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Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful
in vivomeasure of irreversible tissue loss. Thesemeasurements, however, can be influenced by reversible factors
such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether
an estimate of T2 relaxation timewould correlate with brain volume changes induced by physiologically manip-
ulating hydration status. We used a clinically feasible estimate of T2 (“pseudo-T2”) computed from a dual turbo
spin-echo MRI sequence and correlated pseudo-T2 changes to percent brain volume changes in 12 healthy sub-
jects after dehydration overnight (16-hour thirsting) and rehydration (drinking 1.5 L of water).
We found that the brain volume significantly increased between the dehydrated and rehydrated states (mean
brain volume change = 0.36%, p = 0.0001) but did not change significantly during the dehydration interval
(mean brain volume change = 0.04%, p = 0.57). The changes in brain volume and pseudo-T2 significantly cor-
related with each other, with marginal and conditional correlations (R2) of 0.44 and 0.65, respectively.
Our results show that pseudo-T2 may be used in conjunction with the measures of brain volume to distinguish
reversible water fluctuations and irreversible brain tissue loss (atrophy) and to investigate disease mechanisms
related to neuro-inflammation, e.g., in multiple sclerosis, where edema-related water fluctuations may occur
with disease activity and anti-inflammatory treatment.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Chronic brain atrophy has long been appreciated in neurological dis-
eases such as Alzheimer3s disease (Alzheimer et al., 1995) and multiple
sclerosis (MS) (Dawson, 1916) from post-mortem autopsy studies.
Today such brain tissue loss can be measured noninvasively in vivo
using magnetic resonance imaging (MRI) and image analysis tools.
Compared to traditionalmanual or semi-automated image analysis pro-
cedures, advanced registration-based algorithms have greatly increased
the sensitivity to even small brain volume changes.

An important physiologic contributor of reversible brain volume
change is fluctuations in hydration status, which can be seen in various
conditions, including water intake and thirsting (Duning et al., 2005;
Streitbürger et al., 2012). In the study byDuning et al. (2005), hydration
(drinking water) and dehydration (thirsting) led to significant brain
volume change (+0.75% and −0.55%, respectively). This observed vol-
ume change is larger than the annualized rates of brain atrophy from
normal aging of nonelderly adults, where the average rates range from
kamura).

. This is an open access article under
approximately 0.1 to 0.3%/year (Fisher et al., 2008; Fotenos et al.,
2005; Scahill et al., 2003). The results of these studies suggest that in
short-term longitudinal studies, variability in subjects3 hydration status
could significantly affect the outcome of brain atrophy measurements
(Sampat et al., 2010).

Another conditionwhere thewater-related fluctuation is believed to
occur is in inflammatory brain edema (Zivadinov et al., 2008). Several
MS clinical trials show that brain volume loss is accelerated after the
initiation of anti-inflammatory therapy and that this acceleration disap-
pears in the second year of therapy (Miller et al., 2007; Rudick et al.,
1999). This phenomenon is often termed “pseudoatrophy” and is hy-
pothesized to be the result of resolution of inflammatory edema, an
idea supported by the association of pseudoatrophy patterns with
gadolinium-enhancing lesions (Molyneux et al., 2000). A tissue-
specific volumetric study has shown that the pattern of pseudoatrophy
observed in the intramuscular interferon beta-1a phase III clinical trial
(Rudick et al., 1999) appears to be mainly driven by white matter, sug-
gesting that the suppression of inflammatory white matter lesions may
be related to the volumetric change (Nakamura et al., 2010). While the
effect of shifting hydration level is typically uncontrolled and somewhat
random, thus adding noise, the pseudoatrophy effect adds bias because
a particular group, e.g., treated vs. placebo, can be more affected.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Overall, the pseudoatrophy effect complicates the interpretation of
brain atrophy results as it counteracts or even overshadows the expect-
ed treatment effect in clinical trials and has led some to assess the treat-
ment effect on atrophy only from the second year on (Arnold and De
Stefano, 2013; Miller et al., 2007; Rudick et al., 1999).

To decipher the significance of brain volume loss after initiating anti-
inflammatory therapy, we need to distinguish the irreversible compo-
nent of brain tissue loss (true atrophy) from reversible fluctuation in
brain volume (pseudoatrophy). In the current study, we used a two-
point estimate of T2-relaxation time as amarker of brain water content.
T2 relaxation time is associatedwith the tissuewater content and can be
quantitatively measured using multi-echo MR sequences (Whittall
et al., 1997). Quantitative multi-echo T2-relaxation measurements are,
however, not generally feasible in clinical studies because they typically
require 16 or more echoes and long acquisition times with partial brain
coverage. By contrast, a dual-echo sequence offers a semi-quantitative
but clinically feasible estimate of bulk T2-relaxation times; in this
study, we term a two-point estimate of T2-relaxation “pseudo-T2” or
pT2, to differentiate it from fully quantitative techniques that model
multi-exponential relaxation due to multiple water compartments.
Previous studies have shown that pT2 is not numerically the same as
the multi-echo T2 relaxation time (Okujava et al., 2002; Rajagopalan
et al., 2013) but is strongly correlated (r N 0.88) with multi-echo T2
(Okujava et al., 2002) as well as being precise and highly reproducible
(Townsend et al., 2004) (0.27% scan–rescan difference for whole brain
(Derakhshan et al., 2010)).

In the current study, we investigated the ability of pT2methodology
to explain brain volume fluctuations induced by varying hydration
levels. Our hypotheses were (1) that dehydration and rehydration
would affect both brain water content, as measured by pT2, and brain
volume, as measured by TBM, and (2) that pT2 change and brain vol-
ume change are correlated. To evaluate that, we set up a dehydration–
hydration protocol similar to that of Duning et al. (2005).

2. Methods

2.1. Subjects

Fourteen healthy subjects (2 women) underwent MRI scanning.
Their average age was 32.85 years (standard deviation: 7.41, range:
24–46 years). The inclusion criteria were: no previous history of
neurologic, metabolic, or psychiatric disorders and no use of recrea-
tional or prescription drugs. All subjects provided informed consent
to participate in the study, and the study was approved by the Re-
search Ethics Board of the Montreal Neurological Institute and
Hospital.

2.2. MRI

The subjects were imaged on a 1.5 T MRI scanner (Siemens
Sonata) in three different epochs: a) baseline MRI, performed a few
days or weeks prior to dehydration; b) dehydration MRI performed
after 16 h of relative fasting overnight, during which subjects were
instructed to refrain from drinking and to ingest only dry solid foods;
and c) immediately after the dehydration scan, subjects drank 1.5 L of
water over 90 min, followed by the rehydration scan. This dehydration
and rehydration protocol is modified from the study by Duning et al.
(2005) in that the duration of rehydration increased from 20–30 to
90 min.

For each subject, we acquired a structural 3D T1-weighted
spoiled gradient-recalled echo image (Fast, Low-Angle SHot, FLASH)
[echo time (TE): 9.2 ms, repetition time (TR): 22 ms, voxel size:
1.2 × 1.2 × 1.2 mm3, scan time 10:22 min] for the measurement of
volume change and one set of dual-echo T2-weighted fast spin echo
images [TEs: 12 and 83 ms, TR: 2070 ms, slice thickness: 3 mm, field-
of-view: 250 mm, matrix = 256 × 256; echo train length: 5, scan
time: 5:33 min] to estimate pT2.

2.3. Image analysis

2.3.1. Pre-processing
T1-weighted MRI images were corrected for geometric distortion

using a nonlinear deformation field obtained from Lego® phantoms
(Fonov et al., 2010) and for field inhomogeneity using the N3 method
(Sled et al., 1998).

2.3.2. Pseudo-T2 calculation
The dual-echo T2-weighted sequence was used to produce a pT2

map using the equation pT2 = (TE2 − TE1) / ln (S1 / S2) where S1 and
S2 are the measured image intensities at each echo time, TE1 and TE2
(Derakhshan et al., 2010; Duncan et al., 1996). All imageswere registered
to a standard space defined by the MNI-152 atlas using a six parameter
rigid registration (Collins et al., 1994). The brain was extracted using
FSL BET (Smith, 2002), and the extracted brain tissue was segmented
using SIENAX3s FAST (Zhang et al., 2001). A brain parenchymalmask (ex-
cluding CSF) was created by combining gray matter and white matter
probability maps and thresholding at 50% to exclude voxels with low
probability of containing tissue (typically due to partial volume with
CSF).

2.3.3. Volume change measurement
Weused a type of TBM called the pairwise Jacobian integrationmeth-

od to measure the volume change in the brain parenchyma (Nakamura
et al., 2013; Nakamura et al., 2014). Briefly, the pairwise Jacobian integra-
tion performed the following procedures: (a) linear alignment of the pre-
processed image pair with 12-parameter skull-based symmetric registra-
tion (Jenkinson et al., 2002); (b) image resampling in halfway-space;
(c) nonlinear alignment of the resampled images using ANTS (Avants
et al., 2008); (d) calculation of the Jacobian determinants for each
voxel; and (e) averaging of the Jacobian determinants within the
brain parenchymal mask, which was a combination of the gray matter
and white matter masks obtained by FSL SIENAX (Zhang et al., 2001)
and thresholded at 50%. The resultingmetric from the Jacobian integra-
tion method is a percent of brain volume change (PBVC).

2.4. Statistical analysis

To confirm the effects of dehydration and rehydration on brain vol-
ume, PBVCwasmodeled using a general linearmixedmodel (GLMM) as
the result of the interval (baseline–dehydration or dehydration to rehy-
dration) and a subject-specific random effect.

The mean pT2 in brain tissue was calculated for each subject at
each imaging session, and then differences between these means were
computed corresponding to the baseline–dehydration and dehydration–
rehydration intervals for each subject. PBVC was calculated between
baseline and dehydration as well as dehydration and rehydration for
each subject. PBVC was modeled using a GLMM with the pT2 change as
a fixed effect and a subject-specific random effect.

The statistical analysis was performed using custom software writ-
ten in Python (Python Software Foundation, http://python.org), using
the MINC tools (MINC tools, McConnell Brain Imaging Centre, Montreal),
the Scientific Python package (Scipy, http://www.scipy.org), the RPy2
module (RPy2, http://rpy.sourceforge.net) and the R statistical software
(R-Team, 2012). GLMMs were calculated with the lme4 R package
(Bates and Maechler, 2009). p-Values for the random effects and overall
model fit were calculated using χ2-tests. The significance of fixed effects
was computed using f tests with denominator degrees of freedom esti-
mated with a Satterthwaite approximation, using the R packageMixMod
(Kuznetsova and Brockhoff, 2012). R2 values for the mixed models were
calculated according to the procedure suggested by Nakagawa and
Schielzeth (2013), where a marginal R2 measures the variance explained
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by the fixed effects alone and the conditional R2 includes the contribution
of the random effects. The marginal R2 is primarily relevant to cross-
sectional studies while the conditional R2 applies to longitudinal designs.

One subject had poor quality imaging due to residual geometric dis-
tortion and another exhibited outlying changes in both PBVC and pT2.
These were eliminated from the analysis.
Fig. 1. (a) Example rawand pT2 images. From left to right: PD-weighted scan, T2-weighted scan,
row represents epoch (baseline, dehydrated, and rehydrated)where the images are not register
with an 8 mm-FWHM, and overlaid on the study-specific template.
3. Results

Fig. 1(a) shows examples of PD-, T2-, and T1-weighted images aswell
as computed pT2maps from one subject for the 3 epochs. Fig. 1(b) shows
the Jacobian determinant maps calculated by nonlinear registration of
baseline structural scans from all subjects using ANTS (Avants et al.,
T1-weighted scan, and pT2 (pseudo-T2)mapwithin the brainmask fromone subject. Each
edbut chosen for similar slices. (b) The Jacobianmaps averaged fromall subjects, smoothed

image of Fig.�1
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2008), smoothing with an 8 mm-FWHMGaussian kernel, averaging, and
mapping on the study-specific template.

The average (SD) delay between baseline and dehydration MRI was
12.4 (7.7) days (range = 3–28 days) while the average (SD) delay be-
tween dehydration and rehydration was 2.2 (0.2) h (1.8–2.5).

We found excellent correlation between brain volume changes and
pT2. As shown in Fig. 2, increases and decreases in brain volume were
strongly correlated to increases and decreases in T2 relaxation times,
respectively.

The model describing PBVC in terms of interval fit significantly (p=
0.0053) although the random effect was not significant (p = 1.0). Due
to the negligible random effect, the marginal and conditional R2 values
were the same, 0.26. The baseline–dehydration interval did not have a
significant effect on brain volume (mean = 0.04%, p = 0.57) but the
dehydration–rehydration interval was associated with a significant in-
crease in brain volume (mean = 0.36%, p = 0.0001).

Themodel describing the relationship between PBVC and pT2 fit sig-
nificantly (p=0.0001)with amarginal R2= 0.44 and conditional R2=
0.65. The random effect was not significant (p = 0.21) although the
amount of variance explained suggests that longitudinal designs may
still be worthwhile in larger studies. PBVC was significantly associated
with pT2 change (p = 0.0002) according to the formula ΔBV = 0.116
ΔpT2 (ΔBV in %, ΔpT2 in ms), with a unit change in pT2 (1 ms)
predicting a 0.116% of change in brain volume.
4. Discussion

We used 16 h of dehydration, followed by 90 min of intensive rehy-
dration, with MRI acquisition in both epochs, to evaluate the relation-
ship between brain volume change and pseudo-T2 relaxation time
change, estimated from a dual-echo turbo spin-echo sequence. The re-
sults show that brain volume changes with hydration status and that
the change in brain volume significantly correlates with brain water
content as measured by pT2. These results suggest that pT2 is sensitive
to reversible brain water fluctuations, and the full multi-echo sequence
may not be necessary. Since a dual-echo sequence requires relatively
short acquisition time and is available on clinical scanners, themeasure-
ment of pT2 provides a clinically feasiblemarker of brain water content.

While we found robust changes in brain volume from the dehydrated
to rehydrated state, in agreementwith the study by Duning et al. (2005)),
we did not observe a statistically significant change from the baseline to
Fig. 2. Relationship between T2 relaxation time (pT2) change and percent brain volume
changemeasured by the Jacobian integrationmethod (PBVC). The change in thesemetrics
between baseline and dehydrated scans is indicated by filled circles, and the change be-
tween dehydration and rehydration by crosses. Connected points indicate data from the
same subject. The heavy line shows the model estimate, and the shaded area is the 95%
confidence region.
dehydrated state, unlike Duning et al. This may have resulted from the
fact that the baseline scan was performed several days or more before
the thirsting period commenced, so that hydration state was not con-
trolled (subjects may have exhibited various states of dehydration al-
ready, limiting the brain volume change that could be measured from
overnight thirsting), while the dehydration to rehydration epoch was
well-controlled by design. In our study, we applied phantom-based cor-
rection for geometric distortion, which is a known instrumental source
of volumetric variations (Caramanos et al., 2010). Subjects were scanned
at similar times; 13 of 14 baseline scans were acquired in the morning,
and all dehydration scans were acquired in the morning.

Our previous experiments have shown that the scan–rescan abso-
lute error of this TBMmethodwas less than 0.2%while that of pT2mea-
surementwas about 0.3% (Derakhshan et al., 2010). The volume change
of 0.36% during dehydration–rehydration interval is well above the
scan–rescan reproducibility error. These numbers are also in line with
our finding of a conditional R2 = 0.65, which indicates that more than
half of the variance can be explained by pT2 given the dehydrationor re-
hydration status. Assuming that there is no brain atrophy in healthy
young subjects within a short time, the rest of the variance is likely
the measurement error.

Our study has important implications for studies of brain atrophy,
especially in MS clinical trials where so-called pseudoatrophy (acceler-
ated decrease in brain volume on initiation of anti-inflammatory thera-
py) may be larger than the estimated treatment effect (Miller et al.,
2007). The pT2 methodology can be used to distinguish whether a
brain volume change may be due to reversible water-related fluctua-
tions. Our finding shows that altered hydration status will affect both
brain volume and pT2, and we hypothesize that tissue loss or atrophy
will affect brain volume but not pT2. If reversible brain-water fluctua-
tion accounts for the pseudoatrophy effect in MS clinical trials, brain at-
rophy outcomes should be measured after a delay, as in the study by
Sormani et al. (2014). Frequent MRI scans can help to characterize the
temporal pattern of brain volume change (Fisher et al., 2007). One
could also include pT2 in the statistical model of brain volume change
as a covariate to reduce the effect of water-related fluctuations. On the
other hand, accelerated atrophy could be associated with tissue loss.
For example, we have previously shown that accelerated brain atrophy
after immune ablation and autologous hematopoietic stem cell trans-
plantation for aggressiveMS (Chen et al., 2006) is associatedwith accel-
erated brain atrophy soon after immunoablation (median of −3.2% in
2.4 months) without significant change in pT2, presumably reflecting
either neurotoxicity or a change in the volume of inflammatory cells
within the brain.While our pT2 technique cannot distinguish the differ-
ent water compartments such as extracellular fluid, intracellular fluid
and vascular fluid, it does allow us to quantify changes in bulk water,
aiding the interpretation of changes in brain volume observed in clinical
studies.

In conclusion, the measurement of pT2 can serve as a marker of
changes in bulk brain water content and thus can help further investi-
gate to what extent pseudoatrophy in multiple sclerosis may be related
to shifts in brain fluid content.
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