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Over 30 years of research has demonstrated that 3,5-diiodo-L-thyronine (3,5-T2), an

endogenous metabolite of thyroid hormones, exhibits interesting metabolic activities.

In rodent models, exogenously administered 3,5-T2 rapidly increases resting metabolic

rate and elicits short-term beneficial hypolipidemic effects; however, very few studies

have evaluated the effects of endogenous and exogenous T2 in humans. Further

analyses on larger cohorts are needed to determine whether 3,5-T2 is a potent additional

modulator of energy metabolism. In addition, while several lines of evidence suggest

that 3,5-T2 mainly acts through Thyroid hormone receptors (THRs)- independent ways,

with mitochondria as a likely cellular target, THRs-mediated actions have also been

described. The detailed cellular andmolecular mechanisms throughwhich 3,5-T2 elicits a

multiplicity of actions remains unknown. Here, we provide an overview of the most recent

literature on 3,5-T2 bioactivity with a particular focus on short-term and long-term effects,

describing data obtained through in vivo and in vitro approaches in both mammalian and

non-mammalian species.
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INTRODUCTION

Thyroid hormones [3,5,3′,5′-tetraiodo-L-thyronine (T4) and 3,5,3′-triiodothyronine (T3), THs]
play critical roles in differentiation, growth, and metabolism (1, 2). THs act via the nuclear thyroid
hormone receptors (THRs), through differentmodes of action which, accordingly with Flamant (3),
can be classified as: THR-dependent signaling of TH with direct binding to DNA; THR-dependent
signaling of TH with indirect binding to DNA and THR-dependent signaling of TH without DNA
binding; however, also THR-independent TH signaling is involved in TH mode of action (4). The
different modes of action may be coupled, and several reports have recently shown that several TH
metabolites act accordingly (5–8).

3, 5-diiodo-L-thyronine (3,5-T2) has emerged as a biologically active iodothyronine (9–11).
Mitochondria and bioenergetic mechanisms seem to be major targets of 3,5-T2. Here, we review
the most recent findings on the peripheral actions of 3,5-T2 and discuss the possible role of 3,5-T2
in the modulation of thyroid-related effects in organisms ranging from non-mammals to humans.
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THE RAPID EFFECTS OF 3,5-T2 ON

ENERGY METABOLISM

At 1 pM concentration, 3,5-T2 stimulates oxygen consumption
more rapidly than T3 in perfused hypothyroid rat liver
(12). Acute administration of T3 and 3,5-T2 to rat enhances
mitochondrial activities (13, 14), with 3,5-T2 producing more
rapid events (within 1 h) than T3 (after 24 h) and cycloheximide-
independent (15).

The rapid increase in mitochondrial oxygen consumption by
3,5-T2 is reflected at the whole animal level (16). Injecting a
single dose of 3,5-T2 (25 µg/100 g BW) to rats simultaneously
administered with propylthiouracil (P) and iopanoic acid (I)
(referred to as P+I, which results in severe hypothyroidism and
inhibition of all the deiodinase activities) results in an increased
resting metabolic rate (RMR) which is more rapid (within 6 h)
than that induced by T3 (15 µg/100 g BW, effect seen within
25 h) (17). The effects following T3 injection in this study were
like those reported by Tata (18), who injected the same dose.
Simultaneous injection of Actinomycin D blocked the effects of
T3 but not of 3,5-T2 (17), thus excluding the involvement of
transcription in the effects of 3,5-T2. Indeed, it has been shown
that the affinity of 3,5-T2 for human THRβ is 60-fold lower
compared to T3 (19). Moreover, when injected into euthyroid
rats, the effect of T3 on RMR is evident 25 h earlier than in
P+I animals and is independent of Actinomycin D, suggesting
that the effect of T3 injection could be due, at least in part,
to the in vivo formation of 3,5-T2 from T3 as supported by
its inhibition by P+I treatment and by the increased 3,5-T2
serum and liver levels following T3 injection into euthyroid rats
(20).

The addition of nanomolar concentrations of 3,5-T2
significantly increases cytochrome oxidase (COX) activity (21)
as demonstrated by specific binding of radioactive 3,5-T2 to
subunit Va, and by complete reversal of its effect on respiration
by a monoclonal antibody to this subunit (22, 23). The addition
of 3,5-T2 to a liposome-reconstituted COX complex results in
partial uncoupling which could explain its in vivo thermogenic
effect (24). Binding sites detected by photoaffinity labeling
in the rat liver cytosol (25) and by radioligand binding and
displacement experiments in rat liver mitochondria (22) and
cell membrane [shown by the in vitro activation of the Na+/H+

exchanger (26)] support the involvement of these organelles in
the rapid action of 3,5-T2 (10, 26–29). The 3,5-T2 mitochondrial
binding was maximal at pH 7.0 and the values for the apparent
association constant and the binding capacity were 0.5 ± 0.04
× 108 M−1 and 0.4 ± 0.04 pmol/mg mitochondrial protein
respectively (21–23, 30). A top-down elasticity analysis shows
that 3,5-T2 (within 1 h from injection into euthyroid rats)
stimulates hepatic activity of both cytochrome c-oxidizing and
-reducing components of the respiratory chain (31). 3,5-T2 also
rapidly stimulates skeletal muscle mitochondrial activity and
uncoupling (32, 33). 3,5-T2 rapidly increases mitochondrial
Ca2+ uptake through which the iodothyronine could increase
mitochondrial activity and respiration (34). More recently, the
rapid effects of 3,5-T2 on intracellular Ca2+ and NO through
plasma membrane and mitochondrial pathways in pituitary GH3

cells (35) further support mitochondria as a principal target of
3,5-T2 effects.

Moreover, 3,5-T2 has direct and rapid effects (within 1 h)
on mitochondrial F(o)F (1)-ATP synthase activity in the liver
of hypothyroid rats (36), increases mitochondrial respiration
rates, increases mitochondrial uncoupling and reduces H2O2

production (37).

THE EFFECTS OF LONG-TERM

ADMINISTRATION OF 3,5-T2 ON ENERGY

METABOLISM

Chronic administration of 3,5-T2 into P+I cold-exposed rats
increases the energy capacity of the heart, skeletal muscle, liver,
and brown adipose tissue (BAT), improving their survival in the
cold (38).

Chronic administration of 3,5-T2 into P+I rats induces
significant stimulation of lipid β-oxidation (39), and upregulates
rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding
protein/nuclear respiratory factor-2, thus providing new insights
into the 3,5-T2 role on bioenergetic mechanisms (40).

When injected into P+I rat, 3,5-T2 increases skeletal muscle
lipid handling through FAT/CD36 and mitochondrial oxidation
(41), activates thermogenesis, with UCP1 likely acting as
the molecular determinant of this effect, and increases the
sympathetic innervation and vascularization of BAT (42).

THE HYPOLIPIDEMIC EFFECTS OF 3,5-T2

The effects of 3,5-T2 on energy metabolism has prompted
research in vitro and in vivo on whether and how 3,5-T2
administration could improve adiposity and associated disorders.

IN VITRO STUDIES

Primary rat hepatocytes exposed to the classical oleate/palmitate
(2:1 ratio) mixture have been employed as in vitro model
of “fatty hepatocytes” to assess the effects of 3,5-T2 and T3
(doses of 10−7 or 10−5M for 24 h) on lipid metabolism (43).
3,5-T2 and T3 reduce the number and average sizes of lipid
droplets, thus making stored triglycerides (TGs) more accessible
to enzymes acting on the catabolism/secretion of free fatty
acids. More recently, 3,5-T2 has been shown to reduce lipid
excess in fatty hepatocytes by recruiting triglyceride lipase
on the lipid droplet surface (44). 3,5-T2 also reduces lipid
content and triggers phosphorylation of Akt in an insulin
receptor-independent manner when incubated with NAFLD-
like rat primary hepatocytes (45). Furthermore, 3,5-T2 enhances
glucose-induced insulin secretion in both rat β-cells and human
islets (46).

When exposed to an oleate/palmitate (2:1 ratio) mixture and
treated with 3,5-T2 or T3 (doses of 10−7 or 10−5M for 24 h),
FAO rat hepatoma cell lines, defective for functional THRs, show
reduced TGs content, reduced number and size of lipid droplets
and stimulated mitochondrial uncoupling (47), supporting a
THR-independent TH signaling mechanisms which involve both
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3,5-T2 and T3 through stimulation of mitochondrial uncoupled
respiratory activity (47).

In HepG2 cells, 3,5-T2 blocks the proteolytic cleavage of
SREBP-1 without affecting its expression, thus reducing fatty
acid synthase expression in a way dependent on the concurrent
activation of MAPK, ERK, and p38 and Akt and PKC-δ
pathways (48).

IN VIVO STUDIES

Hypolipidemic effects have been studied in vivo by using several
animal models (49). Simultaneous 3,5-T2 (25 µg/100 g BW)
administration for 4 weeks to rats feeding a high-fat diet (HFD)
prevents fatty liver and increases in body weight by increasing
fatty acid oxidation rate and mitochondrial uncoupling to burn
fat (50). Reductions in serum TGs and cholesterol levels (50), as
well as improved insulin sensitivity (51), are also associated with
3,5-T2 administration. 3,5-T2 elicits the deacetylation of hepatic
peroxisome proliferator-activated receptor gamma coactivator 1-
alpha and sterol regulatory element binding protein-1c (SREBP-
1c) through direct induction of silent mating type information
regulation 2 homolog 1 (SIRT1) activity, resulting in increased
fatty acid oxidation and decreased lipogenesis, respectively
(51). Though both 3,5-T2 and T3 decrease the expression
of hepatic SREBP-1c, 3,5-T2 (administered at a daily dose
of 25 µg/100 g BW to high-fat diet- fed rats for 1 week),
in contrast to T3 (administered at a 10-fold lower dose),
does not directly induce the expression of the TRE-containing
SREBP-1c lipogenic target genes [acetyl-CoA carboxylase and
fatty acid synthase (52). This, at least in part, explains the
effectiveness of 3,5-T2 in preventing hepatic fat accumulation
and insulin resistance. Iannucci (53) showed that both 3,5-
T2 and T3 exert lipolytic effects in the liver mediated by
autophagy and increased fatty acid oxidation although the
metabolic profiles suggested that there may be some differences
in the mechanism(s) and magnitude of their metabolic effects.
3,5-T2 ameliorates muscle glucose uptake by increasing the
response to insulin of Akt/PKB phosphorylation and induces
structural and biochemical shifts toward glycolytic myofibers
(54), thus enhancing muscle glycolytic capacity producing
metabolic benefits (55–57), reminiscent of those induced by
resistance exercise (58). Mitochondria adapt to the glycolytic
phenotype of gastrocnemius muscle both in terms of metabolism
and of dynamic with 3,5-T2 being able in reverting the HDF-
associated expression pattern of proinflammatory factors (59).
At the doses of 25 µg 3,5-T2/100 g BW for 4 weeks no signs of
suppression of the hypothalamus-pituitary-thyroid (HPT) axis
and cardiac hypertrophy are detected.

In streptozotocin-treated rats, 3,5-T2 (at the dose of 25
µg/100 g BW for 12 weeks) protects against renal damage in
diabetic nephropathy through SIRT1-dependent deacetylation
and inactivation of subunit p65 of NF-kB, thus inhibiting the
inflammatory process related to this disease (60). Ball in rats
(61), reported that 3,5-T2 is more effective in inducing hepatic
malic enzyme gene expression than suppressing circulating TSH,
indicating that tissue- and gene-selective effects of 3,5-T2 are not

only related to differences in binding of this thyromimetic ligand
to various TR isoforms but also to distinct local cellular ligand
availability.

3,5-T2 administration to HFD-obese Wistar rats was also
shown to reduce pre-existing hepatic fat accumulation through
increased mitochondrial fatty acid oxidation coupled with less
efficient utilization of substrates and reduced oxidative stress
(62). A proteomic study showed that 3,5-T2 counteracts several
HFD-induced changes in the protein profile, mostly in the
mitochondria (63). Moreover, blue native-PAGE (BN-PAGE)/in-
gel activity analysis revealed that 3,5-T2 treatment results in
stimulation (vs. HFD) of respiratory complexes, thus explaining,
at least in part, the anti-steatosis effect of 3,5-T2. Administration
of 3,5-T2 [subcutaneously injected at doses of 25, 50, or 75
µg/100 g BW for 90 days] to chow-fed rats aged 3–6 months
significantly reduces body mass and improves glucose tolerance,
while heart rate and mass remain unchanged, TSH levels remain
normal in rats receiving 25 µg of 3,5-T2 /100 g BW but are
slightly lowered in rats that received 50 and 75 µg of 3,5-T2
/100 g BW (64). In apparent contrast, 3,5-T2 administration
to Sprague Dawley rats fed a safflower-oil based HFD fails to
improve NAFLD or insulin sensitivity (65). One reason for this
discrepancy may be that an unsaturated fat-predominant plant
oil-based diet is used (65) that could mask the hypolipidemic
effects of 3,5-T2 with saturated fat-predominant animal fat-
based diets (50, 51, 54, 62). Furthermore, Sprague Dawley and
Wistar rats display differences in both lipoprotein metabolism
and endocrine function (66).

In diet-induced obese mice, daily administration of 3,5-T2
(250 µg/100g BW for 14 or 28 days i.p.) shows beneficial effects
on adiposity, serum leptin, and energy expenditure (67). The
lower dose of 3,5-T2 suppress βTSH transcripts, thus suggesting
a risk of interference of 3,5-T2 on the HPT axis as well as on
the heart (67). Lean and diet-induced obese male mice treated
for 4 weeks with a 3,5-T2 dose of 2.5µg/g BW, show an altered
expression of genes encoding hepatic xenobiotic-metabolizing
enzymes involved in catabolism and inactivation of xenobiotics
and TH as well as in hepatic steroid and lipid metabolism (68).
Hence, the administration of this high dose of 3,5-T2 might exert
adverse hepatic effects.

3,5-T2 (1.25 mg/100 g BW via daily gavage) reduces
circulating total and LDL cholesterol as well as the liver level
of apoB and circulating levels of both apoB48 and apoB100,
but, at the same time, reduces plasma T4 levels in Western type
diet fed low-density lipoprotein receptor knockout mice (69).
Both 3,5-T2 and T3 administration significantly reduce nuclear
HNF4α protein content, while 3,5-T2, but not T3, decreases the
expression levels of the HNF4α transcriptional coactivator PGC-
1α. Lower PPARα levels are found only following T3 treatment
while both T3 and 3,5-T2 lower liver X receptor α nuclear content
(70). 3,5-T2 (1.25 mg/100 g BW) decreases body weight and
blood glucose levels through reductions in GLUT2 levels and
changes in hepatic glucose output in obese mice showing to
produce signs of thyrotoxicosis (71). Taken together, these studies
suggest the possibility that the “thyrotoxic effects” of 3,5-T2 may
be dependent upon possible differences between experiments
in rats vs. mice, normal weight vs. obese, or euthyroid vs.
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hypothyroid animals, age, diet and temperature of exposure. It
is important to note, however, that 3,5-T2 did not suppress TSH
as strongly as T3 and that the cardiac readouts may represent
an adaptation to increased metabolic rate, perhaps implying
potential for separation of desirable effects from thyrotoxic
effects.

At the current stage, no validated technique is available to
accurately measure intracellular levels of 3,5-T2. Resolving this
issue will bring to light to what extent 3,5-T2 is taken up in
the tissues and how this relates to the effects of the exogenous
administrations described above.

THE PHYSIOLOGICAL AND

PATHOPHYSIOLOGICAL ROLES OF 3,5-T2

IN HUMANS

A case report (72) involving two participants revealed that
administration of 3,5-T2 to humans (1–5 µg/kg BW) rapidly
(after 4–6 h) increased RMR. Chronic 3,5-T2 administration
(28 days, approximately 5 µg/kg BW) increases RMR by
approximately 15% and decreases body weight by approximately
4 kg in both participants. Principal clinical parameters show no
significant changes and no side effects (i.e., cardiac abnormalities)
are observed.

As mentioned above, reliable quantification methods to
measure endogenous levels of 3,5-T2 have been lacking (73–
75) and the data reported so far need independent analytical
confirmation.

Recently, a mouse monoclonal antibody based on a new
competitive chemiluminescence immunoassay was developed
(76) to investigate the origin and action of 3,5-T2 in humans
under several conditions. Data by Pietzner (77) in euthyroid
human serum point toward a physiological link between 3,5-T2
(with a concentration of 0.22–0.33 nM) and glucose metabolism
as well as TH homeostasis. Pietzner (78) screened the urine
metabolome for associations with serum 3,5-T2 concentrations
in healthy individuals, resulting in amedian serum concentration
of 0.24 nM. The detected metabolites are related to glucose and
lipid metabolism, as well as the response to oxidative stress
or drug metabolism, and are in concordance with previously
published rat liver proteome analyses (63). Dietrich (79) reported
elevated concentrations of 3,5-T2 (0.59 ± 0.07 nM vs. 0.39
± 0.04) in cardiac Nonthyroidal Illness Syndrome (NTIS)
suggesting that 3,5-T2 elevations in NTIS could explain why
patients with low-T3 syndrome substituted with T4/T3 do
not benefit from exogenous TH administration. Langouche
(80), in critically ill patients reported a 30% higher serum
3,5-T2 concentration than healthy volunteers which are not
independently correlated with TH.

Although recent studies in human gave some indications
on the physiological and pathophysiological roles of 3,5-T2
in humans, further analyses on larger samples of euthyroid
individuals are needed to obtain a more comprehensive picture
of the role of 3,5-T2 in humans.

THE EFFECTS OF 3,5-T2 IN

NON-MAMMALIAN SPECIES

The effects of 3,5-T2 on metabolic efficiency is conserved across
species. 3,5-T2 rapidly stimulates pyruvate-fuelled mitochondrial
respiration of liver and muscle from goldfish Carassius auratus
(81). After 12 or 24 h, 3,5-T2 rapidly decreases type 2
deiodinase (D2) activity in the liver of killifish, whilst not
affecting type 1 deiodinase (D1) activity; moreover, after a 24 h
exposure, 3,5-T2 (like T4 and T3) inhibits both D1 and D2
transcription (82). 3,5-T2 also regulates thermal acclimation
in Danio rerio (83) and growth in tilapia (84). 3,5-T2 binds
to and activates a specific long TRβ1 isoform that contains
a nine-aminoacid insert at the beginning of the ligand-
binding domain, whereas T3 can interact also with a different
TRβ1 isoform that lacks this insert (19). Hernández-Puga
reported that 3,5-T2 represses THRβ expression and impairs
its up-regulation by cortisol possibly through a transrepression
mechanism (85). Very recently, Olvera (86) reported that in
tilapia cerebellum 3,5-T2 specifically regulates gene sets involved
in cell signaling and transcriptional pathways, while T3 regulated
pathways related to cell signaling, immune system, and lipid
metabolism.

CONCLUSIONS

Thirty years of research using mammalian and non-mammalian
in vivo and in vitro models has generated substantial data on the
biological effects of 3,5-T2. However, a debate is open concerning
the side-effects of 3,5-T2, an issue that needs to be investigated by
performing more comprehensive studies in humans and animal
models to fully evaluate any potential risks.
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