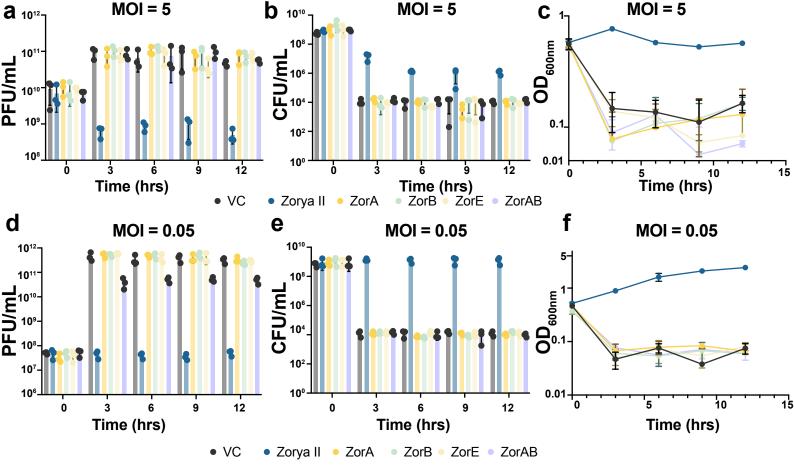
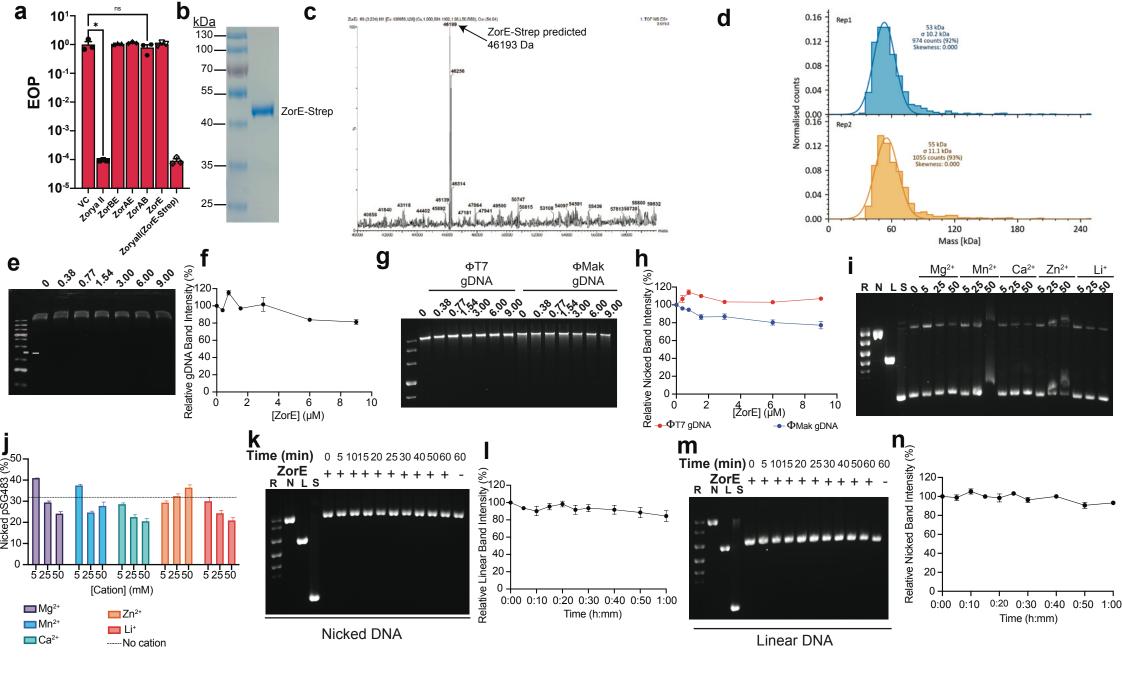
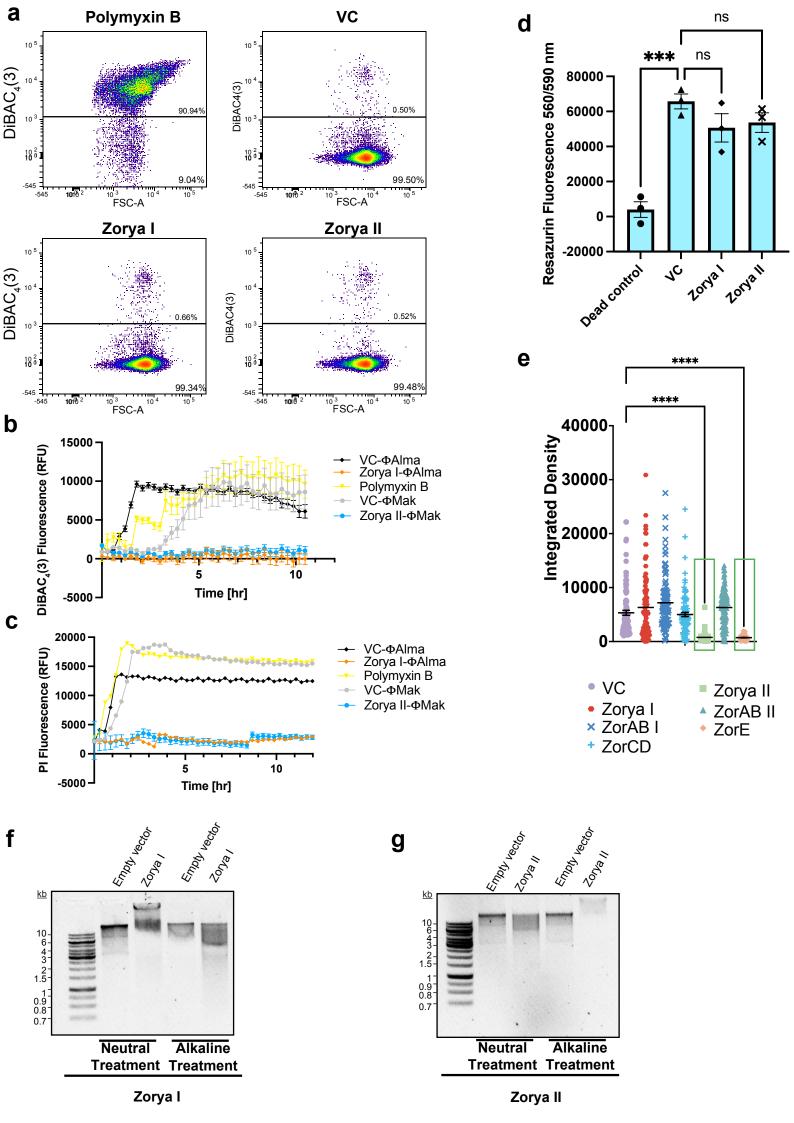

Supplementary Figure 1. Alphafold models of Zorya I and II accessory components. a, Alphafold model and related PAE error for the predicted structure of ZorC. b, Alphafold model and related PAE error for the predicted structure of ZorD. ZorD N-terminal and C-terminal domains highlighted in different shades as shown in panel b. The C-terminal domain of ZorD was aligned with its closest homologue, identified through a Foldseek search (PDB: 8ATF, nucleosome-bound Ino80 ATPase).c, Alphafold model and related PAE error for the predicted structure of ZorE. ZorE₁₈₇₋₂₅₁ residues are highlighted in lighter orange. A Foldseek search showed that ZorE₁₈₇₋₂₅₁ residues align with the DotN nuclease domain (PDB: 5X1H)



Supplementary Figure 2. a, Phylogenetic tree based on the concatenated alignments of the sequences of ZorA and ZorB from each Zorya subtype. **b,** Bar-chart summarising the phylogenetic distribution of Zorya I, Zorya II and Zorya III. **c,** SDS-PAGE gel and size-exclusion chromatogram of purified Shewanella sp. strain ANA-3 ZorAB. **d,** SDS-PAGE gel and size-exclusion chromatogram of purified Sulfuricurvum kujiense ZorAB. Grey boxes represent fractions used for structural studies. **e,**The anti-phage activity of Zorya I and Zorya II homologues was evaluated by calculation of their fold protection against a suite of coliphages when over-expressed in *E. coli* MT56. Fold protection was calculated by dividing the value of efficiency of plating (EOP) for strains expressing each tested homologue by the EOP value of a strain carrying the empty vector (pGM39), when infected with phages as shown in the figure.

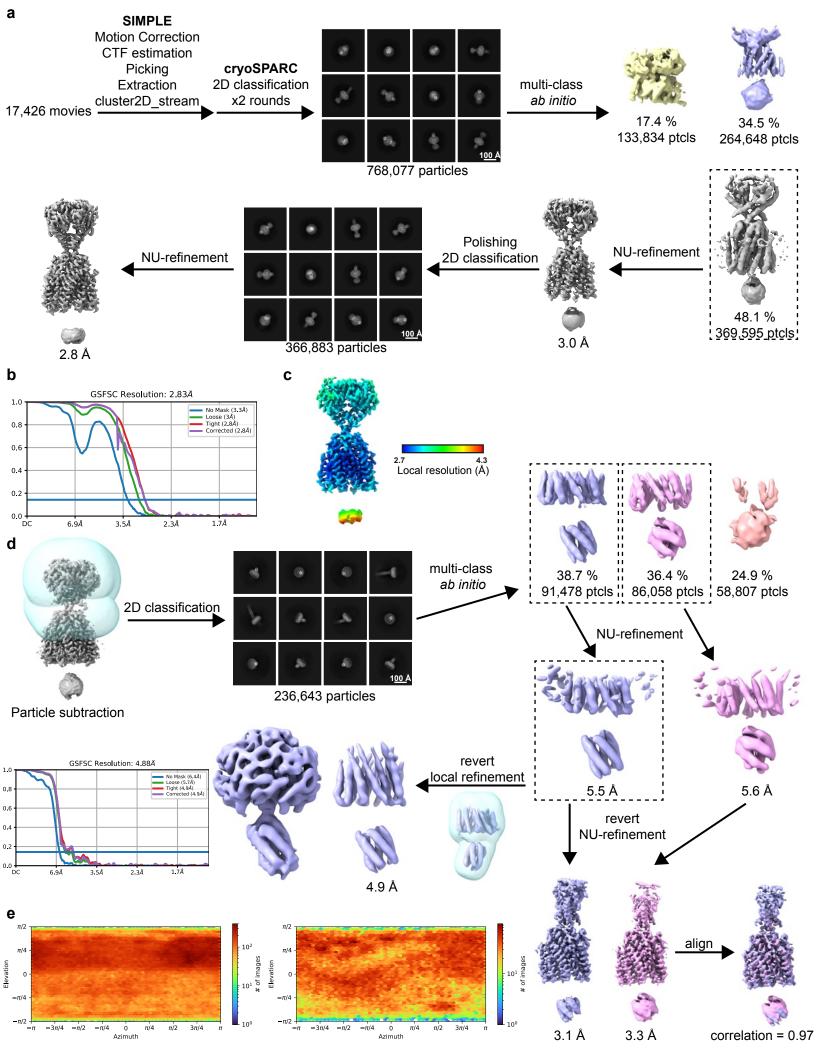


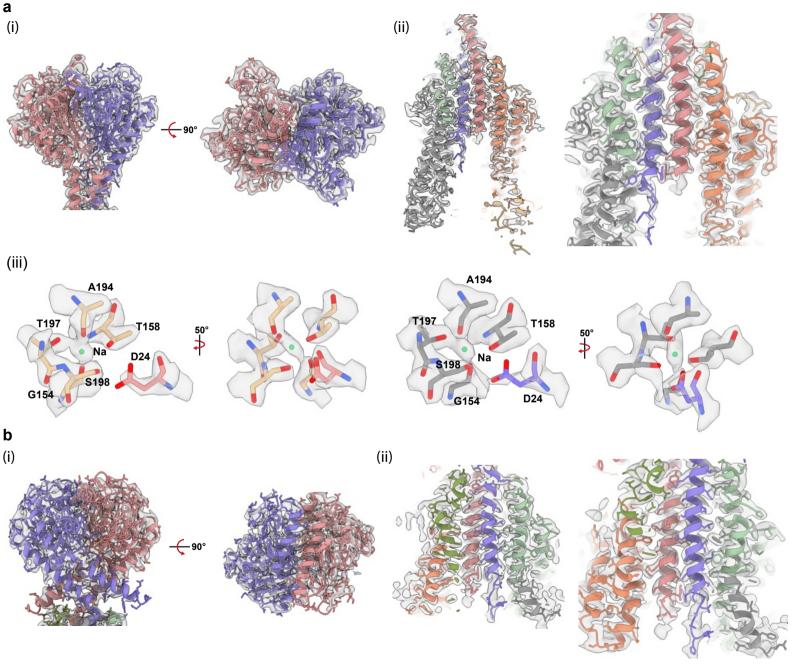
Supplementary Figure 3. a, Efficiency of plating (EOP) measurement for E. coli MT56 carrying empty vector (VC, pGM39) or the same plasmid encoding Zorya I, ZorA I, ZorB I, ZorABC, ZorABD, ZorBDC, ZorABI, ZorCD, ZorB D24N, ZorA I∆aa237-696 and ZorB I∆aa43-287 when infected with phage ϕ Mav. Points show mean +/- SEM (n = 3 biological replicates). b, Efficiency of plating (EOP) measurement for E. coli MT56 carrying empty vector (VC, pGM39) or the same plasmid encoding Zorya II, ZorA II, ZorB II, ZorAB II, ZorE, ZorB D24N, ZorA I∆aa106-550 and ZorB I∆aa45-235 when infected with phage ¢CS16F. Points show mean +/- SEM (n = 3 biological replicates). c, Efficiency of plating (EOP) measurement for E. coli MT56 harbouring empty vector (VC, pGM39), the same plasmid encoding wild-type Zorya I or a version of Zorya I where single point mutations were introduced in ZorA I or ZorB I, as indicated in panel **c**, when infected with φAlma. **d**, Efficiency of plating (EOP) measurement for E. coli MT56 expressing empty vector (VC, pGM39), the same plasmid encoding wild-type Zorya II or a version of Zorya II carrying point mutations in ZorA II or ZorB II, as indicated in panel d, when infected with \$\phi T7\$. Induction of each construct was performed by addition of 0.02% *L*-Rhamnose. For all panels, points show mean +/- SEM (n = 3 biological replicates). Statistical significance for each panel was calculated with Graphpad applying a one-way ANOVA with Dunnett's multiple comparison test. No significance was detected, unless indicated (*p≤ 0.05). For Panel h and i, the statistical analysis results is reported in Table S4.



Supplementary Figure 5. Native expression of Zorya II mediates population-wide immunity in response to phage infection. *E. coli* MT56 harbouring empty vector (VC, pSUPROM) or the same vector carrying Zorya II or its mutants under the control of their native promoter as shown in panel **a-f** were infected with φphAvM at MOI 5 or 0.05. The **a,d**, titre (PFU/mL), **b,e**, cell counts (CFU/mL) and **c,f** the growth rate (OD_{600nm}) of each culture was measured at several timepoints, as shown in panels **a-f**, over the course of 12 hrs post infection. For all panels, points show mean +/- SEM (n = 3 biological replicates).

Supplementary Figure 6. ZorE is a monomeric nickase with variable effects of metals.


a, Efficiency of plating (EOP) measurement for E. coli MT56 carrying empty vector (VC, pGM39) or the same plasmid encoding Zorya II, ZorA II, ZorB II, ZorAB II, ZorE or ZorAII+ZorBII+ZorE-Strep when infected with \$\phi T7\$. **b**, SDS-PAGE of the final purified ZorE-Strep showing a single band at the expected size. c, Size exclusion chromatogram showing the expected elution volume of monomeric ZorE-Strep based on molecular weight (dashed line) and the peak collected for the final purified ZorE-Strep (blue). d, Mass photometry (Refeyn) for the ZorE-Strep sample shows a single population in solution representing monomeric ZorE-Strep. e, ZorE was titrated against constant E. coli MG1655 gDNA (200 ng). Reactions were incubated for 60 min at 37 °C in the presence of 5 mM Mg²⁺ f, Densitometry analysis of nicking of E. coli MG1655 gDNA by ZorE as shown in panel e. g, ZorE was titrated against constant \$\phi T7\$ and \$\phi Mak gDNA (200 ng). Reactions were incubated for 60 min at 37 °C in the presence of 5 mM Mg²⁺. h, Densitometry analysis of nicking of \$\phi T7\$ and \$\phi Mak gDNA by ZorE as shown in panel g. i, ZorE (768 nM) was incubated with supercoiled pSG483 plasmid DNA (6 nM) in presence of various metal cations. Cations were tested at 5, 25, and 50 mM. Reactions were incubated for 60 min at 37 °C. j, Densitometry analysis of nicking of pSG483 by ZorE in presence of various cations as shown in panel i. k, ZorE (768 nM) was incubated with linearised plasmid pSG483 (6 nM) at 37 °C for 0 to 60 min with 5 mM Mg²⁺. I, Densitometry analysis of nicking of linear plasmid pSG483 by ZorE as shown in panel k. m, ZorE (768 nM) was incubated with nicked plasmid pSG483 (6 nM) at 37 °C for 0 to 60 min with 5 mM Mg²⁺. **n**, Densitometry analysis of nicking of nicked plasmid pSG483 by ZorE as shown in **panel m**. For panels e,q,i,k,m, reactions were stopped by the addition of EDTA and SDS and products were analysed by gel electrophoresis in a 1x TAE, 1.4% agarose gel, post-stained with ethidium bromide. In all gels, control lanes represent forms of plasmid pSG483; R, relaxed (multiple topoisomers); N, nicked; L, linear; S, supercoiled. For panels f,h,j,l,n densitometry was performed using ImageJ (version 1.54g) with background subtracted and band intensity measured in triplicate. The percentage nicked, linear, and supercoiled pSG483 DNA of the total pSG483 DNA per lane was determined by calculating the average intensity (n = 3) of each lanes' nicked, linear, and supercoiled bands, respectively. as a percentage of the total average intensity of all bands per lane. Relative band intensity was determined by normalising the average (n = 3) intensity of the "0 µM ZorE" lane to 100% and taking the average intensity of the subsequent lanes' bands as a percentage of the "0 µM ZorE" lane. Error bars represent the standard error of the mean of triplicate data.


Supplementary Figure 7. Zorya I and Zorya II do not alter the membrane potential and metabolism of cells. a, Analysis of E. coli MT56 carrying empty vector (VC, pGM39) or the same plasmid encoding Zorya I or Zorya II by flow cytometry following induction with 0.2% L-Rhamnose. As a positive control, cells carrying VC were treated with 5 µg/mL of polymyxin B. Staining with DiBAC₄(3) was used to assess loss of membrane potential. The image is representative of 3 independent experiments. **b-c**, Kinetic reads of **(b)** DiBAC₄(3) fluorescence or (c) propidium iodide fluorescence for E. coli MT56 carrying empty vector (VC, pGM39) or a plasmid encoding Zorya I when infected with \$\phi Alma, or for cells harbouring VC or a plasmid encoding Zorya II when infected with \$\phi\$Mak. Fluorescence was recorded every 20 min over the course of 12 hr. d, Strains as in panel a-c, were grown for 2 hrs at 37 °C in presence of 0.2% L-Rhamnose and subsequently treated with CellTiter Blue stain (Promega) to assess changes in their metabolism. Cells carrying VC were incubated 10 min at 100 °C as a positive control. Changes in the metabolism of each sample was assessed by measuring the ratio fluorescence at 560nm and at 590nm. For panels **b-d**, points show mean +/- SEM (n = 3 biological replicates).e, Quantification of the integrated density (sum of pixel values over single-cells area) for DAPI staining in Figure 5g. The integrated density was quantified using Fiji. Point show mean +/- SEM (n = 100 cells). Statistical analysis was performed using nonparametric Kruskal-Wallis Test in GraphPad 9. Significance was reported as p≤0.05. **f-q** E. coli MT56 harbouring empty vector (VC, pGM39) or the same plasmid encoding Zorya I or Zorya II were grown until exponential phase and then infected with MOI 0.1 of φAlma (f) or φT7 (g). Cells were retrieved after first burst event and total genomic DNA extracted. Genomic DNA was subjected to neutral and alkaline treatment, as described in Material and Methods, and subjected to electrophoretic analysis. For panels f-g, images are representative of three independent experiments.

Supplementary Figure 8. Cryo-EM processing workflow of *Shewanella* sp. strain ANA-3 type I ZorA₅B₂ complex with local and global resolution estimates. a, Image processing workflow. b, Left, gold-standard FSC curves used for global-resolution estimate of the consensus volume as calculated within cryoSPARC. Right, local resolution estimate of the consensus volume as determined within Relion. c, Left, Gold-standard FSC curves used for global-resolution estimate of the ZorB peptidoglycan-binding domain dimer volume, derived from local refinement, as calculated within cryoSPARC. Right, local resolution estimate of the peptidoglycan-binding domain volume, derived from local refinement, as determined within Relion. d, angular distribution plot of the consensus (left) or peptidoglycan-binding domain (right) particle sets.

Supplementary Figure 9. Cryo-EM processing workflow of Sulfuricurvum kujiense type II ZorA₅B₂ complex with local and global resolution estimates.a, Image processing workflow. b, Gold-standard FSC curves used for global-resolution estimate as calculated within cryoSPARC. c, Local resolution estimate as determined within Relion. d, Additional processing steps used to improved density for the cytoplasmic extensions of *S. kujiense* ZorAB. e, angular distribution plot of the full complex (left) or cytoplasmic extension focused (right) particle sets.

Supplementary Figure 10. Model-to-map fits of key structural elements.a, Model overlayed with density for *Shewanella* sp. strain ANA-3 type I ZorA₅B₂ complex, depicting (i) the ZorB peptidoglycan-binding domain (composite map; contour level of 10.8), (ii) a slice through of the core complex shown at lower (left) or higher (right) magnification (composite map; contour level of 10.8) or (iii) the sodium-binding sites (left, site 1; right, site 2) at two viewing angles (sharpened map; contour level of 1.22). b, Model overlayed with density for *Sulfuricurvum kujiense* type II ZorA₅B₂ complex, depicting (i) the ZorB peptidoglycan-binding domain or (ii) a slice through of the core complex shown at lower (left) or higher (right) magnification (all depictions used a map contour level of 0.25)

Supplementary Table 1. Strains and plasmids used in this study

Name	Description	Reference
<u>Strains</u>		
Escherichia coli		
Mt56(DE3)	BL21(DE3) derivative optimised for expression of membrane proteins	1
DH5α	Cloning strain, F– ϕ 80lacZ Δ M15 Δ (lacZYA-argF)U169 recA1 endA1 hsdR17(rK–, mK+) phoA supE44 λ –thi-1 gyrA96 relA1	New England Biolabs
Serratia		
marcescens		
Serratia		
marcescens		
S. marcescens	S. marcescens strain ATCC 274	NCTC
ATCC 274		
Plasmids		
pT12-ecMotAB	Rhamnose-inducible expression vector (Kn ^R); carrying the coding sequence for MotAB from <i>E.coli</i> W. A TEV cleavage site and 2xStrepII tag are encoded directly downstream and inframe with MotB.	2
pGM39	Rhamnose-inducible expression vector (Kn ^R) where the ecMotAB-TEV-2xStrepII tag insert has been deleted by KLD, to leave an empty multiple cloning site.	
pGM15	Coding sequence of ZorAB II from Sulfuricurvum kujiense DSM 16994 (SULKU_RS11880 and SULKU_RS11885) in	This study

	pT12-derived plasmid. Insert was cloned in pT12-ecMotAB to replace ecMotAB and in frame with the TEV site and 2xStrepII tag	
pGM99	Coding sequence of Zorya I operon from Shewanella sp. ANA-3 (SHEWANA3_RS19785 SHEWANA3_RS19790 and SHEWANA3_RS19795) in pGM39	This study
pGM54	Coding sequence of ZorAB I from <i>Shewanella sp.</i> ANA-3 in pT12-derived plasmid. Insert was cloned in pT12-ecMotAB to replace ecMotAB and in frame with the TEV site and 2xStrepII tag	This study
pGM23	Coding sequence of Zorya II operon from <i>E. coli</i> ATCC 8739 (ECOLC_RS20900, ECOLC_RS20905 and ECOLC_RS20910) in pGM39	This study
pGM35	Coding sequence of ZorBE operon from <i>E. coli</i> ATCC 8739 (ECOLC_RS20900, ECOLC_RS20905 and ECOLC_RS20910) in pGM39	This study
pGM36	Coding sequence of ZorAE operon from <i>E. coli</i> ATCC 8739 (ECOLC_RS20900, ECOLC_RS20905 and ECOLC_RS20910) in pGM39	This study
pGM37	Coding sequence of ZorE from <i>E. coli</i> ATCC 8739 in pGM39	This study
pGM38	Coding sequence of ZorAB II from <i>E. coli</i> ATCC 8739 in pGM39	This study

pGM46	Coding sequence of Zorya II from <i>E. coli</i> ATCC 8739 in pGM39, with ZorB II carrying a D24N mutation.	This study
pGM55	Coding sequence of Zorya II from <i>E. coli</i> ATCC 8739 in pGM39, with ZorA II carrying a deletion from aa106 to aa550(cytoplasmic domain)	This study
pGM56	Coding sequence of Zorya II from <i>E. coli</i> ATCC 8739 in pGM39, with ZorB II carrying a deletion from aa45 to aa235 (periplasmic domain)	This study
pGM70	Coding sequence of Zorya I from S. marcescens ATCC 274(SMATCC274_RS21230, SMATCC274_RS21235 SMATCC274_RS21240 and SMATCC274_RS21245) in pGM39	This study
pGM85	Coding sequence of ZorCD from S. marcescens ATCC 274 in pGM39	This study
pGM86	Coding sequence of ZorAB I from S. marcescens ATCC 274 in pGM39	This study
pGM124	Coding sequence of ZorABC from S. marcescens ATCC 274 in pGM39	This study
pGM125	Coding sequence of ZorBCD from S. marcescens ATCC 274 in pGM39	This study
pGM140	Coding sequence of Zorya I S. marcescens ATCC 274 in pGM39, with ZorB I carrying a deletion a D24N mutation	This study
pGM141	Coding sequence of ZorABD from S. marcescens ATCC 274 in pGM39	This study
pGM142	Coding sequence of ZorACD from S. marcescens ATCC 274 in pGM39	This study

pGM223	Coding sequence of Zorya I <i>S. marcescens</i> ATCC 274 in pGM39, with ZorA I carrying a deletion from aa237 to aa678 (cytoplasmic domain)	This study
pGM224	Coding sequence of Zorya I <i>S. marcescens</i> ATCC 274 in pGM39, with ZorB I carrying a deletion from aa43 to aa287 (periplasmic domain)	This study
pGM59	Coding sequence of Zorya II <i>Klebsiella oxytoca</i> 571.31(G0D99_RS19745, G0D99_RS19740 and G0D99_RS19735) in pGM39	This study
pGM60	Coding sequence of Zorya II Legionella lansingensis NCTC12830 (CKV79_RS08030, CKV79_RS08025 and CKV79_RS08020) in pGM39	This study
pGM61	Coding sequence of Zorya II S. <i>marcescens</i> UMH9 (BVG96_RS22930, BVG96_RS22925 and BVG96_RS22920) in pGM39	This study
pGM62	Coding sequence of Zorya II <i>E. coli</i> KTE66 in pGM39	This study
pGM63	Coding sequence of Zorya II <i>Pseudomonas jinjuensis</i> NBRC10347 in pGM39	This study
pGM64	Coding sequence of Zorya II <i>S. marcescens</i> strain AS012322 in pGM39	This study
pGM65	Coding sequence of Zorya II Shewanella bicestrii strain JAB-1(CF168_RS11660, CF168_RS11655 and CF168_RS11650) in pGM39	This study
pGM94	Coding sequence of ZorCD from <i>S.</i> marcescens ATCC 274 cloned downstream of ZorAB II (from <i>S. marcescens</i> UMH9) in pGM39	This study

pGM98 pGM143	Coding sequence of ZorAB I from <i>S.</i> marcescens ATCC 274 and ZorE from <i>S.</i> marcescens UMH9) in pGM39 Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a A210P mutation	This study This study
pGM144	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a V237A mutation	This study
pGM145	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a Q244A mutation	This study
pGM146	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a I282A mutation	This study
pGM147	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a T309A mutation	This study
pGM148	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a L346A mutation	This study
pGM149	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a E366A mutation	This study
pGM150	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorA II carrying a E402A mutation	This study

pGM152	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a E139A mutation	This study
pGM153	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a H141A mutation	This study
pGM154	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a T142A mutation	This study
pGM155	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a S143A mutation	This study
pGM156	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a D145A mutation	This study
pGM157	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a K188A mutation	This study
pGM158	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a Y196A mutation	This study
pGM159	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a R215A mutation	This study
pGM160	Coding sequence of Zorya II <i>E.coli</i> ATCC 8739 in pGM39, with ZorB II carrying a I232A mutation	This study

pGM161	Coding sequence of Zorya I S. marcescens ATCC274 in pGM39, with ZorA I carrying a E267A mutation	This study
pGM162	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorA I carrying a A280P mutation	This study
pGM163	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274in pGM39, with ZorA I carrying a S302P mutation	This study
pGM164	Coding sequence of Zorya I S. marcescens ATCC274 in pGM39, with ZorA I carrying a S319A mutation	This study
pGM165	Coding sequence of Zorya I S. marcescens ATCC274 in pGM39, with ZorA I carrying a L361A mutation	This study
pGM166	Coding sequence of Zorya I S. marcescens ATCC274 in pGM39, with ZorA I carrying a Q392A mutation	This study
pGM167	Coding sequence of Zorya I S. marcescens ATCC274in pGM39, with ZorA I carrying a L423A mutation	This study
pGM168	Coding sequence of Zorya I S. marcescens ATCC274in pGM39, with ZorA II carrying a K444A mutation	This study
pGM169	Coding sequence of Zorya I S. marcescens ATCC274in pGM39, with ZorA I carrying a E481A mutation	This study

pGM170	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorA I carrying a A520P mutation	This study
pGM171	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorA I carrying a S598A mutation	This study
pGM172	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274in pGM39, with ZorA I carrying a Y631A mutation	This study
pGM173	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274in pGM39, with ZorA I carrying a V664A mutation	This study
pGM176	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorB I carrying a H186A mutation	This study
pGM180	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274in pGM39, with ZorB II carrying a L199A mutation	This study
pGM181	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorB II carrying a R203A mutation	This study
pGM183	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorB II carrying a R254A mutation	This study
pGM185	Coding sequence of Zorya I <i>S. marcescens</i> ATCC274 in pGM39, with ZorB II carrying a R259A mutation	This study
pGM29	Coding sequence of ZorE from <i>E. coli</i> ATCC 8739 in pT12-derived plasmid. Insert was cloned in pT12-ecMotAB to replace ecMotAB	This study

	and in frame with the TEV site and 2xStrepII tag	
pGM287	Coding sequence of ZorBI ₁₆₅₋₂₈₇ from <i>S. marcescens</i> ATCC 274 in pT12-derived plasmid. Insert was cloned in pT12-ecMotAB to replace ecMotAB and in frame with the TEV site and 2xStrepII tag	This study
pGM288	Coding sequence of ZorBII ₁₁₅₋₂₃₅ from <i>E. coli</i> ATCC 8739 in pT12-derived plasmid. Insert was cloned in pT12-ecMotAB to replace ecMotAB and in frame with the TEV site and 2xStrepII tag	This study
pGM301	Coding sequence of ZorBII ₁₁₅₋₂₃₅ carrying the S143A point mutation. Plasmid derived from pGM288.	This study
pGM304	Coding sequence of ZorBII ₁₁₅₋₂₃₅ carrying the R215A point mutation. Plasmid derived from pGM288.	This study
pGM306	Coding sequence of ZorBI ₁₆₅₋₂₈₇ carrying the L199A point mutation. Plasmid derived from pGM287.	This study
pGM307	Coding sequence of ZorBI ₁₆₅₋₂₈₇ carrying the H186A point mutation. Plasmid derived from pGM287.	This study
pGM309	Coding sequence of ZorBI ₁₆₅₋₂₈₇ carrying the R254A point mutation. Plasmid derived from pGM287.	This study
pGM311	Coding sequence of ZorBI ₁₆₅₋₂₈₇ carrying the R203A point mutation. Plasmid derived from pGM287.	This study

pGM312	Coding sequence of ZorBI ₁₆₅₋₂₈₇ carrying the R259A point mutation. Plasmid derived from pGM287.	This study
pGM328	Coding sequence of ZorBII ₁₁₅₋₂₃₅ carrying the H141A point mutation. Plasmid derived from pGM288.	This study
pGM329	Coding sequence of ZorBII ₁₁₅₋₂₃₅ carrying the R230A point mutation. Plasmid derived from pGM288.	This study
pGM41	Coding sequence of ZorA, followed by ZorB fused to a TEV site and 2xStrepII tag and ZorE fused to a His6x tag in pT12. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM289	Coding sequence ZorB fused to a TEV site and 2xStrepII tag followed by ZorE fused to a His6x tag in pT12. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM290	Coding sequence ZorA followed by ZorE fused to a His6x tag in pT12. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM291	Coding sequence of ZorE fused to a His6x tag in pT12. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM67	Coding sequence of ZorB fused to a TEV site and 2xStrepII tag inserted in its native position in the Zorya II operon in pGM23.	This study
pSUPROM	Low copy plasmid carrying a constitutive Tat promoter and a Kanamycin resistance gene.	3
pGM196	Coding sequence of Zorya II from <i>E. coli</i> ATCC 8739, with its own promoter and terminator, cloned in pSUPROM. Cloning designed to	This study

remove the Tat promoter from pSUPROM and replace with Zorya II own promoter.

pGM336	pSUPROM derivative where Tat promoter has been replaced by Zorya II promoter. Promoter sequence obtained from <i>E. coli</i> ATCC 8739	This study
pGM337	Coding sequence of ZorBE in pGM336 Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM338	Coding sequence of ZorAE in pGM336 Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM339	Coding sequence of ZorE in pGM336 Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM340	Coding sequence of ZorAB in pGM336 Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM341	Coding sequence of ZorA, followed by ZorB fused to a TEV site and 2xStrepII tag and ZorE fused to a His6x tag in pGM336. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM342	Coding sequence ZorB fused to a TEV site and 2xStrepII tag followed by ZorE fused to a His6x tag in pGM336. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study
pGM343	Coding sequence of ZorA followed by ZorE fused to a His6x tag in pGM336. Sequences were amplified from <i>E. coli</i> ATCC 8739	This study

- Baumgarten, T. et al. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3). Sci. Rep. 7, 45089 (2017).
- 2. Deme, J. C. *et al.* Structures of the stator complex that drives rotation of the bacterial flagellum. *Nat. Microbiol.* **5**, 1553–1564 (2020).
- 3. Jack, R. L. *et al.* Coordinating assembly and export of complex bacterial proteins. *EMBO J.* **23**, 3962–3972 (2004).

Supplementary Table 2. Oligonucleotide primers and additional details for plasmid construction.

Plasmid	Sequence of relevant primers (5'-3') ^a	Description
pGM39	AACAGAAAACCGACTAG	Forward primer delete ecMotAB-TEV- StrepII tag to generate empty vector by KLD
	GGTGAATTCCTCCTGAATTTCATTACG	Reverse primer delete ecMotAB-TEV- StrepII tag to generate empty vector by KLD
pGM15	GAAAACCTGTACTTCCAGGGTCAAT	Forward primer to clone ZorAB II from Sulfuricurvum kujiense DSM 16994 (SULKU_RS11880 and SULKU_RS11885) in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	GGTGAATTCCTCCTGAATTTCATTACG AC	Reverse primer to clone ZorAB II from <i>Sulfuricurvum kujiense</i> DSM 16994 (SULKU_RS11880 and SULKU_RS11885) in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TTTTTAGACTGGTCGTAATGAAATTCAG GAGGAATTCACCGTGATTCATAATATG GCCTATTTCGGAGTCG	Forward primer to clone ZorAB II from <i>Sulfuricurvum kujiense</i> DSM 16994 (SULKU_RS11880 and SULKU_RS11885) in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA

		Assembly. Primer is used to amplify
		genes of interest
	GGCTCCAGCTCCCGAATTGACCCTGG	Reverse primer to clone ZorAB II
	AAGTACAGGTTTTCTTTTTCTACTATAT	from Sulfuricurvum kujiense DSM
	CGGCGACTTTACGTTCAATG	16994 (SULKU_RS11880 and
		SULKU_RS11885) in pT12-derived
		plasmid in frame with a C-term Strep
		II tag by NEBuilder HiFi DNA
		Assembly. Primer is used to amplify
		genes of interest
pGM54	GAAAACCTGTACTTCCAGGGTCAAT	Forward primer to clone ZorAB I
		Shewanella sp. ANA-3
		(SHEWANA3_RS19785
		SHEWANA3_RS19790 and
		SHEWANA3_RS19795) in pT12-
		derived plasmid in frame with a C-
		term Strep II tag by NEBuilder HiFi
		DNA Assembly. Primer is used to
		linearise vector
	GGTGAATTCCTCCTGAATTTCATTACG	Reverse primer to clone ZorAB I
	AC	Shewanella sp. ANA-3
		(SHEWANA3_RS19785
		SHEWANA3_RS19790 and
		SHEWANA3_RS19795) in pT12-
		derived plasmid in frame with a C-
		term Strep II tag by NEBuilder HiFi
		DNA Assembly. Primer is used to
		linearise vector
	AAATTCAGGAGGAATTCACCATGGCAA	Forward primer to clone ZorAB I
	CAGAAAGACAAATTG	Shewanella sp. ANA-3
		(SHEWANA3_RS19785
		SHEWANA3_RS19790) in pT12-
		derived plasmid in frame with a C-

	CCCTGGAAGTACAGGTTTTCAACATTC TTCGCTTTTTCG	term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest Reverse primer to clone ZorAB I Shewanella sp. ANA-3 (SHEWANA3_RS19785 SHEWANA3_RS19790 and
01400		SHEWANA3_RS19795) in pT12- derived plasmid in frame with a C- term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM99	AACATTCTTCGCTTTTTCG	Forward primer to clone ZorCD operon from Shewanella sp. ANA-3 in pGM54 by NEBuilder HiFi DNA Assembly, removing the Strep II tag. Primer is used to linearise vector
	AACAGAAAACCGACTAG	Reverse primer to clone ZorCD operon from Shewanella sp. ANA-3 in pGM54 by NEBuilder HiFi DNA Assembly, removing the Strep II tag. Primer is used to linearise vector
	ACGAAAAAGCGAAGAATGTTTAAAGCA TGTGCGTGGAG	Forward primer to clone ZorCD operon from Shewanella sp. ANA-3 in pGM54 by NEBuilder HiFi DNA Assembly, removing the Strep II tag. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTCTAACGA ACTACATATCGTTG	Reverse primer to clone ZorCD operon from Shewanella sp. ANA-3 in pGM54 by NEBuilder HiFi DNA Assembly, removing the Strep II tag.

		Primer is used to amplify genes of interest
pGM23	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II
		operon from E. coli ATCC 8739
		(ECOLC_RS20900,
		ECOLC_RS20905 and
		ECOLC_RS20910) in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II
		operon from E. coli ATCC 8739
		(ECOLC_RS20900,
		ECOLC_RS20905 and
		ECOLC_RS20910) in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	AAATTCAGGAGGAATTCACCATGTTAG	Forward primer to clone Zorya II
	CGCAGCTTTTTG	operon from E. coli ATCC 8739
		(ECOLC_RS20900,
		ECOLC_RS20905 and
		ECOLC_RS20910) in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to amplify genes of
		interest
	AGGATCCCCGGGTACCCTAGTTGAGA	Reverse primer to clone Zorya II
	CTCGCCAACCATGGGC	operon from E. coli ATCC 8739
		(ECOLC_RS20900,
		ECOLC_RS20905 and
		ECOLC_RS20910) in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to amplify genes of
		interest

pGM35	TCGATCATGGATAAGATTATAG	Forward primer delete ZorA from
		pGM23 by KLD
	GGTGAATTCCTCCTGAATTTCATTACG	Reverse primer delete ZorA from
		pGM23 by KLD
pGM36	GAGATGAAATTATCTATC	Forward primer delete ZorB from
		pGM23 by KLD
	GATCGATTACCCTCGATG	Reverse primer delete ZorB from
		pGM23 by KLD
pGM37	GAGATGAAATTATCTATC	Forward primer delete ZorAB from
		pGM23 by KLD
	GGTGAATTCCTCCTGAATTTCATTACG	Reverse primer delete ZorAB from
		pGM23 by KLD
pGM38	AACAGAAAAACCGACTAG	Forward primer delete ZorE from
		pGM23 by KLD
	GATTATTCAGGAGTAAGAG	Reverse primer delete ZorE from
		pGM23 by KLD
pGM46	AACCTAATGGCAGGGCTGATGATG	Forward primer introduce a D24N
		mutation in ZorB in pGM23 by KLD
	TGACATGGATACCCAATGTTC	Reverse primer introduce a D24N
		mutation in ZorB in pGM23 by KLD
pGM55	AAATAAAATGGCAAAAAAC	Forward primer to delete a aa106-550
		in ZorA in pGM23 by KLD
	TAATCGATCATGGATAAGATTATAG	Reverse primer to delete a aa106-
		550 in ZorA in pGM23 by KLD
pGM70	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya I from
		S. marcescens ATCC
		274(SMATCC274_RS21230,
		SMATCC274_RS21235
		SMATCC274_RS21240 and
		SMATCC274_RS21245 in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector

	TAAAACAGAAAACCGACTAGCTTGG	Reverse primer to clone Zorya I from S. marcescens ATCC 274(SMATCC274_RS21230, SMATCC274_RS21235 SMATCC274_RS21240 and SMATCC274_RS21245 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AAATTCAGGAGGAATTCACCATGGATTCGCTGCTTC	Forward primer to clone Zorya I from S. marcescens ATCC 274(SMATCC274_RS21230, SMATCC274_RS21235 SMATCC274_RS21240 and SMATCC274_RS21245 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTCTAACTG	Reverse primer to clone Zorya I from S. marcescens ATCC 274(SMATCC274_RS21230, SMATCC274_RS21235 SMATCC274_RS21240 and SMATCC274_RS21245 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM85	GGTGAATTCCTCCTGAATTTCATTAC ATGAAATTAAGCGATATC	Forward primer delete ZorAB from pGM70 by KLD Reverse primer delete ZorAB from
pGM86	TCATAGCGGCCTCTTCTTCAG	pGM70 by KLD Forward primer delete ZorAB from pGM70 by KLD

	AACAGAAAAACCGACTAGCTTGGCTG	Reverse primer delete ZorAB from pGM70 by KLD
pGM12 4	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone ZorABC from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone ZorABC from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AAATTCAGGAGGAATTCACCATGGATT CGCTGCTGCTTC	Forward primer to clone ZorABC from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTTCATGAC AGATACTCAATTTGTTCAC	Reverse primer to clone ZorABC from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM12 5	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone ZorBCD from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorBCD from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise
		vector

	AAATTCAGGAGGAATTCACCATGAGAG CCAACGCCAGTC AGCTAGTCGGTTTTTCTGTTCTAACTG ATTCGATATGAACCGTCATC	Forward primer to clone ZorBCD from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest Reverse primer to clone ZorBCD from <i>S. marcescens</i> ATCC 274 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM14	AATATGACGGTCAGCTTTCTTTTTATTG	Forward primer to introduce aD24N
0	TTATG	mutation in ZorB in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GAAAGCTGACCGTCATATTTGTCATTG	Reverse primer to introduce aD24N
	AGACAAAAC	mutation in ZorB in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM14	TCATAGCGGCCTCTTCTTC	Forward primer to clone ZorD from
pGM14 1	TCATAGCGGCCTCTTCTTC	S. marcescens ATCC 274
	TCATAGCGGCCTCTTCTTC	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by
	TCATAGCGGCCTCTTCTTC	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly.
		S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AACAGAAAAACCGACTAGCTTGGCTG	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from
		S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274
		S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by
		S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly.
	AACAGAAAAACCGACTAGCTTGGCTG	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AACAGAAAAACCGACTAGCTTGGCTG tgaagaagaggccgctatgaATGACATTTGCTT	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorD from
	AACAGAAAAACCGACTAGCTTGGCTG	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorD from S. marcescens ATCC 274
	AACAGAAAAACCGACTAGCTTGGCTG tgaagaagaggccgctatgaATGACATTTGCTT	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by
	AACAGAAAAACCGACTAGCTTGGCTG tgaagaagaggccgctatgaATGACATTTGCTT	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly.
	AACAGAAAAACCGACTAGCTTGGCTG tgaagaagaggccgctatgaATGACATTTGCTT	S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by

	agctagtcggtttttctgttCTAACTGATTCGATAT GAACC	Reverse primer to clone ZorD from S. marcescens ATCC 274 downstream of ZorAB I in pGM86 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM14 2	ATGAAATTAAGCGATATCTTCC	Forward primer to clone ZorA I from S. marcescens ATCC 274 upstream of ZorCD in pGM85 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	GGTGAATTCCTCCTGAATTTCATTACG	Reverse primer to clone ZorA I from S. marcescens ATCC 274 upstream of ZorCD in pGM85 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AAATTCAGGAGGAATTCACCATGGATT CGCTGCTGCTTC	Forward primer to clone ZorA I from S. marcescens ATCC 274 upstream of ZorCD in pGM85 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AAGATATCGCTTAATTTCATTCATGAGA TTCGCCCTTG	Reverse primer to clone ZorA I from S. marcescens ATCC 274 upstream of ZorCD in pGM85 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM223	AATAGAAAGATCTTCGAGGCTG	Forward primer to delete a aa237-678 in ZorA in pGM70 by KLD
	ATGAGAGCCAACGCCAGTC	Reverse primer to delete a aa237-678 in ZorA in pGM70 by KLD
pGM224	GCTGGCAAAAAAAGCGAGC	Forward primer to delete a aa43-287 in ZorB in pGM70 by KLD

	ATGAAATTAAGCGATATC	Reverse primer to delete a aa43-287 in ZorB in pGM70 by KLD
pGM59	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II operon from <i>Klebsiella oxytoca</i> 571.31(G0D99_RS19745, G0D99_RS19740 and G0D99_RS19735) in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II operon from from Klebsiella oxytoca 571.31 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TTTTTAGACTGGTCGTAATGAAATTCAG GAGGAATTCACCATGAAGAAAAGACTT CTACTTCTGTTGTTACTCAT	Forward primer to clone Zorya II operon from <i>Klebsiella oxytoca</i> 571.31 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTTCAGCAC TTGTAATTTGTC	Reverse primer to clone Zorya II operon from <i>Klebsiella oxytoca</i> 571.31in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM60	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II operon II Legionella lansingensis NCTC12830 (CKV79_RS08030, CKV79_RS08025 and CKV79_RS08020) in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II operon from Legionella lansingensis

	TTTTTAGACTGGTCGTAATGAAATTCAG GAGGAATTCACCATGAATAAAATATTT GCTTTATTGTTAGCCCTAGTTTCC	NCTC12830 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone Zorya II operon from <i>Legionella lansingensis</i> NCTC12830 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTTTAAAATT TATTCTTTTTTATTTGCGC	Reverse primer to clone Zorya II operon from <i>Legionella lansingensis</i>
		NCTC12830 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM61	TAAAACAGAAAAACCGACTAGCTTGG	Forward primer to clone Zorya II operon II from S. <i>marcescens</i> UMH9 (BVG96_RS22930, BVG96_RS22925 and BVG96_RS22920) in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone Zorya II
		operon from S. <i>marcescens</i> UMH9 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	TTTTTAGACTGGTCGTAATGAAATTCAG GAGGAATTCACCATGTTAGCGCAACTT TTTGAACATCTG	Forward primer to clone Zorya II operon from S. <i>marcescens</i> UMH9 in pGM39 by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTTCAGAAA ACAACTCCGGAC	Reverse primer to clone Zorya II operon from S. <i>marcescens</i> UMH9 in pGM39 by NEBuilder HiFi DNA

		Assembly. Primer is used to amplify
		genes of interest
pGM62	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II
		operon II from E. coli KTE66 in
		pGM39 by NEBuilder HiFi DNA
		Assembly. Primer is used to linearise
		vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II
		operon from E. coli KTE66 in
		pGM39 by NEBuilder HiFi DNA
		Assembly. Primer is used to linearise
		vector
	AAATTCAGGAGGAATTCACCATGCTGG	Forward primer to clone Zorya II
	CACAGCTTTTTG	operon from E. coli KTE66 in
		pGM39 by NEBuilder HiFi DNA
		Assembly. Primer is used to amplify
		genes of interest
	AGCTAGTCGGTTTTTCTGTTCTACACC	Reverse primer to clone Zorya II
	GCGGTGAAGATG	operon from <i>E. coli</i> KTE66 in pGM39
		by NEBuilder HiFi DNA Assembly.
		Primer is used to amplify genes of
		interest
pGM63	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II
		operon II from Pseudomonas
		jinjuensis NBRC10347 in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II
		operon from Pseudomonas jinjuensis
		NBRC10347 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to linearise vector

	AAATTCAGGAGGAATTCACCATGATTT	Forward primer to clone Zorya II
	CCGAGCGCCTG	operon from Pseudomonas jinjuensis
		NBRC10347 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to amplify genes of interest
	AGCTAGTCGGTTTTTCTGTTTCAACCA	Reverse primer to clone Zorya II
	AGACCGCCACAAATTTC	operon from Pseudomonas jinjuensis
		NBRC10347 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to amplify genes of interest
pGM64	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone Zorya II
		operon II from II S. marcescens
		strain AS012322 in pGM39 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGG	Reverse primer to clone Zorya II
		operon from II S. marcescens strain
		AS012322 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to linearise vector
	AAATTCAGGAGGAATTCACCATGTTAG	Forward primer to clone Zorya II
	CGCAACTTTTTG	operon from II S. marcescens strain
		AS012322 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to amplify genes of interest
	CAAGCTAGTCGGTTTTTCTGTCAGAAA	Reverse primer to clone Zorya II
	ACAACTCCGGAC	operon from II S. marcescens strain
		AS012322 in pGM39 by NEBuilder
		HiFi DNA Assembly. Primer is used
		to amplify genes of interest
pGM94	TTACTCCTGAATAATCTTTCTAATC	Forward primer to clone ZorCD
		downstream of ZorAB II in pGM61 by

		NED 'IL LIE' DAIA A LI
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	TAAAACAGAAAAACCGACTAGCTTGGC	Reverse primer to clone ZorCD
		downstream of ZorAB II in pGM61 by
		NEBuilder HiFi DNA Assembly.
		Primer is used to linearise vector
	GTCGCATAATTCAGGAATAGATGAAAT	Forward primer to clone ZorCD
	TAAGCGATATCTTCC	downstream of ZorAB II in pGM61 by
		NEBuilder HiFi DNA Assembly
		Primer is used to amplify genes of
		interest
	GCCAAGCTAGTCGGTTTTTCTGTTTTA	Reverse primer to clone ZorCD
	CTAACTGATTCGATATGAACC	downstream of ZorAB II in pGM61 by
		NEBuilder HiFi DNA Assembly
		Primer is used to amplify genes of
		interest
pGM98	GGTGAATTCCTCCTGAATTTCATTACG	Forward primer to clone ZorE from
		pGM61 downstream of ZorAB I in
		pGM70 by NEBuilder HiFi DNA
		Assembly. Primer is used to linearise
		vector
	AACAGAAAAACCGACTAGCTTGGCTG	Reverse primer to clone ZorE from
		pGM61 downstream of ZorAB I in
		pGM70 by NEBuilder HiFi DNA
		Assembly. Primer is used to linearise
		vector
	TGAAGAAGAGGCCGCTATGAATGAAG	Forward primer to clone ZorE from
	CTAACTGTTGATTTTTC	pGM61 downstream of ZorAB I in
		pGM70 by NEBuilder HiFi DNA
		Assembly Primer is used to amplify
		genes of interest
	AACAGAAAAACCGACTAGCTTGTCAGA	Reverse primer to ZorE from pGM61
	AAACAACTCCGGAC	downstream of ZorAB I in pGM70 by

		NEBuilder HiFi DNA Assembly Primer is used to amplify genes of interest
pGM14	CCTTTGCGACAAGTCATTATTGATTTTA	Forward primer to introduce a A210P
3	ATG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CTTGTCGCAAAGGATCAATAATTTGTT	Reverse primer to introduce A210P
	CTG	mutation in ZorA in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM14	GCAAAAAACTTGTTGAGTGGCAGGGA	Forward primer to introduce a V237A
4	AATTATAAAAC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CAAGTTTTTTTGCAGAGGCATCAAGAG	Reverse primer to introduce V237A
	CTTTAAAG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM14	GCGGGAAATTATAAAACGCAAATTGAG	Forward primer to introduce a Q244A
5	CAG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	GTTTTATAATTTCCCGCCCACTCAACAA	Reverse primer to introduce Q244A
	GTTTTTTAC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM14	GCTCCTCTGGCTATGTCTGAACTGCGT	Forward primer to introduce a I282A
6	GAAG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CATAGCCAGAGGAGCTTCTTTACATTC	Reverse primer to introduce I282A
	TTC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM14	GCCTTTGTCGCCATCCGCGATAAAGCT	Forward primer to introduce a T309A
7	ACAAC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.

	GATGGCGACAAAGGCTTCTAAATGGC GGGAG	Reverse primer to introduce T309A mutation in ZorA II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM14	GCTGAGCAAACCAGCCAGCAAATACTT	Forward primer to introduce a L346A
8	CTTAATG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CTGGTTTGCTCAGCAGATGCACTAACA	Reverse primer to introduce L346A
	TTTG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM14	GCAGGTACCGAAGGATTCAGACAATC	Forward primer to introduce a E366A
9	GGTTAC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	GAATCCTTCGGTACCTGCATCCAGGG	Reverse primer to introduce E366A
	CAAC	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	GCAACAATTACTGAAATGAAACAAAGT	
pGM15	GGTGAAG	Forward primer to introduce a E402A
0	GOTGAAG	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CATTTCAGTAATTGTTGCACCTAACGT	Reverse primer to introduce E402A
	GCTGGT	mutation in ZorA II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM15	GCAGGTCACACAAGTACTGACTGGAC	Forward primer to introduce a E139A
2	AGGAACAACGAATC	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	AGTACTTGTGTGACCTGCAATGCGGAC	Reverse primer to introduce E139A
	TTCAGTAA	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM15	GCCACAAGTACTGACTGGACAGGAAC	Forward primer to introduce a H141A
3	AACGAATC	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.

	GTCAGTACTTGTGGCACCTTCAATGCG GACTTC	Reverse primer to introduce H141A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM15 4	GCAAGTACTGACTGGACAGGAACAAC GAATCCTG	Forward primer to introduce a T142A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
	GTCAGTACTTGCGTGACCTTCAATGCG GACTTCAG	Reverse primer to introduce T142A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM15 5	GCTACTGACTGGACAGGAACAACGAAT CCTG	Forward primer to introduce a S143A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
	GTCAGTAGCTGTGTGACCTTCAATGCG GACTTC	Reverse primer to introduce S143A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM15 6	GCCTGGACAGGAACAACGAATCCTGA TATTG	Forward primer to introduce a D145A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
	CTGTCCAGGCAGTACTTGTGTGACCTT CAATG	Reverse primer to introduce D145A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM15 7	GCAAGTAAATTTGCCGCAGTAGGTTAT TCATC	Forward primer to introduce a K188A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
	CGGCAAATTTACTTGCAACCCATTGTT GGTGTGTC	Reverse primer to introduce K188A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
pGM15 8	GCTTCATCTGCACATCCCATTCTTGAT AAAAC	Forward primer to introduce a Y196A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.
	GATGTGCAGATGAAGCACCTACTGCG GCAAAT	Reverse primer to introduce Y196A mutation in ZorB II in pGM23 by NEBuilder HiFi DNA Assembly.

pGM15	GCTCGTGTCACCTTCAAAGTTGTAACA	Forward primer to introduce a R215A
9	AATG	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CTTTGAAGGTGACACGAGCAGAGCGA	Reverse primer to introduce R215A
	TTAGG	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM16	GCTATTCAGGAGTAAGAGATGAAATTA	Forward primer to introduce a I232A
0	TC	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
	CTTACTCCTGAATAGCCTTTCTAATCTG	Reverse primer to introduce I232A
	CAAC	mutation in ZorB II in pGM23 by
		NEBuilder HiFi DNA Assembly.
pGM16	GCAGACCTTCCAAGAGCGATCTCTGA	Forward primer to introduce a E267A
1	GTCTATTAG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	CTCTTGGAAGGTCTGCGCGCAACGGA	Reverse primer to introduce a E267A
	CGACCAATCTCAG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM16	CCTATTACGCCGGTTATCGAACAAGTA	Forward primer to introduce a A280P
2	AGCAGGTTG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	CGATAACCGGCGTAATAGGCGTACTAA	Reverse primer to introduce a A280P
	TAGACTCAGAGATC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM16	GGCCTCTCTCACGTTTTTCTGAAGAT	Forward primer to introduce a S302P
3	GTTGGTCG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GTGAAGAGAGGCCTTGTACCATCTCTC	Reverse primer to introduce a S302P
	CCACACCATC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM16	GGCCTCTCTCACGTTTTTCTGAAGAT	Forward primer to introduce a S319A
4	GTTGGTCG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.

	GTGAAGAGAGGCCTTGTACCATCTCTC CCACACCATC	Reverse primer to introduce a S319A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM16 5	GGCGAACGTATTTCCCTGGCAGGAGA CCAGATTAAATTG	Forward primer to introduce a L361A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
	CAGGGAAATACGTTCGCCGGCTTGTG CCAGAGCCCGAC	Reverse primer to introduce a L361A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM16 6	GCGCGTGATGGTATGCAGCAAACGGC AGATACAGCAACATC	Forward primer to introduce a Q392A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
	CTGCATACCATCACGCGCTGTTTCCAC CGCCTGGCCTAAG	Reverse primer to introduce a Q392A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM16 7	GCAGGCATCAAAGACAATACCGGTGA GGGTGCGCGAG	Forward primer to introduce a L423A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
	TATTGTCTTTGATGCCTGCCAGGGTTG AATTCATGGTCG	Reverse primer to introduce a L423A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM16 8	GCCGAAGTTGCAGCGAAACAGGGGGC TGAAGCAGCGCAG	Forward primer to introduce a K444A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
	GTTTCGCTGCAACTTCGGCTTCGGTAC GAATACCCAGAG	Reverse primer to introduce a K444A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM16 9	GCGGCCAGCGACGCGATTGGCCAGG CCGCAACACAAGTG	Forward primer to introduce a E481A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.
	CGTCGCTGGCCGCAGACGCTGATTCA GACATCCGCGCCTGC	Reverse primer to introduce a E481A mutation in ZorA I in pGM70 by NEBuilder HiFi DNA Assembly.

pGM17	GCATTGCTTTCTCCTCTTTCTGTTATCG	Forward primer to introduce a A520P
0	CTGAAAAACTG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GAGGAGAAAGCAATGCGCTGCTGGCT	Reverse primer to introduce a A520P
	TTCTGGGTCATC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM17	CCCTCGGAGAACGCTTCAGGAAGCTT	Forward primer to introduce a S598A
1	CCGCACATC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GCGTTCTCCGAGGGGACAGCACCTTC	Reverse primer to introduce a S598A
	TTTAATCCCATC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM17	GCTACGCTAAATAATCTTCAGTCTTTGA	Forward primer to introduce a Y631A
2	TTGCGGCTTTAC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GATTATTTAGCGTAGCTTCAACCGCCC	Reverse primer to introduce a Y631A
	GATGCTGCCCG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM17	GCTCAACAGCAAGTTGCTACGTCGGTT	Forward primer to introduce a V664A
3	GAAACGCTCTTC	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	CAACTTGCTGTTGAGCACTGTCGAATG	Reverse primer to introduce a V664A
	CCTTGCCAAG	mutation in ZorA I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM17	GCAGGTCACACCGACTCCAAAGGCGA	Forward primer to introduce a N184A
5	AGATGTTTATAAC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GAGTCGGTGTGACCTGCAATCTGTACC	Reverse primer to introduce a N184A
	GCTTCAATAATGG	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM17	GCCACCGACTCCAAAGGCGAAGATGT	Forward primer to introduce a H186A
6	TTATAACCTGAATC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.

	CTTTGGAGTCGGTGGCACCTTCAATCT GTACCGCTTCAATAATG	Reverse primer to introduce a H186A mutation in ZorB I in pGM70 by NEBuilder HiFi DNA Assembly.
pGM18	GCTTCGACTAACCGAGCCATCACCAC	Forward primer to introduce a L199A
0	GTTTACCAGTATG	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GATGGCTCGGTTAGTCGAAGCATTCAG	Reverse primer to introduce a L199A
	GTTATAAAC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM18	GCAGCCATCACCACGTTTACCAGTATG	Forward primer to introduce a R203A
1	CTTGCCGCAG	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GTAAACGTGGTGATGGCTGCGTTAGTC	Reverse primer to introduce a R203A
	GAAAGATTC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM18	GCCCGTATCGATCTCCGCATCATTATG	Forward primer to introduce a R254A
3	CATACCCCGGC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GAGATCGATACGGGCATTCATCGCCAT	Reverse primer to introduce a R254A
	ATTTTGCGGTG	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM18	GCCATCATTATGCATACCCCGGCCAAT	Forward primer to introduce a R259A
5	GCAGCGGAAATTGAAG	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
	GTATGCATAATGATGGCGAGATCGATA	Reverse primer to introduce a R259A
	CGGCGATTCATC	mutation in ZorB I in pGM70 by
		NEBuilder HiFi DNA Assembly.
pGM29	GGTGAATTCCTCCTGAATTTCATTAC	Forward primer to clone ZorE from <i>E</i> .
		coli ATCC8739 in pT12-derived
		plasmid in frame with a C-term Strep
		II tag by NEBuilder HiFi DNA
		Assembly. Primer is used to linearise
		vector

	GAAAACCTGTACTTCCAGGGTC	Reverse primer to clone ZorE from <i>E. coli</i> ATCC8739 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector
	AAATTCAGGAGGAATTCACCATGAAAT TATCTATCGACATTTCAG	Forward primer to clone ZorE from <i>E. coli</i> ATCC8739 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
	CCCTGGAAGTACAGGTTTTCCAATTTT GCTGGCGTAAAG	Reverse primer to clone ZorE from <i>E. coli</i> ATCC8739 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest
pGM28 8	GAAAACCTGTACTTCCAGGGTCAAT	Forward primer to clone ZorB II ₁₁₅₋₂₃₅ from <i>E. coli</i> ATCC8739 in pT12-derived plasmid in frame with a Cterm Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorB II ₁₁₅₋₂₃₅ from <i>E. coli</i> ATCC8739 in pT12-derived plasmid in frame with a Cterm Strep II tag by NEBuilder HiFi
	AAATTCAGGAGGAATTCACCCTTGACGACTT CTTTCCTC	DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorB II ₁₁₅₋₂₃₅ from <i>E. coli</i> ATCC8739 in pT12-

	CCCTGGAAGTACAGGTTTTCCTCCTGAATAA TCTTTC	term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest. Primers also used to amplify correspondent point mutations. Reverse primer to clone ZorB II ₁₁₅₋₂₃₅ from <i>E. coli</i> ATCC8739 in pT12- derived plasmid in frame with a C- term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest. Primers also used to amplify correspondent point mutations.
pGM28 7	GAAAACCTGTACTTCCAGGGTCAAT GGTGAATTCCTCCTGAATTTCATTACGAC	Forward primer to clone ZorB I ₁₆₅₋₂₈₇ from <i>S. marcescens</i> ATCC274 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Reverse primer to clone ZorB I ₁₆₅₋₂₈₇ from <i>S. marcescens</i> ATCC274 in pT12-derived plasmid in frame with a
	AAATTCAGGAGGAATTCACCGTCGGGT GGGATAAAAAC	C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to linearise vector Forward primer to clone ZorB I ₁₆₅₋₂₈₇ from <i>S. marcescens</i> ATCC274 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest. Primers also used to amplify correspondent point mutations.

	CCCTGGAAGTACAGGTTTTCTAGCGGCCTCT	Reverse primer to clone ZorB I ₁₆₅₋₂₈₇ from <i>S. marcescens</i> ATCC274 in pT12-derived plasmid in frame with a C-term Strep II tag by NEBuilder HiFi DNA Assembly. Primer is used to amplify genes of interest. Primers also used to amplify correspondent point mutations.
pGM19 6	AGAATTCACTGGCCGTCGTTTTAC	Forward primer to clone Zorya II with its own promoter from <i>E. coli</i> ATCC8739 in pSUPROM by NEBuilder HiFi DNA Assembly. Primer binds to the vector and are designed to remove the Tat promoter to insert Zorya II with its own promoter and terminator
	TCTAGAGTCGACCCCTCG AACGACGGCCAGTGAATTCTCCTGCCT TCCTTTGATAC	Reverse primer to clone Zorya II with its own promoter from <i>E. coli</i> ATCC8739 in pSUPROM by NEBuilder HiFi DNA Assembly. Primer binds to the vector and are designed to remove the Tat promoter to insert Zorya II with its own Forward primer to clone Zorya II with its own promoter from <i>E. coli</i> ATCC8739 in pSUPROM by
	CTCGAGGGGTCGACTCTAGATTACAATTTTG CTGGCGTAAAG	NEBuilder HiFi DNA Assembly. Primer binds to insert. Reverse primer to clone Zorya II with its own promoter from <i>E. coli</i> ATCC8739 in pSUPROM by

NEBuilder HiFi DNA Assembly.
Primer binds to insert.

pGM33	TCTAGAGTCGACCCCTCG	Forward primer to delete Zorya II
6		from pSUPROM by KLD leaving
		Zorya II specific promoter in the to
		replace Tat promoter.
	TTTGATACCTGTGTAAATAATGG	Reverse primer to delete Zorya II
		from pSUPROM by KLD leaving
		Zoryall specific promoter in the to
		replace Tat promoter.
pGM33	GATCGATTACCCTCGATG	Forward primer to delete ZorA from
7		pGM196 by KLD.
	GATTATTCAGGAGTAAGAG	Reverse primer to delete ZorA from
		pGM196 by KLD.
pGM33	ATGGATAAGATTATAGGGAAAC	Forward primer to delete ZorB from
8		pGM196 by KLD.
	GATCGATTACCCTCGATG	Reverse primer to delete ZorB from
		pGM196 by KLD.
pGM33	ATGGATAAGATTATAGGGAAAC	Forward primer to delete ZorAB from
9		pGM196 by KLD.
	TTTGATACCTGTGTAAATAATGG	Reverse primer to delete ZorAB from
		pGM196 by KLD.
pGM34	GATTATTCAGGAGTAAGAG	Forward primer to delete ZorEfrom
0		pGM196 by KLD.
	TCTAGAGTCGACCCCTCG	Reverse primer to delete ZorE from
		pGM196 by KLD.
pGM34	TCTAGAGTCGACCCCTCG	Forward primer to clone the coding
1		sequence of ZorA, followed by ZorB
		fused to a TEV site and 2xStrepII tag
		and ZorE fused to a His6x tag in
		pGM336, under the control of Zorya
		II native promoter NEBuilder HiFi

		DNA Assembly. Primer linearises
		vector.
	TTTGATACCTGTGTAAATAATGG	Reverse primer to clone the coding
		sequence of ZorA, followed by ZorB
		fused to a TEV site and 2xStrepII tag
		and ZorE fused to a His6x tag in
		pGM336, under the control of Zorya
		II native promoter NEBuilder HiFi
		DNA Assembly. Primer linearises
		vector.
	CATTATTTACACAGGTATCAAA	Forward primer to clone the coding
	ATGTTAGCGCAGCTTTTTGAG	sequence of ZorA, followed by ZorB
		fused to a TEV site and 2xStrepII tag
		and ZorE fused to a His6x tag in
		pGM336, under the control of Zorya
		II native promoter NEBuilder HiFi
		DNA Assembly. Primer linearises
		vector. Insert amplified from pGM41.
		Reverse primer to clone the coding
	GGGTCGACTCTAGAGGATCC	sequence of ZorA, followed by ZorB
	GTGATGGTGATGGTGATTTTG	fused to a TEV site and 2xStrepII tag
		and ZorE fused to a His6x tag in
		pGM336, under the control of Zorya
		II native promoter NEBuilder HiFi
		DNA Assembly. Primer linearises
		vector. Insert amplified from pGM41
pGM34	TCTAGAGTCGACCCCTCG	Forward primer to clone the coding
2		sequence ZorB fused to a TEV site
		and 2xStrepII tag followed by ZorE
		fused to a His6x tag in pGM336 by
		NEBuilder HiFi DNA Assembly.
		Primer binds to vector to linearise it

TTTGATACCTGTGTAAATAATGG

Reverse primer to clone the coding sequence ZorB fused to a TEV site and 2xStrepII tag followed by ZorE fused to a His6x tag in pGM336 by

NEBuilder HiFi DNA Assembly.

Primer binds to vector to linearise it Forward primer to clone the coding sequence ZorB fused to a TEV site and 2xStrepII tag followed by ZorE

fused to a His6x tag in pGM336 by NEBuilder HiFi DNA Assembly.

Insert amplified from pGM289

Reverse primer to clone the coding sequence ZorB fused to a TEV site and 2xStrepII tag followed by ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi DNA Assembly.

Insert amplified from pGM289

TCTAGAGTCGACCCCTCG Forward primer to clone the coding

> sequence of ZorA followed by ZorE fused to a His6x tag in pGM336 by

NEBuilder HiFi DNA Assembly.

Primer binds to vector to linearise it Reverse primer to clone the coding

> sequence of ZorA followed by ZorE fused to a His6x tag in pGM336 by

NEBuilder HiFi DNA Assembly.

Primer binds to vector to linearise it Forward primer to clone the coding sequence of ZorA followed by ZorE fused to a His6x tag in pGM336 by

NEBuilder HiFi DNA Assembly. Insert amplified from pGM290

CATTATTTACACAGGTATCAAA ATGGATAAGATTATAGGGAAAC

GGGTCGACTCTAGAGGATCC **GTGATGGTGATGCAATTTTG**

pGM34

3

TTTGATACCTGTGTAAATAATGG

CATTATTTACACAGGTATCAAA ATGTTAGCGCAGCTTTTTGAG

	GGGTCGACTCTAGAGGATCC GTGATGGTGATGGTGATGCAATTTTG	Reverse primer to clone the coding sequence of ZorA followed by ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi DNA Assembly.
pGM34 4	TCTAGAGTCGACCCCTCG	Insert amplified from pGM290 Forward primer to clone the coding sequence of ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi
	TTTGATACCTGTGTAAATAATGG	DNA Assembly. Primer binds to vector to linearise it Reverse primer to clone the coding sequence of ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi
	CATTATTTACACAGGTATCAAA ATGAAATTATCTATCGAC	DNA Assembly. Primer binds to vector to linearise it Forward primer to clone the coding sequence of ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi DNA Assembly. Insert amplified from
	GGGTCGACTCTAGAGGATCC GTGATGGTGATGGTGATGCAATTTTG	pGM291 Reverse primer to clone the coding sequence of ZorE fused to a His6x tag in pGM336 by NEBuilder HiFi DNA Assembly. Insert amplified from pGM291.