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Abstract

Large amounts of data emerging from experiments in molecular medicine are leading to the identification of molecular sig-
natures associated with disease subtypes. The contextualization of these patterns is important for obtaining mechanistic
insight into the aberrant processes associated with a disease, and this typically involves the integration of multiple hetero-
geneous types of data. In this review, we discuss knowledge representations that can be useful to explore the biological
context of molecular signatures, in particular three main approaches, namely, pathway mapping approaches, molecular
network centric approaches and approaches that represent biological statements as knowledge graphs. We discuss the util-
ity of each of these paradigms, illustrate how they can be leveraged with selected practical examples and identify ongoing
challenges for this field of research.
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Introduction

Owing to technological advances allowing rapid and low-cost
profiling of biological systems, multiple types of omics data are
now routinely collected from patient cohorts in studies of
human diseases. These data can lead to a new taxonomy of

disease [1]. Diseases that were previously considered to be sin-
gle homogeneous conditions may in fact be collections of sev-
eral disease subtypes. Identification of subtypes allows
targeting of the underlying molecular processes involved in the
particular form of disease associated with the subtype, and can
lead to more personalized therapeutic strategies. A major

Mansoor Saqi is a Research Fellow at the Data Science Institute at Imperial College London. His research interests are in translational medicine informat-
ics, in particular data integration, and analysis of biological networks.
Artem Lysenko is a Postdoctoral Researcher at RIKEN Laboratory for Medical Science Mathematics. His research is in the areas of biomedical machine
learning, applied data science and biological network analysis.
Yi-Ke Guo is the Director of the Data Science Institute at Imperial College London. He has been working on technology and platforms for scientific data
analysis since the mid-1990s. His research focuses on knowledge discovery, data mining and large-scale data management. He is a Senior Member of the
IEEE and a Fellow of the British Computer Society.
Tatsuhiko Tsunoda is a Full Professor at Tokyo Medical and Dental University, and a Chief Scientist and the Director of Laboratory for Medical Science
Mathematics at RIKEN. His research interest is in development and applications of mathematical models and algorithms for genome analysis, multiomics
and precision medicine.
Charles Auffray is the Founding Director of the European Institute for Systems Biology and Medicine (EISBM) Lyon. He develops a systems approach to
complex diseases, integrating functional genomics, mathematical, physical and computational concepts and tools. He has participated in or coordinated
multiple European Union projects.
Submitted: 9 November 2017; Received (in revised form): 5 February 2018

VC The Author(s) 2018. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

609

, 20(2), 2019, 609–623

doi: 10.1093/bib/bby025
Advance Access Publication Date: 19 April 2018
Review Paper

Briefings in Bioinformatics

Deleted Text: Due 
Deleted Text: low 
Deleted Text: &hx2018;
Deleted Text: personalised 
https://academic.oup.com/


challenge for translational medicine informatics is the effective
exploitation of these data types to develop a more complete pic-
ture of the disease, in particular a description of how changes at
the molecular level are associated with the disease mechanism
and disease pathophysiology. The molecular profiles by them-
selves do not, in general, offer immediate insight into the mech-
anism of disease or the underlying causes, and may be of
limited utility for suggesting targets for therapeutic interven-
tion. Putting these molecular patterns into a broader biological
context represents a useful approach for understanding the
underlying themes involved in the disease pathology, and this
involves integrating the molecular profiles with other data
types, including pathways, cellular and physiological data.

Together with data warehousing and data analytics, the con-
textualization of data emerging from high-throughput experi-
ments is an important component of a translational informatics
pipeline. The contextualization of experimental data is facili-
tated by mapping the data to background knowledge, which can
include information at multiple levels of granularity. An
effective representation of the disease needs to relate disease-
specific information to background knowledge so as to help re-
searchers identify how dysfunctional proteins, pathways or
other molecular processes lead to the cellular or physiological
changes contributing to its aetiology.

Here, we review efforts to represent the context of disease-
implicated genes, and we suggest that they can be divided into
three broad themes, namely, pathway-centric, molecular net-
work centric and approaches that represent biological state-
ments as a knowledge graph (Table 1). We describe the
advantages and drawbacks of the different representations. We
do not discuss the details by which the genes are mapped to
pathways or networks (for review of approaches to data inter-
pretation, see for example [2]).

Difficulties with representations of
disease mechanism

The aim of contextualization is typically to obtain insight into
disease mechanism. However, defining disease mechanism is
not straightforward. The most appropriate representation of the
context depends to some extent on what data are available and
what questions are being asked. Disease mechanisms can be
represented at different levels of granularity. At high granular-
ity, a disease mechanism would describe all known temporal

steps, for example the detailed steps in a signalling pathways,
so that the downstream consequences of proteins, aberrant in
the disease condition, can be followed. However, information
about the disease at lower resolution, for example describing
only indirect relationships or correlative relationships, can also
give mechanistic insight. Examples of such low-level granular-
ity descriptions of disease include statements like: STAT6
activation is linked to mucous metaplasia, or Fluticasone up-
regulates expression of FKBP51 in asthmatics (see [3]) or gene
ADAM33 implicated in asthma is also implicated in chronic ob-
structive pulmonary disease and essential hypertension [4].

Hofmann-Apitius [5] describes mechanism as a causal rela-
tionship graph that involves multiple levels of biological organ-
ization [5]. Recently, in the Big Mechanism Project (BMP) [6]
efforts have been initiated toward building mechanistic models
of large, complex biological systems such as those involved in
cancer, using large-scale text mining (TM) followed by model
construction using a variety of frameworks. Cohen [6] describes
mechanism in terms of a model M, which maps an input x to an
output y, y: M: f^(x)(axþe)¼> y where the real mechanism f is
approximated by f^. An important part of the goal of the BMP is
not only to develop a collection of such models but also to auto-
mate the process of their construction. Therefore, a large part of
the project’s efforts is devoted to development of sophisticated
TM systems that can automatically capture such mechanistic
models directly from the literature [6]. The conceptualization of
a mechanistic model put forward by Cohen [6] implies that such
a model would be made of parts that reflect some correspond-
ing real components. This view provides a natural way of com-
bining the models (as such parts can be mechanistic models
themselves), though it also follows that at some level a simplifi-
cation will need to be made, e.g. for understanding the regula-
tory cascade, it may not really be desirable to model the process
at the level of individual atoms of the protein molecules
involved. Potentially, in the scientific literature, such an ab-
straction may be set at different levels, as human disease may
be, for example, studied at physiological and molecular levels
with causal mechanistic relationships being found at both of
them. One of the ongoing challenges in achieving the mechan-
istic understanding of disease is to develop tools and formal-
isms that can capture, model and reconcile the representations
of these different perspectives.

There is much information that may help to suggest disease
mechanisms to be included in an integrated representation of
disease. For example, information from disease-associated

Table 1. Approaches to knowledge representation for contextualizing disease biomarkers

Approach Examples of
Formats/Frameworks

Advantages Drawbacks

Pathway-
centric

SBML Ease of Navigation (e.g. using NaviCell, Google Maps API) Difficult to represent disease context
SBGN
BioPax

Integrated
molecular
networks

GeneMania Easy-to-use resources and tools Difficult to represent disease context,
although connecting layers of informa-
tion can provide some context

STRING

Knowledge
graphs

openBEL Agility of graph databases; semantic web approaches offer
a federated solution; openBEL framework captures
context

Lack of formal ontology in graph database
representations; Semantic Web solu-
tions do have a formal ontology but
lack agility of graph databases such as
Neo4j

RDF
Malacards
BioXMTM
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single-nucleotide polymorphisms (SNPs), information from pro-
tein–protein interactions and sequence similarity, information
on the effects profiled in mutational studies in model
organisms and the relationships of molecular variations with
physiological and cellular changes. The suitable representation
of this information in a manner that can be efficiently stored,
envisioned and queried is important for obtaining a mechanis-
tic understanding of disease.

What is the most appropriate way to represent disease-
related information in a computable format that can be useful
for hypothesis generation and for obtaining mechanistic in-
sight? To some extent, this depends on what questions are
being asked of the data. Here, we describe three approaches to
representation of contextual information, namely, pathway-
centric approaches, molecular network centric approaches and
information graphs (Figure 1). We contend that data integration
is a key component of all three approaches.

Network and graph-based representations are prodigiously
effective representations for integration, query, exchange and
visualization of numerous possible relationships and inter-
actions between biological entities. Owing to well-studied for-
mal mathematics of graphs, they also often serve as a key data
structure for algorithmic, machine learning and statistical
approaches for analysis of these data. Construction of biological
networks from high-throughput experimental data is an essen-
tial first step that enables many types of analysis discussed
below. While we recognize importance of this research, in this
review, our focus will be primarily on downstream applications
of biological and knowledge networks for molecular signature
contextualization, but for completeness, we would like to rec-
ommend the following works, which cover this closely related
topic in detail [7–10]. For convenience of readers, we have
included a list of abbreviations used throughout the article in
Table 2.

To provide a practical illustration of how different types of
contextualization approaches can be used, we have included
examples based on a severe asthma differential expression
gene signature and a manually curated core asthma gene signa-
ture acquired from DisGeNET database [11]. The differential ex-
pression signature was computed from the study by Voraphani
and Gladwin [12] (GSE43696), which profiled transcriptomics of

moderate and severe asthma as well as healthy controls. A full
description of all analysis performed is outlined in detail in the
Supplementary Methods. These examples were developed
purely to illustrate the approaches discussed in this review, and
potentially other examples relevant to asthma could have been
chosen.

Contextualization using integrated networks

Networks or graphs are sets of nodes and edges where a node
represents a concept and an edge represents a relationship.
Biological concepts can correspond to real, physical entities like
molecules, genes and proteins or represent more abstract enti-
ties, like typed groups (pathways, functional categories) and dis-
eases. The relationships represent a meaningful association
between these concepts, such as ‘protein A interacts with pro-
tein B’, ‘enzyme participates in pathway’ or ‘protein is a tran-
scription factor’. In many network studies in systems medicine,
the nodes are restricted to particular single type (such as pro-
tein), and such graphs are termed homogeneous. In this inter-
pretation, an edge can represent a single relationship type such
as a protein–protein interaction, or it can represent multiple
types of evidence that associates the two protein nodes. For ex-
ample, in the STRING protein–protein interaction (PPI) database
[13], evidence types from multiple sources are used to suggest
functional associations between proteins. The evidence types
include genome location, co-occurrence in the scientific litera-
ture and reported associations in other databases. Mechanistic
insight into diseases can be obtained by mapping disease-asso-
ciated genes (e.g. identified from omics data analyses) to such
networks. The network neighbourhood of the disease genes
provides a context and can suggest new candidates as well as
common themes at the level of molecular processes and path-
ways that may be associated with disease pathogenesis.
GeneMania [14] is a Cytoscape App that enables the construc-
tion of network neighbourhoods from a set of seed genes by in-
tegration of a number of constituent networks (e.g. PPI, shared
protein domains, co-expression).

Network representation can be leveraged to discover high-
level patterns that underlie organization of complex biological
systems, and more specifically identify patterns relating to

Figure 1. Examples of representations for contextualizing disease associated genes. A pathway centric view of the network neighbourhood of ALOX5 from

ReactomeViz, using the Cytoscape plug-in (left). A molecular network centric view using the GenMania Cytoscape plug-in (middle). A heterogeneous network, includ-

ing proteins, pathways and diseases, constructed and displayed using Neo4j (right).
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development of disease. One prominent early example of this
was from the work of Barabasi and co-workers [15], which rep-
resented disease–gene relationships as a bipartite graph from
which monopartite disease–disease and gene–gene graphs
could be obtained (the human–disease network and the dis-
ease–gene network) giving information about disease comorbid-
ities and thereby contextualising known disease genes. By
combining the disease–gene network with known PPI networks,
it was demonstrated that the corresponding disease-associated
proteins for a given disease have a greater tendency to interact
in a PPI network. Likewise, proximity of genes in the network
can be a strong indicator of their involvement in similar proc-
esses. Genes associated with a given disease tend to be closer
together in the interactome, and overlapping disease neigh-
bourhoods are related to greater comorbidity [16].

The network can also be analysed to identify notable topo-
logical features, many of which have been associated with bio-
logically meaningful properties. One of such features is the
modular organization of the network. Modules are groups of
nodes that are more interconnected to other nodes within the

region, than to other nodes outside the region [17]. In PPI net-
works, modules have been shown to correspond to functionally
similar groups of proteins, which in some cases may be relevant
to disease processes. One such example was identified by [18],
who, using genes from seven stress-related diseases together
with the STRING network, identified a common subnetwork
that may provide insights into comorbidity of these diseases.
An early example is the network model for asthma [19] that
combined information from gene co-expression taken from five
public gene expression studies, with PPI networks, and informa-
tion from annotation sources. The resulting ‘global map’ was
then used to explore common themes in asthma pathogenesis.

A powerful example of exploiting the network neighbour-
hood of known disease genes to get mechanistic insight is given
in [20]. Using a set of 129 asthma implicated (‘seed’) genes that
map to the human interactome together with a novel algorithm
[16] for module detection, Sharma et al. [20] identified a poten-
tial asthma disease module containing 441 genes including
91 seeds. A large number (162) of pathways had at least half of
their genes in the putative disease module. However, a strategy

Table 2. List of abbreviations

Abbreviation Expanded name Comment

API Application programming interface A set interfaces, tools and functions used for creation of applications
BEL Biological Expression Language A curation language for structured capturing of data about biological systems and

experiments
BELIEF BEL Information Extraction workFlow

system
A framework for automated parsing of information into BEL format

BioPAX Biological Pathways Exchange
language

A standard that formally defines biological pathway conceptualization in OWL
format

BMP Big Mechanism Project A project by US Department of Defense for automated construction of mechanistic
cancer models from scientific literature

COPD Chronic Obstructive Pulmonary
Disease

A lung disease characterized by impeded breathing and phenotypically similar to
asthma

Cypher A query language for Neo4J graph database
DBMS Database management system A software providing capabilities to mediate storage, query and manipulation of

data
EBI European Bioinformatics Institute
EFO Experimental Factor Ontology
GO Gene Ontology One of the most widely used ontologies for representing functions of biological

entities
GWAS Genome-wide association study An observational study that relates germ-line variations between individual to

phenotypes
IR Information Retrieval A process of extraction of relevant information from some wider superset
Kappa A rule-based, declarative language used mostly in molecular biology domain
Neo4j Graph-based database solution
OBO Open Biomedical Ontologies

initiative
OBO format is alternative language for authoring ontologies; mainly used in biolo-

gical sciences
OWL Ontology Web Language Currently most widely used language for authoring ontologies
PD Process Description language An extension of SBGN standard with additional capabilities to represent temporal

aspects of biological processes
PPI Protein-protein interaction
RDF Resource Description Format Core data exchange format for the Semantic Web
SBGN Systems Biology Graphical Notation A standard for graphical representation for biological and biochemical domain
SBML Systems Biology Markup Language An XML-based format for storing and exchanging biological models
SBO Systems Biology Ontology
SNP Single Nucleotide Polymorphism A single-base variant or mutation in a genomic sequence
SQL Structured Query Language Family of similar query languages used for data management in relational

databases
TM Text Mining A process of extraction of structured data from free text
TMO Translational Medicine Ontology
URL Uniform Resource Locator Web address, resolving to a resource on the Web
XML Extensible Markup Language Popular meta-language for document markup
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involving prioritizing genes on the basis of their asthma rele-
vance using gene expression and GWAS information enabled a
ranking of pathways and subsequent identification of path-
ways, not traditionally associated with asthma. The plausibility
of one of these (the GAB1 signalosome) was shown experimen-
tally. The authors also explored the differential expression of
the GAB1 gene in other immune-related diseases. This study il-
lustrates the use of both pathways and networks with other
supporting evidence (e.g. gene expression, GWAS) to context-
ualize disease genes and provide new avenues for understand-
ing disease mechanisms. It highlights the need for knowledge
representations that can capture multiple levels of information
such as the conditions in which a gene may be up-regulated.

One approach to representation of the complex networks that
are associated with disease is to decompose the information into
layers, with each layer representing information at different lev-
els of biological organization. Radonjic and co-workers [21, 22] use
network-based methods to represent and integrate information
at three levels, namely, differentially expressed biological proc-
esses, transcription factors whose target proteins are differen-
tially expressed and physiological information such as energy
intake and weight. They explored adaptation of white adipose tis-
sue to a high-fat diet, a biological system that may give clues as to
which molecular processes are involved in obesity and type 2 dia-
betes. Gustafsson et al. [17] discussed the concept of multilayer
disease modules as a possible framework to generate predictive
markers that capture multiple types of disease-related informa-
tion (PPI, symptoms, etc.). The integration of the layers and the in-
clusion of addition contextual information associated with the
nodes and relationships of the network (e.g. cell-type specificities)
are important for mechanistic insight into disease. Network-
based data fusion approaches to integration of multiple types
of biological information relevant to disease are described by
[23, 24], and these offer the potential to predict new disease-asso-
ciated genes as well as to explore disease–disease relationships.

The network-based integration of different types of informa-
tion can suggest underlying mechanisms of disease. Huan and
co-workers [25] perform an integrated analysis to explore mech-
anisms of blood pressure regulations. They used weighted gene
co-expression network analysis (WGCNA) [26] to identify co-
expressed modules that showed correlation to blood pressure
measurements, and integrated SNP data as well as PPI networks
and used Bayesian analysis to identify key drivers of the biolo-
gical process, one of which was selected for further experimen-
tal study. The identification of associations between diseases
can suggest a common mechanistic basis [27] and can be used
predictively [28]. Molecular network approaches to representing
disease landscapes offer particular views rather than a unified
framework. In some ways, they are similar to information over-
lay methods in data analytics. Points of correspondence be-
tween the different views (networks) need to be found, to get an
integrated picture that will be useful for suggesting mechanism.

To illustrate these contextualization strategies, 22 genes
from the differential expression signature (derived from
GSE43696 study as outlined in Supplementary Methods) were
mapped to protein association network from STRING database.
First, the results were explored using Web-based interactive
visualization offered by STRING database (Figure 2). As proteins
realize their function through complex sets of interactions, im-
plications of gene expression changes can often be better
understood by assessing its impact on the wider interactome.
The top panel shows disease signature genes as well as 50 genes
from the first shell identified as most relevant to this input. The
analysis has suggested several high-confidence modules, most

of which contained prominent asthma-associated signalling
pathways (HIF [29], TGF-beta [30] and cytokine–cytokine receptor
interaction [31] and circadian clock-related [32]). Several high-
degree nodes connecting these multiple modules are also
known to be implicated in asthma: tyrosine kinase FYN is
involved in inflammation [33], IL1B shown to be genetically
associated with asthma susceptibility [34] and the node with
the highest degree (SMAD4) is involved in airway smooth
muscle hyperplasia [35].

Given that the number of identified human PPIs is now in
the millions, visual exploration is typically limited by the sheer
amounts of relevant information that can be usefully displayed.
Approaches like network diffusion and graph random walks
offer a mathematically robust way to select most relevant nodes
even in large graphs. These methods are effective for disease
analysis, as disease-related genes are commonly located close
to each other in the network. In this example, we have demon-
strated the applicability of this key principle and also identified
10 most relevant (closest to the signature) genes by the diffusion
state distance metric [36]. This analysis highlighted potential
relevance of the PTEN gene, known to be prominently involved
in airway hyperresponsiveness and inflammation, [37] as well
as a small module with multiple members of the PI3K/Akt path-
way that promotes asthma-related airway remodelling [38].

Contextualization by pathway centric
representations

Understanding the mechanism of disease often starts with iden-
tification of the aberrant molecular pathways that may be asso-
ciated with the disease. Molecular pathway models aim to
capture sequences of actions or events of molecular ‘actors’.
Some examples of commonly modelled events include biochem-
ical reactions, state changes and movements between different
cellular compartments. Mapping known disease genes to known
pathways is a well-established methodology for contextualiza-
tion, as pathways capture an intermediate level of organization
between molecular entities and phenotype. The identification of
hallmark pathways believed to be associated with disease condi-
tions has been used to create pathway centric disease maps [39],
which are useful for visual exploration and for the overlay of
data from, for example gene expression studies. Typically, such
approaches involved identification of disease-related pathways
by careful manual curation of the literature. AlzPathway [40] is a
collection of signalling pathways in Alzheimer’s disease. The
map is represented in the Systems Biology Graphical Notation
(SBGN) [41] process description (PD) language and was also made
available in other formats. The resource also offers a Web inter-
face that allows users to review and comment on annotations
thus facilitating community curation. Another example of a
pathway-based disease map is the Parkinson’s disease map [42],
which builds on an understanding of the hallmark metabolic,
regulatory and signalling pathways of the disease [39]. The
Parkinson’s disease map can be accessed using the Minerva Web
server, which has advanced functionality for visualization (using
the GoogleMaps API) that facilitates manual exploration [43].
The Atlas of Cancer Signalling Networks [44] uses a similar ap-
proach, where several types of biological entities, like pheno-
type, ion and drug, can be represented on a zoomable map in
SGBN format. Clicking on an entity brings up a box with its de-
scription and relevant annotations.

Ideally, a computational framework for contextualizing dis-
ease-implicated genes should allow annotation by members of
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the research community, and some selected frameworks offer
this important functionality. WikiPathways [45] contains a set
of open, evolving, updateable disease-associated pathways.
PathWhiz [46] is a Web-based tool that allows users to draw
pathways so as to include contextual information such as cells,
tissues and organs. The pathway maps are designed to be visu-
ally appealing to facilitate manual exploration. PathWhiz
includes metabolic, signalling, as well as a number of disease-
associated pathways. Recently, the PathWay Collage tool [47]
has been developed that allows the visualization of fragments
of pathways (defined by the user so as to reduce the complexity

of full pathway representations) onto which omics data can be
overlaid.

At present, there are two leading exchange standards
adopted for representing biochemical pathway networks. The
first one is Systems Biology Markup Language (SBML) [48], which
was primarily intended to support development and sharing of
quantitative biochemical models. Therefore, SBML has been de-
signed to be generic, with the main building blocks being spe-
cies (quantifiable physical entities), processes (which define
how entities are manipulated) and compartments (provide low-
level context for processes and entities). As SBML format aims
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Figure 2. Analysis of severe asthma differential expression gene signature in the context of STRING protein association network. (A) Fifty genes in the first shell of the

22-gene signature; (a–c) high-degree module interconnectivity genes; (1) calmodulins and HIF-1 signalling pathway, (2) TGF-beta signalling pathway, (3) cytokine–cyto-

kine receptor interaction pathway and (4) circadian rhythm-related genes. (B) Diffusion state distance of gene sets; this measure is derived from similarity of random

walk profiles for each pair of nodes. In grey—random pairs of nodes. Distances between members of asthma signatures to each other are shown in blue (severe asthma

versus DisGeNet category shows distances between members of the two sets). Finally, 10 closest genes to the differential expression signature set are shown in green.

(C) Ten closest genes to the severe asthma signature visualized in the STRING database viewer.
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to be generic, further subcategories of these concepts are not
defined as part of the standard, and instead, particular em-
phasis is placed on enabling mathematical definition of the
model (e.g. in the form of ordinary differential equations). Some
of the necessary biological underpinnings are added via a
related project, SBGN [41] standard, which defines how different
SBML entities can be represented graphically. In SBML fine-
grained annotation or specification of complex contexts is pos-
sible through special fields set aside for user data. However, as
these fields are not bound by the standard, they may not be
supported by all of the tools and therefore generally would not
be used in evaluation of the model.

The SBGN PD language [41] was designed to give an unam-
biguous representation of mechanism of action within a biolo-
gical pathway that can be interpreted visually to facilitate
manual exploration. The PD language can represent all the
steps in, for example, a reaction showing how a biological entity
changes in a temporal manner. However, to fully exploit the PD
representation for applications like numerical modelling would
require additional data associated with component steps (such
as rate constants), which often is not readily available.

Another prominent data exchange standard is BioPAX [49],
which was primarily designed for unambiguous sharing of bio-
chemical pathway data and therefore offers much wider selection
of domain-specific terms to characterize and categorize both
interactors and interactions. As Ontology Web Language (OWL)
forms the core of this standard, all of the terms are organized hier-
archically and relationships between them are formally defined.
BioPAX standard aims to facilitate data sharing and integration
via Semantic Web technologies and Resource Description Format
(RDF). If an RDF representation is used, the format can be easily
extended to incorporate complex context information; however,
BioPAX currently does not aim to offer the means of defining ex-
perimental or biomedical context for pathways, as, by design,
other standards/ontologies can be brought in to model them.

Both SMBL and BioPAX are predicated on the developments
of the past decade, when several key technologies and design
principles were introduced that greatly influenced how biomed-
ical data-sharing standards are implemented. One of these de-
velopments was increasing adoption of formal ontologies that
allowed development of well-structured controlled vocabularies
for different domains and definition of cross-mappings between
them. For example, the SBML standard allows annotation of
models with System Biology Ontology (SBO) terms, which are
also used in SBGN and can be mapped on to BioPax via SBPAX
[50]. Therefore, in principle, it is possible to integrate models
across all of these standards on a qualitative level. On a syntac-
tic level, different formalisms can be integrated by introducing
support for a low-level common language, like RDF, which is
representation-agnostic and allows all types of data to be linked
via common identifiers. Both of these solutions enable modern
standards to be designed in a modular way, where different
specialized representations can be developed by different com-
munities of domain experts and then combined together—or
even extended for the needs of a particular applied project.

In recent years, the community efforts have been increas-
ingly devoted to increasing inter-compatibility across all main
biomedical standards. These efforts include development of
converters, controlled vocabulary mappings and better support
of different standards both by data providers and analytical tool
developers. Greater compatibly also means that smaller models
(e.g. from individual studies) can now be meaningfully shared
and combined. One prominent resource that aims to facilitate
this process is NDex [51]. NDex allows researchers to share their

models in a variety of different formats, which can then be used
directly by using the NDex website like a data warehouse or
integrated into a common representation by using the NDex
Cytoscape [52] plug-in.

Pathway-based representations enable relevant methods to
incorporate the directionality and interaction type (e.g. up- or
down-regulation), and in this way, they can capture causal as-
sociations underlying different disease mechanisms. To illus-
trate this application, we have used ‘Tied Diffusion through
Interacting Events’ method [53], which can identify significantly
implicated pathways connecting two sets of genes (in this case
DisGeNET asthma signature and our severe asthma signature).
The diffusion model used by this method can take into account
magnitude of effects, direction and type of interactions. After
applying this approach, the regulatory subnetwork from
Reactome found to be significant for these two sets was
visualized in Cytoscape (Figure 3). It is possible to see that two
interleukin genes (both involved airway inflammation [54])
were found to be particularly critical, with lower panel showing
key associations involved.

Contextualization by knowledge
graph representations

There are many specialist sources of disease-related informa-
tion such as databases of mutations and their consequences. In
addition, there is vast information in unstructured formats in
the scientific literature and much of it is contextual, for ex-
ample statements that describe correlations between gene
products or between small molecules and gene products that
are observed in particular cell types. Information in the litera-
ture may also describe weak associations only seen in certain
conditions, or for which there may be limited evidence that
could nevertheless still be useful for hypothesis generation.

The Biological Expression Language (BEL) [55] represents
statements in biology, typically correlative and causative state-
ments as well as the context in which these statements apply.
A biological statement is represented as a triple (subject, predi-
cate and object) where the subject is a BEL term and the predi-
cate is a biological relationship that connects the subject with
object. A BEL term can be the abundance of a biological entity or
it can be a biological process such as one described in the Gene
Ontology (GO) [56], or even a given disease condition. Each en-
tity is described in an existing namespace (e.g. from databases
like ChEBI [57]) or in particular user-defined namespace(s).
There is a fixed set of causal, correlative and other relationships
that link these entities. The BEL complier checks that the state-
ments are syntactically correct and carries out the integration
and alignment of the data by establishing equivalences between
identical concepts.

The knowledge captured by BEL statements can be repre-
sented as a graph. The object can be a BEL term or a BEL state-
ment. Each statement can be associated with metadata that
contextualizes it, for example qualifying it to be true only in
specific tissues. The BEL knowledge network can facilitate data
interpretation using a reverse causal reasoning approach [58].
For example, gene expression data can be mapped to smaller
subnetworks that represent cause and effect models. The extent
to which the models can explain the measurements of differen-
tially expressed genes can then be assessed and potentially
yield insight into the mechanism.

Hofmann-Apitius [5] posits that an understanding of disease
mechanisms involves integrating information at multiple
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biological scales. To some extent, BEL offers a multiscale repre-
sentation that other languages do not. Using BEL, Hofmann-
Apitius and co-workers have explored mechanistic aspects of
Alzheimer’s disease [59–62]. They used the BEL language to rep-
resent information from the literature together with relevant
experimental data sets to build integrated evidence networks.
This approach helps to mine what they refer to as the know-
ledge ‘grey zone’, which includes both established and emerg-
ing connections between entities. This approach can be
powerful for linking mechanisms associated with biomarkers
[60].

Constructing such information-rich representations can in-
volve considerable manual curation efforts. For this reason, TM

will be increasingly important for supporting this process [63].
Already existing examples include the BEL Information
Extraction workFlow (BELIEF) system and BELSmile [64]. These
frameworks work by using automated TM to detect BEL con-
cepts and relationships and then allowing the curators to ex-
plore and annotate their biological contexts to create final high-
quality networks.

Another example of a specialized curation data modelling
format is the Nanopublication standard [65]. Nanopublication
defines rules for publishing data in its simplest possible for-
ms—individual assertions in the form of statements composed
of a subject, predicate and object, plus supporting provenance
information and relevant metadata. Nanopublication is

Figure 3. Significant pathways identified using Tied Diffusion through Interacting Events method, an approach that can extract the most likely set of interconnectors

between two sets of nodes. In this example, core asthma genes from DisGeNET and severe differential expression signature were considered in the context of

Reactome regulatory pathway network. In both panels, colour intensity indicates weight magnitude assigned by the algorithm. (A) Complete set of all significant genes.

Dashed lines indicate undirected edges of ‘component’ type, whereas solid edges show directed interactions; (B) subset of the network relating to the IL1RN gene.

Arrow and bar-terminated edge styles show activation and inhibition, respectively.
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designed to be used in combination with Semantic Web tech-
nologies and uses RDF, a format that allows seamless incorpor-
ation of ontology terms and cross-references through globally
unique shared identifiers. The advantages of this standard in-
clude decentralized (federated) publishing, machine-readable
representation of data and an ability to track provenance at the
highest possible level of granularity.

Knowledge network representations of biological data are in-
creasingly being leveraged in in integrative analysis platforms,
which aim to combine information resources with common
analysis and visualization tasks. One example of such platforms
is Ingenuity Pathway Analysis (IPAVR ). IPAVR suite aims to facili-
tate interpretation of experimental data from high-throughput
omics experiments and includes methods for identification of
causal networks and visual exploration of biological graphs [66].
The BioMax BioXMTM platform uses an object relational data-
base architecture to store, query and envision disease informa-
tion, including molecular, genetic, physiological and clinical
data, as well as biological models. This platform has been used
to create a resource for chronic obstructive pulmonary disease
(COPD) called ‘COPD knowledge base’ [67–70]. The authors of
COPD knowledge base do acknowledge that much disease-
related information remains hidden in the literature and also
recognize the difficulties of capturing quality and context speci-
ficity. The Malacards resource [71] uses a relational database for
the semantic integration of multiple sources of information
about diseases, and also provides network visualizations of dis-
ease–disease relationships. GeneAnalytics [72] enables context-
ualization of functional signatures (gene sets) in the context of
organs and tissues and compartments, as well as other annota-
tion sources, building on the GeneCards [73] and Malacards
technologies.

Recent advances in graph-based databases have opened up
additional possibilities for organizing heterogeneous and inter-
linked data. Graph databases have several features that make
them particularly attractive for management and exploratory
analysis of complex biological data sets. A particularly notewor-
thy feature is excellent performance of traversal-type queries
across entities of diverse types they offer. Such queries could be
challenging to realize in relational databases because of the cost
of computing statements across different tables. Traversal
queries can be an important way of identifying new relation-
ships in integrated data, particularly in the cases where links
only become apparent once multiple sources have been inte-
grated, but may not be immediately obvious because of sheer
amounts of data being involved. Modern graph databases offer
sophisticated query languages and often also other types of
framework-specific functionality to facilitate applied analysis,
like an ability to extend the framework with user-defined func-
tions [74] and integration with ontologies and reasoning sys-
tems. One example of a graph database solution that has been
already used in biomedical domain [75–78] is Neo4J DBMS.
Neo4J is a Java-based solution, which also offers its own graph
query language (Cypher), which is conceptually similar to SQL.

Semantic Web [79], RDF [80] and Linked Open Data [81] are
emerging important standards for sharing biomedical data. At
its core, Semantic Web is characterized by its use of globally
unique, unambiguous identifiers for entities. The identifier used
for this purpose is commonly a web link (URL). The RDF format
is structured as a set of statements with three parts (subject,
predicate and object), where a subject and object are entities
with a unique identifier, and predicate defines the type of a re-
lationship between them. Linked Open Data standard estab-
lished a set of rules for providing meaningful RDF at the

resolvable identifier URL, which generally is in the form of state-
ments that provide meaningful information about that entity
that can in turn link it to other URL-identified entities, and, fi-
nally, the entities and statements can be linked to specialized
ontologies in OWL [82] that provide additional information
about how to interpret them within a particular context.

From the perspective of biomedical data integration, RDF
primarily plays the role of a low-level data exchange standard
useful for addressing the syntactic heterogeneity issue and
facilitating data integration. Although RDF representations can
be interpreted as integrated knowledge networks, usually an
additional set of standards will be necessary for meaningful in-
terpretation of data from a biological perspective. Prominent re-
sources that offer biological data on the Semantic Web include
EBI RDF platform [83] (covers such important databases like
UniProt [84], Reactome [85], Ensembl [86], ChEMBL [87] and
Expression Atlas [88]), Bio2RDF (aims to mirror in RDF most of
the prominent biological databases) [89] and OpenPhacts (uses
Semantic Web technologies to represent the chemogenomics
space) [90]. Some noteworthy ontologies used in combination
with these resources include Experimental Factor Ontology
(EFO) [91], SBO [92], Translational Medicine Ontology (TMO) [93],
SNOMED (medical terms and concepts) [94] and GO (functional
annotation of genes and proteins) [56].

To illustrate the application of integrated knowledge net-
works with our example 22-gene severe asthma signature, we
have used a Neo4j-based Hetionet v1.0 resource [95] that inte-
grates a wide variety of biomedical information. First, a query
was prepared to visualize all of the diseases linked to the sig-
nature genes (Figure 4). According to these results, only one
gene has already been linked to asthma, though three other
genes have been linked to other lung diseases (COPD and idio-
pathic pulmonary fibrosis). Next, the connections between
known asthma-related pathways, severe asthma differential
expression signature and drugs targeting those common path-
ways were retrieved. In terms of query-specific degree of drug
nodes (i.e. number of links to returned proteins), top three
drugs were dexamethasone, betamethasone and niclosamide.
The former two are corticosteroids already used for treating
asthma [96], and the last one was recently proposed as a highly
promising treatment because of its strong TMEM16A antagon-
ism found to improve lung function in human and mouse
models [97].

Approaches for extraction of
contextual knowledge

Ultimately, all types of models in biomedical domain originate
from data collected during relevant experiments, and such data
would typically require both different levels of preprocessing and
interpretation to yield such models. At present, relatively few
types of raw experimental data can be straightforwardly con-
verted into these representations without requiring human inter-
pretation. Some possible examples are construction of co-
expression networks [98, 99] from transcriptomic data and se-
quence homology graphs [100, 101]. However, currently, manual
interpretation and publishing of inferred models as free text in
scientific papers remains the primary means of disseminating
this knowledge, and all major biomedical databases discussed in
this review expend considerable curation efforts to collect, verify
and consolidate it in standardized formats from source literature.

Given the volume and ever-increasing rate of scientific pub-
lishing, automated means of facilitating this process are

Navigating the disease landscape | 617

Deleted Text: decentralised 
Deleted Text: visualisation 
Deleted Text: &hx2018;
Deleted Text: disease 
Deleted Text: visualisations 
Deleted Text: -
Deleted Text: contextualisation 
Deleted Text: organising 
Deleted Text: -
Deleted Text: realise 
Deleted Text: due to
Deleted Text: due to
Deleted Text: employed 
Deleted Text: employed 
Deleted Text: .
Deleted Text: lastly 
Deleted Text: Ontology Web Language (
Deleted Text: )
Deleted Text: System Biology Ontology (
Deleted Text: )
Deleted Text: Gene Ontology
Deleted Text: visualise 
Deleted Text: very 
Deleted Text: due to
Deleted Text: -
Deleted Text: -
Deleted Text: standardised 


Figure 4. Query expressed in natural language and resulting output produced for the differential expression gene signature using Hetionet graph database. The follow-

ing entities are shown: proteins (blue), pathways (yellow), diseases (brown) and drugs (red). (A) Query for associated diseases; (B) query to explore the connections be-

tween niclosamide drug, asthma and differential expression signature linked via relevant proteins and pathways.
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becoming increasingly essential. This is achieved through appli-
cations of information retrieval (IR) and TM methods, which can
handle tasks like identification of relevant documents, sections
and sentences, recognition of concepts and relationships be-
tween them or even generation of novel hypotheses [102].
Introduction of computational text analysis methods into the
curation process has been reported to improve its efficiency by
between 2- and 10-fold [103]. Especially in the biomedical com-
munity, development of TM approaches has greatly benefited
from competitive evaluation challenges [104]. Some prominent
examples of such initiatives include BioCreative, TREC
Genomics/Medical/CDS, BioNLP-ST, i2b2 and ShARe/CLEF
eHealth. These regular competitions provide a valuable bench-
mark for current state of the art for different tasks and serve to
highlight the most important problems, focus community ef-
forts and establish necessary annotated textual resources.

As well as assisting with curation, both TM and IR can be
applied in a high-throughput and automated manner; however,
the utility of these applications is still limited by accuracy and
generalizability [103]. In its simplest form, various statistical co-
occurrence methods can be applied to build networks linking
biological concepts frequently found together in different
papers. Some examples of resources offering such literature-
derived data are miRCancer that compiled data about co-
occurrence of microRNA mentions with different cancer types
[105] and DISEASES resource, which provides similar informa-
tion for gene mentions with particular diseases [106].

Extraction of information from text is contingent on unam-
biguous identification of entities and relationship types from
which model statements can be constructed. Therefore, TM
technologies have a natural synergy with ontology-based data
modelling, and to a lesser extent Semantic Web formats, like
RDF [102, 107]. The ontologies are used both as controlled vocab-
ularies to resolve alternative naming conventions and as sour-
ces of common identifiers for recovered concepts and
relationships. Some examples of specialized relationship types
that can be recovered include protein–protein [108], drug–pro-
tein [109] and drug–drug [110, 111] interactions, and associ-
ations of genes with mutations [112, 113] and phenotypes [114–
116]. Data from IR and TM are increasingly incorporated along-
side manually reviewed information by major databases, for ex-
ample PPIs extracted from literature by fully automated
approaches are offered by STRING [13, 117].

To handle more advanced tasks, it is usually necessary to
combine specialized tools into TM workflows, e.g. a hypothesis
generation tool might rely on output of a relationships identifi-
cation tool, which in turn relies on named entity recognition.
Inevitably, this raises questions of interoperability of different
analysis methods. One way to address this is has been through
increasing use of Web services to link up different tools [118].
Additionally, specialized standards for biomedical textual data
interchange were developed, for example XML-based BioC
format [119].

Recent efforts have been exploring the possibility of extract-
ing more complex statements from text [120], and in 2015, the
BioCreative V challenge has for the first time included a task of
automated extraction of OpenBEL statements from text [121].
During the competition, the best result was achieved by the
BELMiner framework [122], which used a rule-based approach
for extraction of BEL statements from text and got the highest
F-measure of 20% for this task. After the challenge, BELSmile
system was developed that reached an even better score of 28%
on the same dataset [64]. BELSmile implemented a semantic-
role-labelling approach, which relies on recognition of verbs

(predicates) and assignment of roles to associated subjects/ob-
jects relative to that verb. Notably, designs of both frameworks
integrated multiple specialized IR and TM tools to handle spe-
cific low-level subtasks.

It is clear that at present a substantial proportion of valuable
biomedical knowledge is ‘trapped’ in scientific text, in a repre-
sentation not readily suitable for automated computer-driven
interpretation. Appropriate data formats and ontologies are an
essential prerequisite for enabling sophisticated TM methods to
begin addressing this challenge. The most recent developments
indicate that current TM approaches are becoming powerful
enough to leverage such rich representations and are already
useful to curators working on complex models of human dis-
eases. To explore further developments in this important area,
we direct reader to the following recent reviews [25, 102, 123].

Outlook

Many translational and systems medicine projects involve col-
lection of molecular and clinical data with a view to the identifi-
cation of disease subtypes. The data are typically warehoused
and analysed, for example, to extract molecular fingerprints
that characterize the subtypes, and this data interpretation step
of the translational informatics pipeline remains highly chal-
lenging. Moving from diagnostic molecular patterns to being
able to suggest individualized healthcare pathways is complex.
Data integration links the molecular patterns to background
knowledge, which can then be reviewed, explored and analysed
to develop a more detailed understanding of the underlying
biology that distinguishes disease subtypes.

To support this process, several standards have emerged to
capture, integrate and facilitate analysis of these data. This pro-
liferation of standards suggests that different formalisms will
continue to be necessary to model different aspects of biomed-
ical data and that we are unlikely to converge on one ultimate
modelling solution in the foreseeable future. The open question
therefore becomes how to effectively manage the interoperabil-
ity between these different representations? In this respect, sev-
eral common trends and best practices are beginning to emerge.
In particular, it is now evident that development of common
controlled vocabularies and specialized domain ontologies is es-
sential for effective management of increasingly complex bio-
medical data. Use of ontologies facilitates identification of
equivalent entities and concepts across different modelling for-
mats and facilitates conversion between them, allowing effi-
cient data integration.

As outlined by Cohen in [6], modern biomedical data model-
ling formalisms can be categorized into ‘curation’ and ‘mechanis-
tic’ types. Aim of the former is to primarily describe experimental
results (e.g. Nanopublications, BioPAX), including observed asso-
ciations between molecular signatures and diseases. The latter
specify evaluable models used to simulate living systems and
generate predictions based on a set of inputs (e.g. SBML, Kappa).
It is obvious that although experimental observations are ultim-
ately used to construct such models, the processing steps
required to correctly generate the latter from the former would
go beyond a simple format change. We believe that automation
of this process is a highly promising emergent strategy for devel-
opment of fully mechanistic models of disease. Use of automated
methods to support biomedical innovation is necessitated both
by the need to effectively deal with ever-growing volumes of data
and by the increasingly complex nature of biomedical research
itself. The apparent diminishing returns in terms of novel
drugs successfully taken to market relative to the money spent
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[124, 125], with particular challenges for cardiovascular [126] and
neurodegenerative diseases [127, 128], mean that increasingly
more complex strategies for managing disease are needed to
make progress [129]. Consequently, high-throughput computa-
tional approaches are becoming indispensable both for assisting
with interpretation, management and mining of experimental
data as well as for constructing and evaluating relevant clinical
models. At present, cutting-edge efforts in this area involve cre-
ation of increasingly sophisticated automated methods for ana-
lysis of vast quantities biomedical data, exemplified by initiatives
like DARPA’s Big Mechanism, IBM Watson Health and Garuda
biomedical discovery platforms. The future modelling formats
are therefore likely to be influenced by the requirements of such
projects and will increasingly incorporate features to support
fully computer-driven information analysis.

In our view, accurate handling of the context of biological ob-
servations is critical for construction of correct mechanistic mod-
els of disease. Traditionally, information has been compiled into
largely homogenized collections like pathway maps or global
interactome networks that aim to show all possible processes of a
certain type for a given organism. However, in practice, only a
small subset of all these processes will be occurring in a real cell
at a given time. Furthermore, such events may be transient (en-
zymatic reactions), have stable outcome (protein complex forma-
tion) or be mutually exclusive (alternative protein-binding
partners). An additional level of complexity is introduced from
the imperfection of experimental techniques. For example, tran-
scriptomics profiling is often done at a tissue level, which may
mask important differences at a level of individual cells. As such,
mechanistic models built from these data may be subject to con-
siderable uncertainty and abstraction. The next generation of for-
mats and integration solutions will therefore need to be more
context aware. Future progress on one hand requires better
means of expressing this highly granular context of biological
processes and on the other necessitates solutions to model vast
volumes of data and knowledge in such form. Once efficient and
accurate approaches for these tasks are established, cutting-edge
mathematical and machine learning methods could be leveraged
to their full potential to give new insight into disease mechan-
isms and suggest improved avenues for therapeutic intervention.

Key Points

• Precision medicine relies on identification of disease sub-
types at a molecular level and linking them to diagnostic
models to determine optimal treatment strategies.

• In practice, establishing a contextual link between molecular
signatures and disease processes requires integration of
qualitatively diverse types of relevant data and knowledge.

• At present, several alternative philosophies guide the
process of transformation of experimental data into
mechanistically informative and ultimately, clinically
actionable insights.

• The spectrum of possible approaches ranges from
purely associative knowledge link discovery to fully
quantitative mathematical models.
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Supplementary data are available online at https://aca
demic.oup.com/bib.
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