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The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result
from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on
persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular
mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie
behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding
and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.
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1. INTRODUCTION

The entorhinal cortex plays an important role in memory
function. In the rat, entorhinal cortex lesions impair perfor-
mance in both spatial memory tasks [1] as well as in odor
memory tasks [2]. In monkeys, memory function in delayed
match to sample tasks is impaired by lesions of entorhinal
cortex [3] and adjacent parahippocampal structures [4].
This article describes cellular and circuit mechanisms in
the entorhinal cortex that could underlie its role in spatial
and episodic memory functions. Computational modeling
links data across multiple levels of function, including:
(a) properties of single cell physiology, including persistent
spiking and membrane potential oscillations, (b) properties
of unit recording, including grid cells, place cells, and head
direction cells, and (c) the role of entorhinal cortex in spatial
path integration and episodic memory function. This article
will review physiological data and modeling across these
different levels.

2. PHYSIOLOGICAL DATA

Recordings from neurons in slice preparations of entorhinal
cortex demonstrate important cellular properties includ-

ing (i) persistent spiking and (ii) membrane potential
oscillations. These cellular properties could contribute to
properties described in unit recordings from entorhinal
cortex in awake, behaving rats.

2.1. Persistent spiking

In slices, pyramidal neurons in different layers of entorhinal
cortex demonstrate the capacity to display persistent spiking
activity after a depolarizing current injection or a period of
repetitive synaptic input [5–8]. Pyramidal neurons in layer
II of medial entorhinal cortex show persistent spiking that
tends to turn on and off over periods of many seconds [5].
This cyclical persistent spiking is shown in Figure 1(a). As
described below, this could underlie the spatial periodicity
of grid cells. Pyramidal neurons in deep layers of entorhinal
cortex can maintain spiking at different graded frequencies
for many minutes [8] as shown in Figure 2(a). The persistent
spiking appears to due to muscarinic or metabotropic glu-
tamate activation of a calcium-sensitive nonspecific cation
current [7, 9, 10]. This graded persistent firing could allow
these neurons to integrate synaptic input over extended
periods. Persistent firing has also been shown in layer III of
lateral entorhinal cortex [6].
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2.2. Membrane potential oscillations

Entorhinal layer II stellate cells show prominent subthresh-
old membrane potential oscillations when depolarized near
firing threshold [11, 12]. These are small oscillations of a
few millivolts in amplitude that can influence the timing
of action potentials [13] and can contribute to network
oscillations [14, 15]. The frequency of membrane potential
oscillations differs systematically along the dorsal to ventral
axis of the medial entorhinal cortex [16]. A model presented
below discusses how the membrane potential oscillation
properties could underlie differences in grid cell firing
properties along the dorsal to ventral axis [16–19]. The
oscillations appear to be due to a hyperpolarization activated
cation current or h-current [20], that differs in time constant
along the dorsal to ventral axis [21]. Depolarizing input
increases the frequency of these oscillations such that the
phase of the oscillation integrates the depolarizing input over
time. Membrane potential oscillations do not usually appear
in layer II or layer III pyramidal cells [12], but are observed
in layer V pyramidal cells, where they may be caused by M-
current [22]. Membrane potential oscillations do not appear
in neurons of the lateral entorhinal cortex [23].

2.3. Unit recording data

Recordings of neural activity in awake behaving rats provide
important clues to the functional role of entorhinal cortex.
In particular, many cells in medial entorhinal cortex fire
as “grid cells.” A single grid cell responds as a rat forages
in a hexagonal array of different locations in an open-field
environment [24, 25]. Examples of the pattern of firing in
modeled grid cells are shown in Figures 1 and 2. Grid cells
differ in spatial periodicity along the dorsal to ventral axis of
medial entorhinal cortex, with larger spacing between larger
fields in more ventral regions [24, 25].

Grid cells appear in all layers of entorhinal cortex, but
in layers V and VI of entorhinal cortex the grid cells often
only respond when the rat is facing in a particular direction
[25]. This resembles head direction cells in areas such as
the postsubiculum (dorsal presubiculum), which respond
at all locations in the environment but only when the rat
faces a particular direction [26–30]. The conjunctive grid-
by-direction cells resemble the theta-modulated place-by-
direction cells observed in the post- and parasubiculum,
which respond only when the rat faces a preferred direction
while occupying a single location [31].

3. PATH INTEGRATION

The cellular mechanisms described above may contribute to
the function of path integration. Path integration involves an
animal using its self-motion cues to maintain an accurate
representation of the angle and distance from its start
position, even during performance of a complex trajectory
through the environment [32–35]. Many species demon-
strate the behavioral capacity to remember the distance as
well as the angle of return to the starting location (here
represented in Cartesian coordinates by a two component
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Figure 1: (a) Example of persistent firing in layer II pyramidal cell
showing alternating cycles of spiking and nonspiking in data from
Klink and Alonso [5]. (b) Simulation of grid cell firing dependent
upon cyclical persistent spiking gated by random movement in
a two-meter square environment. Spiking shown as black dots
on trajectory in gray. (c) Simulation from same model using rat
trajectory from experimental data in an 85 cm square environment.
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Figure 2: (a) Example of graded persistent firing in a layer V
pyramidal cell from Egorov et al. [8]. (b) Simulation of grid cell
firing based on persistent firing in cells from deep layers of medial
entorhinal cortex. The spiking activity shown as black dots arises
from convergent input from three neurons with the same baseline
persistent firing frequency, with phase of input neurons influenced
by input from different speed modulated head direction cells during
movement (trajectory shown in gray). (c) Simulation of grid cell
firing based on membrane potential oscillations in dorsal layer II
stellate cells in medial entorhinal cortex.
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Figure 3: Coding of location by phase. (a) Actual trajectory run by the rat is shown in gray. If phase is reset at start location, the inverse
transform of phase at any position yields a return vector with angle and distance leading back to start (shown with black dashed line). (b) Plot
of membrane potential oscillation phase ϕ in a single dendrite of a simulated grid cell, showing linear change in phase with one dimension
of location (dendrite receives input from head direction cell with angle preference zero). (c) Phase of another dendrite receiving input
from head direction with angle preference 120. (d) Performing the inverse transform of oscillation phases at each point in time effectively
reconstructs the full trajectory.

return vector). As shown here, persistent firing provides a
single neuron mechanism to integrate the distance and angle
of trajectory segments to compute the overall distance and
angle from start location to an end or goal location. Here,
the vector from start to goal is called the goal vector (and
the negative of the goal vector is called the return vector).
An example of a return vector is shown as a dashed line in
Figure 3(a).

In general, the location of an agent can be determined
by computing the integral of the velocity vector. In Cartesian

coordinates, the velocity vector is
⇀
v= [dx/dt,dy/dt]. Inte-

gration of the velocity vector over a period of time T after

starting at location
⇀
x 0 yields the location vector

⇀
x= [x, y] at

time T:

⇀
x (T) = ⇀

x 0 +
∫ T

0

⇀
v (t)dt. (1)

For example, if the velocity of an animal is 10 cm/sec in
the x direction and 5 cm/sec in the y direction, integration

over 5 seconds yields a final location of [x,y] = [50 cm,
25 cm] relative to the start location. Note that this integral

corresponds to the goal vector
⇀
g (T) =⇀x (T) − ⇀

x 0, which is
the negative of the return vector.

4. INTEGRATION BY PERSISTENT FIRING
CAN CODE LOCATION

Integration of the goal vector or return vector could be
provided by the mechanism of graded persistent firing in
deep layer entorhinal neurons [7, 8]. These neurons could
integrate a velocity vector coded by neurons responsive to
the head direction of the rat and to the speed of the rat.
Head direction cells have been shown in deep entorhinal
cortex [25] and in the postsubiculum, which provides direct
input to the entorhinal cortex [26, 27]. Head direction cells
respond selectively when the rat is heading in a specific
allocentric direction. Some neurons show sensitivity to speed
(translational motion) in the postsubiculum [27] as well as
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in the hippocampus [36] and in the medial mammillary
nucleus which receives output from the postsubiculum
and medial entorhinal cortex [37]. Here, the activity of a
population of head direction cells modulated by speed is
represented by multiplying the velocity vector of the rat
with a head direction matrix H . The head direction matrix
consists of rows with unit vectors representing the preference
angles of individual speed modulated head direction cells,
that transforms the velocity vector into a head direction

vector
⇀
h= H

⇀
v . For example, a matrix representing two head

direction cells with preference angles θ1 and θ2 has two rows:
H = [ cos θ1 sin θ1

cos θ2 sin θ2

]
. For a cell with a preference angle of 0, the

activity of the head direction cell would be cos(0)∗dx/dt +
sin(0)dy/dt = dx/dt. This framework has the advantage
that it allows for a simple inverse transform turning head
direction space back into Cartesian coordinates. The inverse
[38] of the matrix H is

H−1 =
[

sin θ2 − sin θ1

−cosθ2 cosθ1

]
/
(
cosθ1 sin θ2 − sin θ1cos θ2

)
.

(2)

Note that this framework assumes that the response
of head direction cells is like a cosine function, whereas
head direction cells usually only show positive activity and
have narrower, triangular response functions with no activity
outside this range. Head direction input corresponding
to a cosine function of actual input could be provided
by summed input converging from a population of head
direction cells with different magnitudes of tuning for values
at different angles from the preferred direction. Note also
that this representation combines the properties of different
neurons responding to translational velocity or to head
direction in the postsubiculum [27] and other regions [36,
37]. If head direction is not computed based on velocity,
then it could be integrated from angular velocity as a distinct
element of the state vector or could be computed based on
angle to a different reference point.

Using this mathematical representation of head direction
input, the firing rate of a set of graded persistent firing cells
could integrate the input from a set of head direction cells to
yield a firing rate as follows:

⇀
a (T) = β

∫ T

t=0
H(

⇀
v (t)dt) = βH(

⇀
x (T)− ⇀

x (0)), (3)

where vector
⇀
a (T) represents the firing rate of a population

of graded persistent firing cells at time T. For example,
imagine two cells a1 and a2 with capacity for graded
persistent spiking that receive input from two head direction
cells with preference angles of 0 degrees and 60 degrees.
Imagine that the rat moves at 10 cm/sec in the x direction
for 4 seconds, and the scaling factor β is 0.25 Hz/cm. Moving
in the x direction is equivalent to moving at 0 degrees, which
would result in the head direction cells having the activity
h1 = 1 and h2 = 0.5. The computation in (3) would then
result in the frequency of the graded persistent firing cells
as follows: a = β

[ cos θ1 sin θ1
cos θ2 sin θ2

][ x
y
] = 0.25

[
1 0

0.5 0.87

][
40
0

] = [ 10
5

]
.

Thus, the graded persistent firing cells would increase

their activity to a1 = 10 Hz and a2 = 5 Hz. Mathematically,
the inverse transform of this firing rate vector computes

the location vector
⇀
x (T) = H−1 ⇀

a (T)/β in Cartesian
coordinates (see Figure 3(a)). However, the difference in
neural activity could guide behavior without use of the
inverse transform. This could involve forming associations
between the start location and this pattern of graded firing,
and then forming associations between this pattern of
graded firing and the associated head direction signal. At the
start location, the pattern of graded firing could be activated,
and this could retrieve the associated head direction signal.
The animal could change directions until its actual head
direction matched this retrieved head direction. This could
give the animal the correct angle to the goal.

The same mechanism computes both the goal vector
and its negative, the return vector. The return vector allows
a rat to return to the starting location from any arbitrary
location in the environment. In contrast, the goal vector can
be used to store the distance and angle to important locations
in the environment. For example, if a rat is started in one
location in an open field, and wanders until it finds food
in another location, the integrated activity vector at that
point is the goal vector—it provides a simple description
of the angle and distance from the start to the goal. This
goal vector could be associated with all elements of the
preceding path by backward replay of place cells coding
the full pathway [39, 40]. This could allow storage of an
association between place cells active at the start location and
the subsequent goal vector. Retrieval of the goal vector at
the start location could then allow the rat to go directly to
the location of food reward. If the spatial locations leading
to a goal are associated with the goal vector at each goal
location, and then integration is reset, a sequential series of
trajectories to goals could be stored separately. The rat could
then use this activity to sequentially retrieve pathways to
different rewarded locations in the environment, as in some
behavioral tasks [41]. The resetting of integration activity
could underlie the different pattern of place cell firing shown
with this type of directed task compared to open field activity.
Thus, the resetting of integration could explain the shift in
firing location for place cells between scavenging in an open
field and following sequential trajectories between reward
locations [41] as well as the shift in firing location for grid
cells between open field scavenging and running on a long
hairpin track [42] in which the view of each new segment
could cause phase reset.

Graded persistent spiking could also hold initial head
direction θHD(0) and update this by integrating input from
neurons coding angular head velocity θ̇AHV(t) in areas such
as the postsubiculum [27].

5. PERSISTENT SPIKING COULD UNDERLIE
GRID CELL FIRING

Because the neurons that show persistent firing can integrate
the synaptic input from speed modulated head direction
cells, and thereby can code spatial location, these persistent
firing neurons could potentially be the grid cells recorded in
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awake behaving animals [24, 43, 44]. This section describes
two potential mechanisms for persistent firing neurons to
contribute to the activity of grid cells. The first mechanism
involves the cyclical persistent firing shown in layer II (see
Figure 1(a)). The second mechanism involves the graded
persistent firing shown in layer V (see Figure 2(a)).

In a general manner, the experimental data on firing of
single grid cells can be described by

g(t) =
∏
θ

cos(ωH
⇀
x (t) + ϕ), (4)

where g(t) is the probability of firing of the grid cell
over time. The product sign Π represents multiplication of
the output from each row (each head direction θ) of the
head direction transform matrix H described above. The
description of the experimental data here directly uses the
vector representation of location over time x(t). Orientation
of the grid is determined by the head directions θ in
H, the spatial phase is determined by ϕ, and the spacing
between fields is determined by the angular frequency ω.
This equation resembles other representations of grid cells
[18, 45] but simplifies the representation by using the head
direction transform matrix.

5.1. Cyclical persistent firing

The pattern of periodic spatial firing of grid cells could arise
from the pattern of cyclical persistent firing as shown in
Figure 1(a). The tendency for persistent firing to turn on
and off could contribute to grid cell firing if the oscillation
could be gated by integration of input from different
populations of head direction cells with different preferred
angles. Simulations shown in Figures 1(b) and 1(c) show
that the following equations can generate grid cell firing
properties:

dh+

dt
= −ω2V(t)(H

⇀
v

+
(t))3/2,

dh−

dt
= ω2V(t)(H

⇀
v
−

(t))3/2,

dV

dt
= h+(H

⇀
v

+
(t))1/2 − h−(H

⇀
v
−

(t))1/2,

g(t) =
[∏

V(t)
]

,

(5)

where h+ represents changes in current due to positive
components of the head direction input (note that this uses
cosine modulated head direction input), and h− represents
current due to negative components of the cosine modulated
head direction input. Note that the equations separately
use positive and negative elements of the speed modulated
head direction matrix H transforming the rat movement
velocity v(t). The parameter ω determines the time scaling
of input effects on activity levels. In the equations, V(t)
represents the voltage change in individual compartments
each of which receive input from the positive and negative
components of one head direction input. As noted above,
the cosine modulated head direction input could be provided
by summing over head direction cells with different angles

of preference. The negative influence of head direction in
the equation could be due to feedforward inhibition or
inhibitory GABAergic projections from the postsubiculum
to the medial entorhinal cortex. The function g(t) represents
the firing of grid cells over time. The square brackets
[] indicate that spiking occurs whenever V(t) crosses a
threshold.

This pattern of activity could be obtained if neurons
respond to different head direction inputs with cyclical
persistent firing (Klink and Alonso, 1997), as shown in
Figure 1(a). In this case, when going one direction, head
direction input will cause phasic changes in firing in that
direction, possibly due to build up first of calcium and
then of calcium inactivation. When going the exact opposite
direction, head direction input would have to activate the
reverse processes, possibly reducing calcium inactivation and
then reducing calcium.

Examples of grid field plots obtained with this model are
shown in Figures 1(b) and 1(c). The grid fields are more
stable in the trajectory data from the Moser laboratory than
in randomly created trajectories (see Figure 1(b)) or in a
trajectory obtained in our own laboratory (see Figure 1(c)).
This indicates that the statistics of rat movement can
determine appearance of the grid in this new model, and
this could underlie variability in detection of grid cell firing
properties depending on the trajectory of rat movement in
the behavioral foraging task.

5.2. Graded persistent firing

As an alternative to cyclical persistent firing, graded persis-
tent firing as shown in Figure 2(a) could provide the basis for
grid cell firing. In this framework, different graded persistent
firing cells start out with the same baseline frequency of
spiking and provide convergent input to a grid cell that fires
whenever the inputs are in synchrony. Speed modulated head
direction input to different graded persistent firing cells will
transiently alter the frequency and thereby the phase of firing.
Therefore, if the rat moves, it shifts the frequency of a graded
cell out of phase with the other cells and thereby reduces or
stops the grid cell firing until the phase is shifted enough to
come into phase with the other neurons. A grid cell simulated
with this model is shown in Figure 2(b). This mechanism
uses graded persistent firing in a manner similar to the
mechanism of membrane potential oscillations described in
the following section.

Both of these models will yield a pattern of firing similar
to grid cells as long as the head direction cells providing
input have preference angles at multiples of 60 degrees.
For path integration, the head direction angles used for
integration might be determined at the start location. For
example, a single pyramidal cell showing persistent firing
might receive input from three head direction cells that code
the heading angle at the start, as well as the angle of eye
direction. Rats have binocular overlap of about 60 degrees
[46]. If the total visual field of one eye is 180 degrees and
the center of view is at 90 degrees, then the center of view
for each eye should be offset about 60 degrees from head
direction. Therefore, a rat may choose angles of 0, −60, and
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60 degrees for path integration. These angles have the 60-
degree difference necessary for the head direction input to
cause hexagonal arrays in the grid cell model. The rat can
use these initial angles of view as reference angles, but if it
turns far enough from the initial heading (e.g., 180 degrees
from the initial head direction), then it may need to select
additional reference angles at 60-degree intervals from the
previous reference angles.

Some grid cells respond selectively only for certain head
direction [25]. These head direction sensitive grid cells
might result from the input only being suprathreshold for
a population of head direction cells responding near one
preferred angle, with input being subthreshold from other
populations of head direction cells coding other preferred
angles (e.g., at 60 or 120 degrees differences).

6. INTEGRATION BY MEMBRANE POTENTIAL
OSCILLATION PHASE CAN CODE LOCATION

As an alternative mechanism for path integration, the phase
of membrane potential oscillations in medial entorhinal stel-
late cells can also be used to integrate speed modulated head
direction input. This mechanism was proposed in a model
of grid cells developed by Burgess et al. [18] and O’Keefe
and Burgess [47]. This mechanism uses the physiological
fact that depolarizing inputs to stellate cells cause a change
in frequency of membrane potential oscillations [16]. This
could change oscillation phase based on an integral of the
depolarizing input.

6.1. Model of grid cells using membrane
potential oscillations

This computational model shows how activity of a single
grid cell could arise from membrane potential oscillations
within that cell modulated by depolarizing input from head
direction cells:

g(t) =
[∏(

cosωt + cos
(
ωt + ωβH

∫ t

0
H(

⇀
v (τ)dτ + x0)

))]
,

(6)

where g(t) is the firing in time and space of a single mod-
eled grid cell. ω represents the baseline angular frequency
of membrane potential oscillations (2∗π∗ f ) in different
portions of the neuron. βH is the experimentally determined
scaling factor relating membrane potential oscillations to
grid cell spacing. The input from head direction cells is

determined by the matrix H and the velocity vector
⇀
v . The

inner product of each row of H with the velocity vector
⇀
v

represents input to one dendrite from one head direction
cell modulated by the speed of the rat. This input alters
the frequency of dendritic membrane potential oscillations
and thereby shifts the phase of the dendritic oscillations in
proportion to the integral of the velocity vector over time.
Both the starting location of the rat and the spatial phase of
the grid cell are combined in the initial location vector x0.
This initial location vector is also transformed by the matrix
H. The square brackets [] represent a Heaviside step function

generating a spiking output for each time point when the
product crosses a threshold (set at 1.8).

This model generates grid cell firing fields with spacing
between fields dependent upon the frequency of membrane
potential oscillations [16–18]. A grid cell created with this
model is shown in Figure 2(c). The model generated the
prediction that the systematic change in spacing of grid cell
firing fields along the dorsal to ventral axis of entorhinal cor-
tex would depend upon a systematic difference in frequency
of membrane potential oscillations in entorhinal neurons.
This prediction was tested and supported by whole cell
patch recordings from entorhinal layer II stellate cells [16].
Based on experimental data alone, it appears that membrane
potential oscillation frequency f is scaled to grid cell spacing
G by a constant factor f∗G = H [16, 17].

As noted above, membrane potential oscillations appear
in specific medial entorhinal populations such as layer II
stellate cells and layer V pyramidal cells, but not in other
cells such as layer II pyramidal cells, or neurons in medial
entorhinal layer III, or in the lateral entorhinal cortex. Based
on these data, the generation of grid cells responses based on
membrane potential oscillations would only occur in layer II
stellate cells and layer V pyramidal cells, and would appear
in other neurons due to network interactions or due to the
persistent spiking mechanisms described above.

6.2. Grid cell activity codes location

In the model, the depolarizing input from head direction
cells increases the frequency of membrane potential oscil-
lations in proportion to the velocity vector. This shift in
frequency alters the phase of oscillations in proportion to
the integral of the velocity vector transformed by head

direction:
∫ T
t=0H(

⇀
v (t)dt + x0) = H

⇀
x (T). In addition, the

interference pattern increases and decreases in proportion
to the difference in oscillation frequency of the soma and
dendrite, so that the vector of angular phases of interference

is ϕ(t) = ωβH
⇀
x (t) (see Figures 3(b) and 3(c)) and the

equation for grid cell activity can be written for location as

g(t) = [
∏

cos(ωβHH
⇀
x (t))].

The location can be extracted from grid cell phase by
using the inverse of the head direction transform matrix

as follows:
⇀
x (t) = H−1

⇀
ϕ (t)/ωβ. Figure 3(d) shows the

trajectory obtained from this inverse transform of phase.

6.3. Theta phase precession

In addition to replicating the spatial periodicity of grid cell
firing fields, the model based on interference of membrane
potential oscillations also replicates experimental data show-
ing systematic changes in phase of grid cell firing relative
to network theta rhythm oscillations [48], a phenomenon
known as theta phase precession. The phenomenon of theta
phase precession was initially shown for place cell firing in
the hippocampal formation [49, 50] and was proposed to
arise from the interaction of network theta rhythm oscilla-
tions with cellular theta rhythm oscillations [49, 51, 52]. As
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Figure 4: Simulation of theta phase precession in grid cell model based on membrane potential oscillations. (a) Theta phase plotted on
vertical axis as a simulated rat runs through a grid cell firing field in west to east and east to west directions. (b) Theta phase during run from
south to north. (c) Spike times (filled circles) of summed oscillations in a neuron relative to oscillation in the soma of that neuron (negative
of network theta oscillation).

an alternative model, precession was proposed to arise from
the readout of sequences of place cell activity [53–55].

The oscillatory interference model of grid cells [18,
47] extended the models of hippocampal phase precession
and can account for grid cell phase precession [48]. In
the oscillatory interference model, the interference has two
components that appear physiologically: (1) as described
above, the size of grid fields is determined by the envelope
that has a frequency depending on the difference of the two
angular frequencies ωd − ωs, and (2) the pattern of phase
precession depends on a higher frequency component that
corresponds to the mean of the two frequencies (ωs + ωd)/2.
The phase of this second-high frequency component of the

summed oscillation is ϕsum = ωt + ωβ
∫ t

0 H
⇀
v (τ)dτ/2.

The spiking will occur near the peak phase of this summed
oscillation which is equal to some multiple n of the full cycle:
ϕsum = n2π.

The spiking caused by the phase of the summed oscilla-
tions can then be plotted relative to the network theta rhythm
by plotting the phase of the soma at the time of each spike.
This can be obtained analytically from the above equation if
we consider the case of the movement at a constant speed
continuously in the preferred direction of one head direction
cell. In this case, the integral of head direction for that
cell is simply the integral of speed, which is equal to the

location x = ∫ t
0H

⇀
v (τ)dτ. Note also that the phase of the

soma oscillations is the product of soma frequency and time:

ϕsoma = 2π f t. Therefore, the equation for the phase of the
summed oscillation can be reduced to ϕsum = ϕsoma +ωBx/2.

Plotting of theta phase precession essentially involves
plotting the timing of spikes (which occur when ϕsum = n2π)
relative to the phase of the network oscillations (which here
correspond to the phase of the soma because the soma is
being driven by network oscillations with fixed frequency ω).
Thus, the vertical axis of a plot of theta phase precession
shows the phase of the soma oscillation at the time of each
spike: ϕsoma = n2π − π f Bx plotted relative to location x
on the horizontal axis. Figure 4 shows the plotting of spikes
in the simulation during runs on a linear track through the
firing field of the neuron. Note that the phase precession
in this model resembles the phase precession found in
experimental data [50] but only covers about 180 degrees of
the network theta oscillation cycle.

Note that the phase precession for a single direction gives
a partial readout of the phase code of location, but when con-
sidering the phase in two-dimensional space, it confounds
the phase of the two or more dendrites, so it is radially
symmetric and dependent upon the direction of trajectory
through the field (see Figure 5(a)). Thus, the phase preces-
sion code is less accurate for use in path integration, in con-
trast to the overall mean firing rate that would be observed in
a grid cell due to persistent firing with a very large firing field,
which could code location for distances smaller than one half
the spacing between two grid fields (e.g., for 80 cm spacing,
distances less than 40 cm could be coded).
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6.4. Mechanism for path integration

As noted above, path integration involves an animal using its
self-motion cues to maintain an accurate representation of
angle and distance from start position. In the grid cell model,
the update of oscillation phase by speed-modulated head
direction integrates the velocity vector, thereby integrating
the distance from the starting position in specific directions
determined by H. If oscillation phases are reset to zero at
the starting location, the return vector r giving distance and
direction back to the starting location can be obtained by
applying the inverse of the head direction matrix to the

dendritic phase vector at any position
⇀
r= −H−1

⇀
ϕ /ωβ.

Figure 3(a) shows that after resetting phase at the starting
location, applying the inverse head direction transform to the
dendritic phase vector, and taking the negative of this vector
gives the direction and angle directly back to the starting
location (dotted line).

6.5. Interaction of path integration and visual stimuli

Path integration based on idiothetic cues alone builds up
substantial error [34] that is usually corrected by comparison
with sensory cues such as visual stimuli [35]. Grid cells show
dependence upon visual stimuli in the environment. They
maintain the same properties when returned to a familiar
room [24], and they change their scale during a period
of time after manipulations of environment size [44]. This
influence of visual stimuli could result from the fact that the
angle to visual stimuli has the same properties as phase of
grid cell oscillations. Figure 5 shows how the angle of a single
distal visual stimulus changes as a rat moves in a manner that
is consistent with the change in phase of individual dendrites
of a single modeled grid cell.

Alternately, the grid cell could be influenced by the angle
and distance to visual stimuli, and neural mechanisms could
update the expected angle and distance to visual stimuli
in a manner similar to the mechanism for updating the
angle and distance from start location (return vector). This
requires updating the angles of the initially selected stimuli
(that might be determined by eye direction) according to
the direction and velocity of movement. This will update
the expected absolute angle of visual stimuli. The further
computation of expected relative angle (the actual visual
input) requires combining absolute angle with current head
direction. The process of updating head direction could
depend upon input from cells coding angular velocity of
movement. These have been shown in the postsubiculum
[27, 56] as well as in structures including the anterior
dorsal thalamic nucleus [29]. Grid cells appear to be more
consistent when there are clear barriers on the edge of the
open field, suggesting that rats might use the vertical angle of
a boundary to judge distance.

The basic grid cell model assumes speed modulation of
head direction cells, but most head direction cells show stable
persistent firing even when the rat is motionless. In contrast,
place cells show more speed modulation. In keeping with the
physiological data that shows stable persistent firing for head
direction cells and speed dependent firing for place cells, it
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Figure 5: Phase relative to location in the environment. (a)
Spiking phase due to precession (with refractory period). Note
that phase depends upon location, but is circularly symmetric. (b)
Dendritic phase of oscillations contains more complete continuous
representation of location. (c) Plot of the angle of a single distal
visual stimulus as a rat moves around in an environment, indicating
similarity of allocentric stimulus angle to integrated dendritic phase
in a grid cell.

might be appropriate to represent state as the static head
direction cell activity combined with visual stimulus angle,
and to use the speed-dependent activity of place cells as the
action of the rat.
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(a) EC II grid
cell phase

(b) Place cells
(c) Postsubiculum

HD cells

WPG WHP

Figure 6: Model of episodic encoding and retrieval of trajectories.
Top: Schematic representation of connectivity between grid cells,
place cells, and head direction (HD) cells. Bottom: example of
trajectory retrieval activity in each region. Trajectory experienced
during encoding is shown in gray. (a) The location coded by
the oscillation phase of entorhinal grid cell membrane potential
is plotted as a dashed line that follows the actual trajectory in
gray. Grid cell phase is put through the inverse head direction
transformation to obtain coded location. Phase shifts are driven by
retrieved head direction until next place cell is activated, then phase
moves in new direction dependent on next active head direction
cell. (b) Sequentially activated place cell representations are shown
as open circles. (c) Each place cell activates a corresponding head
direction representation, with direction shown as a short, straight,
black line. This drives the next period of update of the grid cell
phase.

6.6. Grid cell phase represents continuum of
locations for reinforcement learning

The grid cells can be used as a representation of state
for goal directed behavior. Many reinforcement learning
theory models have used discrete representations of state
for goal directed behavior. However, this causes difficulties
for representing movement in continuous space. The phase
of oscillations in the grid cell models is a continuous
representation of space that can be updated in a continuous
manner by actions held by persistent spiking. As noted
previously [16, 57], this could allow grid cells to provide an
effective mechanism for representations of state and action
in continuous space and time.

7. MODEL OF EPISODIC MEMORY

The interaction of head direction cells and grid cells
described here provides a potential mechanism for episodic
memory involving the storage of trajectories through space
and time [57]. As shown in Figure 6, this model uses a
functional loop that encodes and retrieves trajectories via
three stages: (1) head direction cells h(t) update grid cells,
(2) grid cells g(t) update place cells, and (3) place cells
p(t) activate associated head direction activity [57]. This
model is consistent with the anatomical connectivity (see
Figure 6). The head direction cells could update grid cells via
projections from the postsubiculum (dorsal presubiculum)
to the medial entorhinal cortex [58–60], causing updating
of persistent firing as described above, or influencing the

phase of membrane potential oscillations [16–18]. Grid cells
can update place cells via the extensive projections from
entorhinal cortex layer II to dentate gyrus and CA3 and
from layer III to region CA1 [45, 61]. The connectivity
from grid cells to place cells could be formed by different
computational mechanisms [45, 62, 63]. Place cells can
become associated with head direction activity via direct
projections from region CA1 to the postsubiculum [58], or
via indirect projections from region CA1 to the subiculum
[61, 64], and projections from the dorsal and distal regions of
the subiculum to the postsubiculum and medial entorhinal
cortex [65], both of which contain head direction cells.

During initial encoding of a trajectory in the model,
the head direction cell activity vector would be set by the
actual head direction of the rat during exploration, and
associations would be encoded between place cell activity
and head direction activity. These associations would be
stored in the form of a synaptic connectivity matrix WHP

with strengthened connections between active place cells p(t)
and the head direction cell activity vector h(t) as follows:

WHP =
∑
p

⇀
h p(t)

⇀
p (t)T . (7)

In this equation, head direction vectors associated with
individual place cell locations are identified with the place
cell index p. During retrieval, the head direction activity
depends upon synaptic input from place cell representations
as follows: h(t) =WHPp(t).

This model has the capacity for performing episodic
encoding and retrieval of trajectories in simulations [57],
including trajectories based on experimental data or trajecto-
ries created by an algorithm replicating foraging movements
of a rat in an open field [17]. During encoding, a series of
place cells p(t) is created associated with particular locations
xp = x(t). Each place cell is also associated with input
from the grid cell population activity g(t) and with the head
direction vector hp = h(t) that occurred during the initial
movement from that location. For retrieval, the simulation is
cued with the grid cell phase vector ϕ(t0) and head direction
vector h(t0) present at the start location. The head direction
vector updates the grid cell phase vector ϕd(t), which alters
the activity of grid cells. The grid cell firing drives place cells p
associated with subsequent locations on the trajectory. These
mechanisms are summarized in Figure 6.

The activation of each new place cell activates a new
head direction vector hp associated with that place cell. This
new head direction vector then drives the further update of
dendritic phases of grid cells. This maintenance of the head
direction vector might require graded persistent spiking [8]
of head direction cells in deep layers of entorhinal cortex.
Essentially, the retrieval of the place cell activity representing
the state drives the retrieval of the new head direction
vector representing the action from that state. This action
is then used for a period of time to update the grid cell
state representation until a new place cell representation is
activated.

Because retrieval of the trajectory depends on updating
of phase by head direction cells, this allows retrieval of a
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trajectory at a time course similar to the initial encoding.
This can allow effective simulation of the slow time course
of place cell replay observed in previous experimental data
collected during REM sleep [66]. The spread of activity from
place cells to cells coding head direction could contribute
to patterns of firing in the postsubiculum that appear as
cells responding dependent on both place and head direction
[31]. These cells might code the action value for retrieval
of a trajectory from a particular location, firing only when
actual head direction matches the head direction previously
associated with specific place cell activity. The strong theta
phase specificity of these cells could be due to separate
dynamics for encoding and retrieval within each cycle of
theta rhythm [67]. These cells might selectively fire during
the retrieval phase.

7.1. Enhancement by arc length cells

The retrieval mechanism mediated by place cells can be
enhanced by inclusion of cells that fire dependent upon the
arc length of the trajectory [57], or by the time interval alone
[17]. These types of responses help prevent a breakdown
in trajectory retrieval caused by overlaps in the trajectory.
The associations between place cells and head direction cells
cannot disambiguate between two segments of a trajectory
passing through the same location with different head
directions. However, coding of arc length or time since the
start of the trajectory can disambiguate these overlapping
locations. Oscillatory interference between neurons directly
modulated by speed but not head direction can activate arc
length cells coding arc length from the start of a trajectory,
or from the last time that oscillations are reset along the
trajectory. Simulations based on this coding of arc length
can account for many features of unit recording data in
behavioral tasks. Persistent spiking in layer III of entorhinal
cortex could provide a means for driving the coding of arc
length (or time) along a trajectory. Persistent spiking in layer
III with specific frequencies [6] could activate neurons in
region CA1 with different phases relative to arc length (or
time) on a trajectory. During retrieval, arc length cells from
one portion of a trajectory can activate associated speed
modulated cells to trigger the next arc length cell along
a trajectory. This retrieval process can be accelerated or
decelerated via modulation of the frequency of entorhinal
oscillations during persistent firing.

7.2. Predictions of arc length model

Since the output of arc length cells is essentially dependent
upon distance, a simple manipulation of running distance
should directly influence spatial specificity of arc length cells.
For example, in a rat running continuously clockwise around
a circular track with a circumference of two meters, an arc
length cell may match the periodicity of the track and display
a stable place field somewhere on the track. Here, the cell
is firing at an arc length of two meters. If we expand the
track by a small amount to say, a circumference of 2.1 meters,
the arc length cell would be expected to continue to fire
at two-meter intervals, thus the field will translocate in the

counterclockwise direction (or backwards in relation to the
rat) by 10 centimeters for each lap.

The reset version of the arc length coding model
assumes that oscillations reset at a specified location or
during a key event such as food reward. This is supported
experimentally given that the theta oscillation does reduce
when an animal stops or consumes food. By using the
same manipulation on the circular track as before, a similar
but quite different prediction surfaces. Here, the field will
shift counterclockwise abruptly, but will remain at that
location for subsequent laps. This location stability is a direct
consequence of stability of the food reward location since
now the oscillatory interference is anchored to the food
reward, and not from the previous location that the cell had
discharged. Interestingly, the distance a field moves will be
linearly proportional to the distance the original field was
from the food reward location. Thus, a field will move 10
centimeters only if the field was originally located at the end
of a lap (at the feeder), and a field will shift 5 centimeters if
the original field was located at the midpoint of the lap.

The reset model prediction of the expanded circular track
leads us to a further prediction. Since the discharge of an arc
length cell in the reset model is dependent on and anchored
to the reward location, a manipulation of the location of
food reward will cause a relative movement of the location
of the arc length’s discharge. For example, the movement of
the food reward by 10 centimeters in the clockwise directly
will cause an arc length cell to correspondingly shift its field
10 centimeters in the clockwise direction.

8. CONCLUSIONS

The cellular physiological phenomena described in this paper
provide mechanisms important for behavioral functions
including path integration and the episodic encoding and
retrieval of trajectories. Detailed computational models
demonstrate the potential behavioral role of cellular mech-
anisms of persistent spiking and membrane potential oscilla-
tion, demonstrate how these could underlie unit recording
data such as grid cell firing, and generate predictions for
future experimental studies.
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