp1alpha-96A 0.99 PPP1CA ENSG00000172531 CC: dendritic spine

CG15112 ena 0.99 ENAH ENSG00000154380 CC: synapse

CG10545 Gbeta13F 0.99 GNB2 ENSG00000172354 BP: synaptic transmission

CG14991 Fit1 0.99 FERMT1 ENSG00000101311 CC: synapse

CG1651 Ank 0.99 ANK2 ENSG00000145362 CC: postsynaptic membrane

CG32717 sdt 0.99 MPP4 ENSG00000082126 CC: presynaptic membrane

CG5248 loco 0.99 RGS14 ENSG00000169220 BP: long-term synaptic potentiation

CG7147 kuz 0.99 ADAM10 ENSG00000137845 CC: postsynaptic density

CG10566 NA 0.99 ICA1 ENSG00000003147 CC: synaptic vesicle membrane

CG32264 NA 0.99 PHACTR1 ENSG00000112137 CC: synapse

CG13830 NA 0.99 SPOCK2 ENSG00000107742 BP: synapse assembly

CG10637 Nak 0.98 AAK1 ENSG00000115977 CC: terminal bouton (of the axon)

CG3269 Rab2 0.98 RAB14 ENSG00000119396 BP: neurotransmitter secretion

CG10011 NA 0.98 ANK2 ENSG00000145362 CC: postsynaptic membrane

CG8440 Lis-1 0.98 PAFAH1B1 ENSG00000007168 BP: synaptic transmission

CG5650 Pp1-87B 0.98 PPP1CA ENSG00000172531 CC: dendritic spine

CG10579 Eip63E 0.98 CDK16 ENSG00000102225 CC: synaptic vesicle

CG10538 CdGAPr 0.98 ARHGAP32 ENSG00000134909 CC: postsynaptic membrane

CG7535 GluClalpha 0.98 CHRNA5 ENSG00000169684 BP: synaptic transmission

CG8726 NA 0.98 PXK ENSG00000168297 BP: regulation of synaptic transmission

CG30389 NA 0.98 TMEM57 ENSG00000204178 CC: synapse part

CG7546 NA 0.98 BAG6 ENSG00000204463 BP: synaptonemal complex assembly

CG1506 Ac3 0.98 ADCY3 ENSG00000138031 BP: synaptic transmission

CG6214 MRP 0.98 ABCC8 ENSG00000006071 BP: synaptic transmission

CG4574 Plc21C 0.98 PLCB1 ENSG00000182621 BP: synaptic transmission

CG11734 HERC2 0.98 HERC1 ENSG00000103657 MF: neurotrans:Na symporter activity

CG42829 CadN2 0.97 CDH2 ENSG00000170558 CC: synapse

CG6383 crb 0.97 DNER ENSG00000187957 BP: synapse assembly

CG1862 Ephrin 0.97 EFNB1 ENSG00000090776 CC: synapse

CG7100 Cadherin-N 0.97 CDH1 ENSG00000039068 BP: synapse assembly

CG8948 Graf 0.97 OPHN1 ENSG00000079482 BP: synaptic vesicle endocytosis

CG9361 Task7 0.97 KCNK3 ENSG00000171303 BP: synaptic transmission

CG6998 ctp 0.97 DYNLL2 ENSG00000121083 BP: synaptic target recognition

CG18455 Optix 0.97 SIX1 ENSG00000126778 BP: reg. of synaptic growth at nj

CG5912 arr 0.96 LRP6 ENSG00000070018 BP: synaptic transmission CC: synapse

CG8261 Ggamma1 0.96 GNG10 ENSG00000242616 BP: synaptic transmission

CG2849 Rala 0.96 RIT2 ENSG00000152214 BP: synaptic transmission

CG32217 Su(Tpl) 0.96 MARVELD2 ENSG00000152939 MF: neurotrans:Na symporter activity
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Discussion
One of the main goals of functional genomics is to make
predictions on the biological function of genes from the
information stored in large-scale datasets, maximizing
the utility of available information and making predic-
tions of function with verifiable performance [11]. Here
we show that it is possible to obtain gene catalogues
enriched in genes of importance for the neuronal syn-
apse, analizing a genome-wide full-body developmental
transcriptome with a combination of supervised learning
algorithms and a bioinformatic approach tested here for
the first time.
Some 25 years ago, a functional relationship between

genes displaying similar expression patterns was sug-
gested by the first studies analyzing expression data with
automatic learning methods. Clustering of yeast genes
on the basis of their similarities in expression patterns
resulted in groups of genes sharing important functional
similarities [11, 13]. A correlation between expression
profile and biological function was also demonstrated in

Drosophila [54–57] and humans, although in this last
case somewhat obscured by a less complete functional
annotation of the genome [12]. On the other side, a clear
mapping of functional gene groups to expression profiles
was demonstrated in rats [14]. Since then, the use of
automatic learning methods to assign putative functions
to genes, based not only on their expression profiles but
also on protein—protein interactions and on structural
similarities, has led to a broad diversity of strategies and
to a profuse bibliography [16–20, 58].
The most direct antecedent to our study is, we believe,

that of Yan and collaborators [11]. In that work, function-
specific classifiers based on Random Forest were trained
to predict GO terms for Drosophila melanogaster genes
using features from protein-protein interaction networks,
gene expression profiles, genetic interactions, conserved
protein domains and cross-species sequences similarities.
Regarding synapse assembly and function, GO terms
including the words “synapse”, “synaptic” or “neurotrans-
mitter” were predicted for only 31 genes [11].

Table 1 Putative synaptic genes with no synapse-related annotation in Drosophila and homologues annotated as synaptic
in Homo sapiens (Continued)

CG17336 Lcch3 0.96 GABRB1 ENSG00000163288 BP: synaptic transmission

CG15274 GABA-B-R1 0.96 GABBR1 ENSG00000204681 BP: synaptic transmission

CG4244 Su(dx) 0.96 NEDD4 ENSG00000069869 BP: regulation of synapse organization

CG16757 Spn 0.96 PPP1R9A ENSG00000158528 CC: synapse

CG4625 Dhap-at 0.96 GNPAT ENSG00000116906 BP: synapse assembly

CG32434 siz 0.96 IQSEC3 ENSG00000120645 CC: inhibitory synapse

CG9491 Gef26 0.95 RAPGEF2 ENSG00000109756 BP: regulation of synaptic plasticity

CG42314 PMCA 0.95 ATP2B2 ENSG00000157087 BP: regulation of synaptic plasticity

CG7223 htl 0.95 FGFR2 ENSG00000066468 BP: synaptic vesicle transport

CG9375 Ras 85D 0.95 HRAS ENSG00000174775 BP: long-term synaptic plasticity

CG30388 Magi 0.95 MAGI2 ENSG00000187391 CC: synapse

CG11958 Cnx99A 0.95 CANX ENSG00000127022 BP: synaptic vesicle endocytosis

CG9985 sktl 0.94 PIP5K1C ENSG00000186111 BP: synaptic vesicle exo and endocitosis

CG8726 NA 0.94 KCNK18 ENSG00000186795 BP: synaptic transmission

CG7641 Nca 0.94 NCALD ENSG00000104490 BP. synaptic transmission

CG8394 VGAT 0.94 SLC32A1 ENSG00000101438 BP: synaptic transmission

CG3585 Rbcn-3A 0.94 DMXL2 ENSG00000104093 CC: synaptic vesicle

CG7558 Arp3 0.94 ACTR3 ENSG00000115091 CC: excitatory synapse

CG14145 Blos2 0.94 BLOC1S2 ENSG00000196072 BP: synaptic vesicle transport

CG1407 NA 0.94 ZDHHC15 ENSG00000102383 BP: synaptic vesicle maturation

CG31196 14-3-3epsilon 0.94 YWHAE ENSG00000128245 BP: regulation of synaptic plasticity

CG16928 mre11 0.94 MRE11A ENSG00000020922 CC: synapsis

CG8705 pnut 0.92 SEPT5 ENSG00000184702 BP: synaptic vesicle targeting

The table shows the list of Drosophila genes belonging to our final catalogue of putative synaptic genes that don’t have any synapse related GO term annotation
but have at least 1 homologue in Homo sapiens already annotated with some synapse related GO term. The first 2 columns show the Annotation Symbol as well
as the Symbol of these 66 Drosophila genes. The third column shows the mean between the classification probabilities given by the three learning algorithms to
each gene. The following columns show the symbol and gene identifier of the corresponding human homologue (or 1 of them when there are more than 1) that
is already annotated with at least 1 synapse related GO term in humans, an annotation that is shown in the last column of the table
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Our study differs from this and other previous studies
in several important issues. As far as we know it is the
first to apply automatic learning algorithms to predict
gene function using developmental transcriptome data
obtained through NGST. The developmental transcrip-
tome used here has several advantages over other avail-
able Drosophila RNAseq data sets. Since the formation
of the brain in the fly embryo is such a rapid process
and the transcription profiles show good temporal corre-
lations with the sequence of biological processes [59],
this sample set offers a clear advantage for the definition
of putative synaptic genes. The key feature that made
this data set the best available for our study is that it
spans over several stages of the life cycle relevant for the
classification. These include a stage in which there are
no synapses in the organism, two stages when massive,
intense synapse formation occurs, and a stage of massive
synapse disassembly, all of which improves the potential
of the algorithms to distinguish between synaptic and
non-synaptic genes. This ability to discern synaptic
genes produced a catalogue not only of the sought size,
but whose functional enrichment in synapse related GO
terms is higher and more diverse than the enrichment
found in a list of genes with CNS-specific differential
expression (data not shown).
Another novelty of our study is that the training set

was constructed to be substantially different from the set
of genes that are already annotated in the GO database
with some synapse-related GO term. This strategy avoids
any circularity problem in evaluating the resulting cata-
logues by analyzing their functional enrichment in synapse-
related GO terms. Since the Drosophila genome is one of

the best annotated [60, 61], this represents a great advan-
tage over studies in which the performance of the classifiers
is evaluated only by cross-validation over the training set or
by literature examination of the top scoring predictions. It
is important to notice here that our training set of synaptic
genes only includes genes for which their importance for
the formation and function of synaptic active sites had been
demonstrated with independent methods. We did not in-
clude genes with more general annotations (as for instance
“axon” or “neuromuscular junction”) to render our analysis
more neutral to potential differences related to variation
among organisms in the morphology of their dendrites and
axon terminals.
Another important feature of our study is that we

followed a procedure that improves the classification
performance [10, 23], training different learning algo-
rithms and taking a vote over their predictions. The
advantage of this approach is illustrated by the fact that
for a given threshold, the functional enrichment in
synapse-related GO terms of the consensus catalogue is
bigger than that of the catalogues corresponding to each
algorithm. This procedure has the additional advantage
of reducing the probability of including false positives in
our final catalogue. Since our aim was not the gener-
ation of an exhaustive catalogue of synaptic genes, but
a catalogue of genes with high probability of being syn-
aptic, a decrease in the number of false positives is
preferable, although this leads to an increase in the
number of false negatives. It is worth noting the very
low error rates reached by the three algorithms in their
initial classifications and the excellent quality of their
performance, estimated through calculation of the area
under the ROC curve.
Finally, we wish to emphasize the fact that 11 % of the

Drosophila genes in our final catalogue of 893 genes are
already known to be of importance for the synapse in
humans, although still not in the fly. On the other hand,
9 out of 11 genes already known as being important for
synaptic function in rats [53] but not yet in Drosophila,
were classified as synaptic by our method. We think that
these coincidences are explained by the high degree of
functional conservation among homologous genes be-
tween these species, which makes undoubtedly a very
strong argument in favour of the convenience of our
approach and of the quality of our final catalogue.

Conclusions
The strong correlation between classification threshold,
functional enrichment and proportion of GTSDE in the
CNS, together with the observation that 11 % of the Dros-
ophila genes in our final catalogue have human homo-
logues already annotated as synaptic genes in H. sapiens,
strongly suggest that our final catalogue is highly enriched

Table 2 Genes in Wilhelm et al. [53] list that are neither in our
training set nor annotated as synaptic in Drosophila

Rat protein Drosophila homologue Initial catalogue Final catalogue

VGlut 1/2 CG10069 Yes Yes

Calmodulin CG8472 Yes No

NSF CG31495 Yes No

AP-2 mu2 CG10637 Yes Yes

SGIP1 CG8176 Yes Yes

endophilin II CG9834 Yes Yes

Hsc70 CG8937 No No

PIPK Ig CG9985 Yes Yes

Vti1a CG3279 Yes No

VAMP4 CG1599 Yes No

Calbindin CG6702 No No

The first column shows the names of the rat proteins whose Drosophila
homologues are neither in our training set nor already annotated as synaptic
genes in the fly. The second column shows the name of the corresponding
Drosophila homologue. The third column indicates whether these Drosophila
genes were classified as synaptic with a probability higher than 0.5 by the 3
algorithms. The fourth column indicates if the genes were also classified as
synaptic by the 3 algorithms with a probability above 0.9
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in genes of relevance for Drosophila synapse assembly and
function but still not recognized as such.
The utility of our approach is that it reduces the num-

ber of genes to be tested through hypothesis-driven
experimentation. Thus, we make available the list of 893
putative synaptic genes to the scientific community,
firmly believing that this will facilitate their investigation,
by means of gene silencing, mutant analysis, behavioral
assays and other traditional protocols. This will most
likely lead to the identification of new genes of great
relevance for the normal function of the nervous system.

Methods
Temporal transcriptome
We used the developmental transcriptome of Drosophila
melanogaster published by the MODENCODE Project
[32]. In this data, each sample consisted of total polyAAA-
RNA isolated from 30 whole bodies obtained at 27 un-
equally spaced moments along the organism life cycle,
including 12 points during the embryonic stage, 6 points
during the larval stage, 6 points during the pupal stage and
3 points during the adult stage (separated by sex). We used
the data published by these authors as “Supplementary
Table 9”, which shows the transcript levels of the 15,398
genes expressed in this study as fragments per kilo base of
exon per million fragments mapped (FPKM). From this
initial set of 15,398 genes we excluded 1756 genes that
show transcript levels above zero only during adult life,
because we were looking for genes expressed in the embryo
and in the pupa, two developmental periods where massive
synaptogenesis take place [30]. Assuming that profile
shapes and temporal correlations with other transcription
profiles are generally more informative about the function
of a gene than its absolute transcription levels, we normal-
ized each gene’s temporal series dividing it by its maximum
value, thus obtaining for each gene a series of values oscil-
lating between 0 and 1. After excluding from the 13,642
remaining genes the 489 genes that were used to construct
the training set (see below), we obtained a set of 13,153
genes that were then classified into either “synaptic genes”
or “non synaptic genes”.

Construction of the training set
Gene Ontology (GO) provides a valuable source of struc-
tured knowledge of protein functions [48] and has been
widely used as a source of positive and negative samples
to train classifiers [11, 62, 63]. Typically, all genes associ-
ated with the function being studied and annotated as
such in the GO database, are included in the training set
as positive samples. The negative samples are then ran-
domly selected from all the non-positive samples. This
strategy has some important drawbacks. Considering all
non-positive samples as negative samples not only can
cause a high imbalance between both classes, generating

serious model fitting problems [64], but because many
genes most probably have functions yet not annotated,
this procedure does not minimize the chance of including
false negatives in the training set.
After an exhaustive bibliographic revision, we elabo-

rated a list of 92 “synaptic genes” for which a synaptic
function is supported by strong and unequivocal experi-
mental evidence. We chose a widely-accepted definition
of “synapse” that refers to the specialized cell-to-cell
contact also called “active zone”, formed by a pre-synaptic
and a post-synaptic zone and separated by a synaptic cleft
in which the pre-synaptic zone releases neurotransmitter
upon arrival of an action potential [28]. We took special
care not to include as “synaptic genes” those genes consid-
ered as such solely on the basis of less strict definitions of
“synapse”, as for example “synaptic boutons” or “neuro-
muscular junction” (For this semantic problem, see [28]).
Importantly, we left out of the training set the majority of
genes that by July 2014 were already annotated with some
synaptic function in the GO database. We included only
83 out of the 456 genes that were annotated with at least
one synapse-related GO BP term. On the other hand, we
included nine genes that, although the strong experimen-
tal evidence for their synaptic function, were not yet anno-
tated as such in the GO database. This procedure allowed
us to test the functional enrichment of the resulting
catalogues against the GO database without any circularity
problem.
To elaborate the list of “non-synaptic genes”, we se-

lected genes fulfilling at least one of the two following
biological criteria:

– To have a very low expression level in the Central
Nervous System (CNS) throughout the third larval
instar relative to their mean expression level in the
whole body during the same stage. As this is a
developmental stage of rapid growth and intense
synapse formation, we assumed that these genes will
most likely be of little relevance for synapse assembly
and function. To determine which genes fulfill this
criterion, we used the tissue-specific expression data
available in FlyAtlas [65]. We found that 352 genes
from our data set showed a ratio lower than 0.05
between their expression in the CNS and their mean
expression in the whole body at the third instar larva.

– To have an extreme sex-biased expression, because
we expect synapses to be essentially the same in
females and males. We analyzed the six samples of
the MODENCODE developmental transcriptome
that correspond to the adult life, that were prepared
and sequenced for males and females separately [32].
We found 45 genes that showed expression levels
equal to 0 in one sex and higher than 25 FPKM in
the other sex.
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We stress the fact that neither the “synaptic genes”
nor the “non-synaptic genes” were labeled taking into
account the transcription profiles by which the rest of
the genome was classified.

Machine learning approach
We used three well established non-parametric and su-
pervised classification methods to predict whether a
gene i is synaptic (yi = 1) or not (yi = 0) given its tem-
poral transcription profile {xi = xi

j: j = 1, 2,…, 24}. These
methods allow to estimate the probabilities P(y i = 1| xi)
from a training set. A decision rule is applied and gene i
is classified as synaptic if the estimated probability is
larger than a given threshold, which by default is set at
0.5. To evaluate the goodness of a classifier, the true
error rate is estimated by 10-fold cross validation. Each
procedure involves two parameters as described below
and these parameters modify the threshold over which a
given gene is classified as synaptic [66]. All calculations
were performed using the R [67] packages randomForest
[68], -e1071 [69] and class [70].

Random forest
This is an aggregation method based on classification
trees that improves their results by introducing two
randomization steps: a number B of bootstrap samples
from the training set and the random selection of m
predicting variables. The estimation of P(yi = 1| xi) is
obtained by aggregating the predictions of each one of
the B trees in the forest [25]. We constructed 500 clas-
sification trees and used 4 variables in each partition.

Support vector machine
This method searches for the optimal hyper-plane separ-
ating the training set according to the label of the data
(synaptic or not synaptic, in our case). The margin of
separation is maximized subject to a constraint related
to the total cost, C, of violating the margin. By using a
Radial Basis Kernel [26, 66] we enlarged the feature
space to improve the separation; the width of the kernel
is controlled by a parameter γ. We adjusted C and γ (be-
ing γ the exponent in the radial kernel) by a grid search
and the lowest error rate, shown in Fig. 2, was 3.3 %
with C = 2.2 and γ =0.02.

k-NN
In k-Nearest Neighbors classification an unlabeled object
is classified according to the most common class among
its labeled k nearest neighbors. The parameters to adjust
are the distance in feature space and k [24]. Using
Euclidean distance and increasing the number of consid-
ered neighbors one by one, we observed that after 7 neigh-
bors the error rate estimation by 10-fold cross validation
reached a stable value (data not shown). Nevertheless, we

decided to use 25 neighbors, as this allowed us to modify
more freely the classification threshold to label a gene as
“synaptic” (see below). This is the error for k-NN shown
in Fig. 2.

True error rate estimation
To evaluate the goodness of each classifier we performed
10 fold cross validation over the training set. To do so,
the training set was randomly split in ten subsets of the
same size. Each model was then trained with 9 of the
subsets and tested with the remaining one. As the true
labels of the training set are known, the error rate of the
trained model can be quantified. This procedure is
repeated 10 times, leaving out each time 1 of the 10 subsets.
The mean error rate is then calculated as an estimation of
the true error rate of the classifier. The same method was
used to calculate the error rates of the classifiers at different
classification thresholds.

Sequential increase of the classification threshold
Instead of directly setting the classification thresholds
values needed to produce a catalogue of the expected
size, we decided to sequentially increase the classifica-
tion threshold, that is, the estimated probability of being
a synaptic gene that a gene must exceed to be classified
as synaptic. This classification threshold has a default
value of 0.5 and we considered the catalogues obtained
with classification thresholds of 0.6, 0.7, 0.8 and 0.9. This
procedure leads to a decreasing in size series of cata-
logues formed by genes that are “synaptic genes”
according to each of the adjusted model. The procedure
also results in a decreasing in size series of consensus
catalogues, formed by genes that are “synaptic genes”
according to the three adjusted models.

Biological characterization of the catalogues
To investigate whether the increment of the statistical con-
straints resulted in an increase of the biological relevance of
the catalogues we determined two of their features: the
catalogue’s enrichment in synapse-related BP GO terms
and the proportion of the catalogue’s genes with a differen-
tial expression in the CNS.

Functional enrichment analysis
To evaluate the biological quality of the gene catalogues
produced by our approach, we determined their enrich-
ment in BP GO terms using GOrilla [71]. This GO
enrichment analysis tool allows comparing the presence
of GO terms in a given gene catalogue with respect to a
custom background set of genes. In our case, this back-
ground set was composed by the genes that remained
after excluding from the initial set of 15,398 genes, the
1756 genes that showed expression only during adult
life, and the 489 genes that belong to the training set.
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That is, we measured the enrichment of each catalogue
using as background set the 13,153 genes to be classi-
fied. Here, enrichment is defined as (b/n) / (B/N), with
N being the total number of genes, B being the total
number of genes associated with a specific GO term, n
being the number of genes in the target set and b being
the number of genes in the intersection [71]. We only
considered enrichments with an associated p-value lower
than 10−4 and a FDR q-value lower than 10−3. FDR q-
value is the correction of the p-value for multiple testing
using the Benjamini and Hochberg method.

Genes with tissue-specific differential expression
As an additional way to evaluate the biological relevance
of our gene lists, we analyzed tissue-specific differential
expression with the assumption that synaptic genes are
expressed at higher levels in the CNS (the tissue with
most synapses per unit of volume) than in the salivary
glands, intestine or other tissues with none or fewer
synapses. To do so, we used the data published by mod-
ENCODE and made available by Flybase in http://flyba-
se.org/static_pages/expression/expr_search.html [72]. We
selected five tissues to analyze: the CNS, the salivary
glands, the fat body, the digestive system and the carcass.
The salivary glands and the fat body have no synapses
because they are not innervated whereas the intestine and
carcass, although innervated, posses much less synapses
than the CNS. Using the forms in Flybase we selected the
genes that during the third larval instar show at least a
moderate expression in one of the five tissues and a very
low expression in all the other considered tissues. By this
procedure we constructed five lists of genes that are differ-
entially expressed in each of the five selected tissues (See
Additional file 4). As we expect a catalogue of synaptic
genes to be enriched in genes that are preferentially
expressed in the CNS, the five lists of GTSDE can be used
to evaluate the quality of our catalogues. We determined
the proportion of the differentially expressed genes that
do so in each of the considered tissues and focused on
how this proportion changes as we increase the classifica-
tion threshold.

Genes of our final catalogue with human homologues
already annotated as synaptic genes
Our consensus catalogue corresponding to a classifica-
tion threshold of 0.9 comprises 988 Drosophila genes
that, according to the three algorithms, have a probabil-
ity above 90 % of being involved in synapse assembly
and function. After excluding those genes that were
already annotated as relevant for synapse assembly or
function in the GO database (July 2014), we obtained a
final catalogue of 893 putative synaptic genes. As a way
to further characterize this catalogue, we explored how
many of these genes have at least one human homologue

with some synapse related annotation [52]. To do so we
batch-downloaded the human homologues to our final
catalogue from FlyBase, and then we downloaded the
GO annotation for those genes from MetabolicMine.
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Additional file 2: List of non-synaptic genes. A .csv file listing the 397
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assigned by each of the three classifiers for all the genes in the data set.
(CSV 573 kb)

Additional file 8: Transcription profiles of synaptic genes. A .pdf file
with a graph showing the transcription profiles of the genes classified as
synaptic at each threshold. (PDF 2061 kb)

Abbreviations
CNS: Central nervous system; FPKM: Fragments per kilo base of exon
per million fragments mapped; GO BP: Gene Ontology Biological Process;
GO CC: Gene ontology cellular component; GO MF: Gene ontology
molecular function; GTSDE: Genes with tissue-specific differential expression;
k-NN: k - Nearest Neighbors; NGST: Next-generation sequencing technologies;
RF: Random Forest; SVM: Support Vector Machine.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FPO conceived the study, performed experiments and data analysis, and
wrote the manuscript. CP performed experiments and corrected the
manuscript. SC performed experiments and corrected the manuscript. GG
supervised the project and corrected the manuscript. RC conceived the
study, supervised the project and wrote the manuscript. All authors read and
approved the final manuscript.

Acknowledgments
The authors would like to acknowledge Programa de Desarrollo de las
Ciencias Básicas (PEDECIBA), Uruguay and Instituto de Investigaciones
Biológicas Clemente Estable for financial and administrative assistance. RC
received funds from the Sistema Nacional de Investigadores (Uruguay). FPO
received financial assistance from PEDECIBA Bioinformática (Uruguay). The
funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Author details
1Departamento de Biología del Neurodesarrollo, Instituto de Investigaciones
Biológicas Clemente Estable, Avenida Italia 3318, PC 11600 Montevideo,
Uruguay. 2Instituto de Matemática y Estadística “Prof. Ing. Rafael Laguardia”,

Pazos Obregón et al. BMC Genomics  (2015) 16:694 Page 12 of 14

http://flybase.org/static_pages/rna-seq/rna-seq_search.html
http://flybase.org/static_pages/rna-seq/rna-seq_search.html
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s1.csv
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s2.csv
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s3.pdf
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s4.pdf
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s5.csv
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s6.csv
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s7.csv
http://www.biomedcentral.com/content/supplementary/s12864-015-1888-3-s8.pdf


Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay.
3Zoology Department, Stockholm University, Stockholm, Sweden.

Received: 27 February 2015 Accepted: 1 September 2015

References
1. Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in

Drosophila neural development. Dev Neurobiol. 2011;71:1102–30.
2. Sigrist SJ, Schmitz D. Structural and functional plasticity of the cytoplasmic

active zone. Curr Opin Neurobiol. 2011;21:144–50.
3. Frank CA, Wang X, Collins CA, Rodal AA, Yuan Q, Verstreken P, et al. New

approaches for studying synaptic development, function, and plasticity
using Drosophila as a model system. J Neurosci Off J Soc Neurosci.
2013;33:17560–8.

4. Lassek M, Weingarten J, Volknandt W. The synaptic proteome. Cell Tissue
Res. 2015;359:255–65.

5. Emes RD, Grant SGN. Evolution of synapse complexity and diversity. Annu
Rev Neurosci. 2012;35:111–31.

6. Littleton JT, Ganetzky B. Ion channels and synaptic organization: analysis of
the Drosophila genome. Neuron. 2000;26.

7. Burkhardt P. The origin and evolution of synaptic proteins -
choanoflagellates lead the way. J Exp Biol. 2015;218(Pt 4):506–14.

8. Lloyd TE, Verstreken P, Ostrin EJ, Phillippi A, Lichtarge O, Bellen HJ. A
genome-wide search for synaptic vesicle cycle proteins in Drosophila.
Neuron. 2000;26:45–50.

9. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. A
combined algorithm for genome-wide prediction of protein function.
Nature. 1999;402:83–6.

10. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Dzeroski S. Predicting
gene function using hierarchical multi-label decision tree ensembles. BMC
Bioinformatics. 2010;11:2.

11. Yan H, Venkatesan K, Beaver JE, Klitgord N, Yildirim MA, Hao T, et al. A
genome-wide gene function prediction resource for Drosophila
melanogaster. PLoS One. 2010;5.

12. DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of
gene expression on a genomic scale. Science. 1997;278:680–6.

13. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of
genome-wide expression patterns. Proc Natl Acad Sci. 1998;95:14863–8.

14. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, et al.
Knowledge-based analysis of microarray gene expression data by using
support vector machines. Proc Natl Acad Sci U S A. 2000;97:262–7.

15. Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, et al. Large-
scale temporal gene expression mapping of central nervous system
development. Proc Natl Acad Sci U S A. 1998;95:334–9.

16. Hvidsten TR, Komorowski J, Sandvik AK, Laegreid A. Predicting gene
function from gene expressions and ontologies. Pac Symp Biocomput Pac
Symp Biocomput. 2001;2001:299–310.

17. Lukashin AV, Fuchs R. Analysis of temporal gene expression profiles:
clustering by simulated annealing and determining the optimal number of
clusters. Bioinforma Oxf Engl. 2001;17:405–14.

18. Lagreid A, Hvidsten TR, Midelfart H, Komorowski J, Sandvik AK. Predicting
gene ontology biological process from temporal gene expression patterns.
Genome Res. 2003;13:965–79.

19. Zhang W, Morris QD, Chang R, Shai O, Bakowski MA, Mitsakakis N, et al. The
functional landscape of mouse gene expression. J Biol. 2004;3.

20. Lan H, Carson R, Provart NJ, Bonner AJ. Combining classifiers to predict
gene function in Arabidopsis thaliana using large-scale gene expression
measurements. BMC Bioinformatics. 2007;8:358.

21. Caruana R, Niculescu-Mizil A. An empirical comparison of supervised
learning algorithms. In: Proceedings of the 23rd international conference on
Machine learning. Pittsburgh, Pennsylvania: ACM; 2006. p. 161–8.

22. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we need
hundreds of classifiers to solve real world classification problems? J Mach
Learn Res. 2014;15:3133–81.

23. Vinayagam A, Konig R, Moormann J, Schubert F, Eils R, Glatting K-H, et al.
Applying support vector machines for gene ontology based gene function
prediction. BMC Bioinformatics. 2004;5:116.

24. Silverman B, Jones M. E. Fix and J.L. Hodges (1951): an important
contribution to nonparametric discriminant analysis and density estimation:

commentary on Fix and Hodges (1951). Int Stat Rev Rev Int Stat.
1989;57:233–8.

25. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
26. Vapnik V. Statistical learning theory. New York: Wiley; 1998.
27. Prokop A, Meinertzhagen IA. Development and structure of synaptic

contacts in Drosophila. Semin Cell Dev Biol. 2006;17.
28. Collins CA, DiAntonio A. Synaptic development: insights from Drosophila.

Curr Opin Neurobiol. 2007;17.
29. Costello JC, Dalkilic MM, Beason SM, Gehlhausen JR, Patwardhan R, Middha

S, et al. Gene networks in Drosophila melanogaster: integrating experimental
data to predict gene function. Genome Biol. 2009;10.

30. Technau GM. Brain development in Drosophila melanogaster. Landes
Bioscience, Austin, TX, and Springer Science+Business Media, New York. 2008.

31. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res. 2008;18:1509–17.

32. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, et al.
The developmental transcriptome of Drosophila melanogaster. Nature.
2011;471:473–9.

33. Boley N, Wan KH, Bickel PJ, Celniker SE. Navigating and mining
modENCODE data. Methods San Diego Calif. 2014;68:38–47.

34. Darbo E, Herrmann C, Lecuit T, Thieffry D, van Helden J. Transcriptional and
epigenetic signatures of zygotic genome activation during early Drosophila
embryogenesis. BMC Genomics. 2013;14.

35. Krassovsky K, Henikoff S. Distinct chromatin features characterize different
classes of repeat sequences in Drosophila melanogaster. BMC Genomics.
2014;15:105.

36. Tennessen JM, Bertagnolli NM, Evans J, Sieber MH, Cox J, Thummel CS.
Coordinated metabolic transitions during Drosophila embryogenesis and
the onset of aerobic glycolysis. G3 Bethesda Md. 2014;4:839–50.

37. Thomas JB, Wyman RJ. Mutations altering synaptic connectivity between
identified neurons in Drosophila. J Neurosci Off J Soc Neurosci.
1984;4:530–8.

38. Kopczynski CC, Davis GW, Goodman CS. A neural tetraspanin, encoded by
late bloomer, that facilitates synapse formation. Science. 1996;271:1867–70.

39. Gorczyca M, Popova E, Jia XX, Budnik V. The gene mod(mdg4) affects
synapse specificity and structure in Drosophila. J Neurobiol. 1999;39:447–60.

40. Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS.
Highwire regulates synaptic growth in Drosophila. Neuron. 2000;26:313–29.

41. Featherstone DE, Broadie K. Surprises from Drosophila: genetic mechanisms
of synaptic development and plasticity. Brain Res Bull. 2000;53:501–11.

42. Kraut R, Menon K, Zinn K. A gain-of-function screen for genes controlling
motor axon guidance and synaptogenesis in Drosophila. Curr Biol CB.
2001;11:417–30.

43. Rieckhof GE, Yoshihara M, Guan Z, Littleton JT. Presynaptic N-type calcium
channels regulate synaptic growth. J Biol Chem. 2003;278:41099–108.

44. Long AA, Mahapatra CT, Woodruff 3rd EA, Rohrbough J, Leung H-T,
Shino S, et al. The nonsense-mediated decay pathway maintains
synapse architecture and synaptic vesicle cycle efficacy. J Cell Sci.
2010;123(Pt 19):3303–15.

45. Valakh V, Naylor SA, Berns DS, DiAntonio A. A large-scale RNAi screen
identifies functional classes of genes shaping synaptic development and
maintenance. Dev Biol. 2012;366:163–71.

46. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, et al.
Systematic analysis of genes required for synapse structure and function.
Nature. 2005;436:510–7.

47. Depner H, Lützkendorf J, Babkir HA, Sigrist SJ, Holt MG. Differential
centrifugation–based biochemical fractionation of the Drosophila adult CNS.
Nat Protoc. 2014;9:2796–808.

48. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet. 2000;25:25–9.

49. Zhang W, Zhang Y, Zheng H, Zhang C, Xiong W, Olyarchuk JG, et al. SynDB:
a Synapse protein DataBase based on synapse ontology. Nucleic Acids Res.
2007;35(Database issue):D737–41.

50. Pirooznia M, Wang T, Avramopoulos D, Valle D, Thomas G, Huganir RL, et al.
SynaptomeDB: an ontology-based knowledgebase for synaptic genes.
Bioinforma Oxf Engl. 2012;28:897–9.

51. Lyne R, Smith R, Rutherford K, Wakeling M, Varley A, Guillier F, et al. FlyMine:
an integrated database for Drosophila and Anopheles genomics. Genome
Biol. 2007;8:R129.

Pazos Obregón et al. BMC Genomics  (2015) 16:694 Page 13 of 14



52. Lyne M, Smith RN, Lyne R, Aleksic J, Hu F, Kalderimis A, et al. metabolicMine:
an integrated genomics, genetics and proteomics data warehouse for
common metabolic disease research. Database. 2013;2013:bat060.

53. Wilhelm BG, Mandad S, Truckenbrodt S, Krohnert K, Schafer C, Rammner B,
et al. Composition of isolated synaptic boutons reveals the amounts of
vesicle trafficking proteins. Science. 2014;344:1023–8.

54. Spellman PT, Rubin GM. Evidence for large domains of similarly expressed
genes in the Drosophila genome. J Biol. 2002;1.

55. Hooper SD, Boue S, Krause R, Jensen LJ, Mason CE, Ghanim M, et al.
Identification of tightly regulated groups of genes during Drosophila
melanogaster embryogenesis. Mol Syst Biol. 2007;3.

56. Papatsenko I, Levine M, Papatsenko D. Temporal waves of coherent gene
expression during Drosophila embryogenesis. Bioinforma Oxf Engl.
2010;26:2731–6.

57. Weber CC, Hurst LD. Support for multiple classes of local expression clusters
in Drosophila melanogaster, but no evidence for gene order conservation.
Genome Biol. 2011;12.

58. Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological
processes using time-series gene expression data. Nat Rev Genet.
2012;13:552–64.

59. Cantera R, Ferreiro MJ, Aransay AM, Barrio R. Global gene expression shift
during the transition from early neural development to late neuronal
differentiation in Drosophila melanogaster. PLoS One. 2014;9.

60. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG,
et al. The genome sequence of Drosophila melanogaster. Science.
2000;287:2185–95.

61. McQuilton P, St Pierre SE, Thurmond J. FlyBase 101–the basics of navigating
FlyBase. Nucleic Acids Res. 2012;40(Database issue):D706–14.

62. Zhang W, Zou S, Song J. Term-tissue specific models for prediction of gene
ontology biological processes using transcriptional profiles of aging in
Drosophila melanogaster. BMC Bioinformatics. 2008;9:129.

63. Mitsakakis N, Razak Z, Escobar M, Westwood JT. Prediction of Drosophila
melanogaster gene function using Support Vector Machines. BioData Min.
2013;6:8.

64. Zhao X-M, Wang Y, Chen L, Aihara K. Gene function prediction using
labeled and unlabeled data. BMC Bioinformatics. 2008;9:57.

65. Chintapalli VR, Wang J, Dow JAT. Using FlyAtlas to identify better Drosophila
melanogaster models of human disease. Nat Genet. 2007;39:715–20.

66. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning data
mining, inference, and prediction. New York: Springer; 2009.

67. R Development Core Team: R Development Core Team (2013). R: A language
and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. ISBN 3-900051-07-0, URL https://www.r-project.org/.

68. Wiener M. LA: Classification and regression by randomforest. R News.
2002;2:18–22.

69. Leisch F, Weingessel A, Hornik K, Dimitriadou E, Meyer D. e1071: Misc
Functions of the Department of Statistics (e1071), TU Wien. In: R package
version 1.6-1. 2012.

70. Venables WN, Ripley BD. Modern applied statistics with S. 4th ed. New York:
Springer; 2002.

71. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery
and visualization of enriched GO terms in ranked gene lists. BMC
Bioinformatics. 2009;10:48.

72. Gelbart WM, Emmert DB. FlyBase high throughput expression pattern data
beta version. 2010.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Pazos Obregón et al. BMC Genomics  (2015) 16:694 Page 14 of 14

https://www.r-project.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Pre-processing of the original dataset
	Construction of the training set
	Model adjustment
	Initial classification of the three models
	Sequential increase of the classification threshold
	Functional enrichment analysis
	Genes with Tissue-Specific Differential Expression (GTSDEs)
	Final catalogue of 893 putative Drosophila synaptic genes
	Genes of our final catalogue have human homologues already described as synaptic genes
	Comparison with a list of rat synaptic proteins

	Discussion
	Conclusions
	Methods
	Temporal transcriptome
	Construction of the training set
	Machine learning approach
	Random forest
	Support vector machine
	k-NN

	True error rate estimation
	Sequential increase of the classification threshold
	Biological characterization of the catalogues
	Functional enrichment analysis
	Genes with tissue-specific differential expression
	Genes of our final catalogue with human homologues already annotated as synaptic genes

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References



