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Abstract: Cement grouting material is one of the most important materials in civil construction at
present, for seepage prevention, rapid repair, and reinforcement. To achieve the ever-increasing
functional requirements of civil infrastructures, cement grouting materials must have the specific
performance of high fluidization, early strength, and low shrinkage. In recent years, nanomaterials
have been widely used to improve the engineering performance of cement grouting materials.
However, the mechanisms of nanomaterials in grouting materials are not clear. Hence, a high-
fluidization, early strength cement grouting material, enhanced by nano-SiO2, is developed via the
orthogonal experimental method in this study. The mechanisms of nano-SiO2 on the microstructure
and hydration products of the HCGA, in the case of different curing ages and nano-SiO2 contents,
are analyzed through scanning electron microscopy tests, X-ray diffraction tests, differential scanning
calorimetry tests, and Fourier transform infrared spectroscopy tests.

Keywords: cement grouting material; formula; hydration mechanisms; high-fluidization; early
strength; nano-SiO2

1. Introduction

In civil engineering, grouting is one of the most efficient and common methods for
seepage prevention, rapid repair, and reinforcement [1,2]. Owing to the advantage in
mature technology and satisfactory cost performance, cement-based materials are widely
used in grouting [3]. To achieve the ever-increasing functional requirements of civil
infrastructures, cement grouting materials must have the following specific characteristics:
(a) high fluidization (to ensure that the grouting materials can fill into the defects of the
engineering structure easily and fully); (b) early strength (to shorten the engineering period);
(c) low shrinkage (to prevent shrinkage cracks at an early age) [4]. In this case, various
innovative materials have been used to attempt to prepare modified cement-based grouting
materials. Liu et al. [4], Li et al. [5], Li et al. [6], Wu et al. [7], and Zhang et al. [8] adopted
aluminate cement, magnesium phosphate cement, sulphoaluminate cement, potassium
magnesium phosphate cement, and ultrafine sulphoaluminate cement to improve the early
strength and fluidization of cement grouting materials, respectively, which could obtain
a significant improvement effect. However, the source of these new types of cements is
limited, which might not meet the requirement of engineering applications. Zhou et al. [9],
Celik et al. [10], Zhang et al. [11], and Guo et al. [12] adopted water glass, bottom ash,
microfine fly ash, and ultrafine cement to modify the fluidization of grouting materials,
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respectively. However, the three materials found it difficult to improve the strength
significantly, especially the early strength. Lu et al. [13], Shi et al. [14], and Zhang et al. [15]
adopted sandy pebble soil, glass fiber, and graphene fiber to enhance the early strength
of grouting materials, respectively. However, these additives brought less effect on the
fluidization. In this case, it is necessary to seek alternative grouting materials to balance
high fluidization, early strength, and the material source.

In recent years, nanomaterials have been widely used to improve the performance of
cement-based materials because of their large specific surface area, high surface free energy,
and good dispersion ability [16]. Feng et al. [17] proved the significance of nano-SiO2 on
the early age hydration of cement mortars. Qiu et al. [18] revealed the modification effects
of nano-CaCO3 on the engineering performance of cement grouts. Jiao et al. [19] proved
the feasibility of nano-Fe3O4 used in cement paste. Zhang et al. [20] found that nano-silica
could reduce the setting time and increase the early strength of cement composites with a
high volume of fly ash. Akono [21] investigated the relationship between nano-TiO2 and
CSH gel in Portland cement paste. Liu et al. [22], Lang et al. [23], Sargam et al. [24], Ikotun
et al. [25], and Ren et al. [26] analyzed the effects of different nanoparticles (e.g., nano-SiO2,
nano-Al2O3, nano-CaCO3, nano-MgO, nano-TiO2, grapheme oxide, and carbon nanotube)
on the strength characteristics and engineering performance of different cement-based
materials. They considered that the nanomaterials had a similar function for cement-based
materials, and nano-SiO2 could provide the most significant modification effect. Nano-
SiO2 can easily bond with the hydration products of cement mortar to generate calcium
silicate hydrate gel because of the special network structure of nano-SiO2 [27,28]. Sonebi
et al. [29] analyzed the effect of the content of nano-SiO2 on the rheology, fresh properties,
and strength of cement-based grouting materials via the response surface methodology.
Unfortunately, the effect of nano-SiO2 on the hydration mechanisms is neglected in their
study. Zhou et al. [30] investigated the engineering properties and microscopic morphology
of cement-based grouting materials modified by nano-SiO2. However, the recommended
grout in their study is not an early strength material, which is different from the grouting
material proposed in our study. Zhang et al. [31] revealed the effects of micro-fine fly ash,
colloidal nano-SiO2, and superplasticizer on the rheological and mechanical properties of
cement-based grouting materials. Although the hydration mechanisms are discussed in
their study, the referred mechanisms are not supported by any microscopic tests, and the
mechanisms at an early age (e.g., 1 day, 3 days) are neglected. It is reasonable to speculate
that nano-SiO2 can also modify the engineering performance of cement grouting materials.
Although the modification effects of nano-SiO2 have been discussed in previous studies,
the mechanisms of nano-SiO2 on the characteristics of the early strength of cement grouting
materials are neglected and not clear. Hence, in this study, a type of high-fluidization, early
strength cement grouting material is proposed. The effects of nano-SiO2 content and curing
age on engineering properties and hydration mechanisms are investigated via macroscopic
tests and microscopic tests (i.e., SEM, XRD, DSC, and FTIR), especially for an early age
(1 day and 3 days), which is the objective and innovation of this study.

In response to the above issues, a high-fluidization, early strength cement grouting
material, enhanced by nano-SiO2, is developed via the orthogonal experimental method in
this study. Moreover, the mechanisms of nano-SiO2 on the microstructure and hydration
products, in the case of different curing ages, are analyzed through scanning electron
microscopy (SEM) tests, X-ray diffraction (XRD) tests, differential scanning calorimetry
(DSC) tests, and Fourier transform infrared spectroscopy (FTIR) tests.

2. Materials and Methods
2.1. Materials

The cement grouting material developed in this paper involves the following five
types of raw materials: Shanlv P. O. 42.5R cement, polycarboxylate water-reducing agent,
accelerating agent, UEA expansion agent, and nano-SiO2, as illustrated in Figures 1 and 2.
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The technical characteristics of the five types of raw materials are shown in Tables 1–5,
respectively.
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Table 1. Technical characteristics of cement.

Stability
Setting Time (Min) Flexural Strength (MPa) Compressive Strength (MPa)

Initial Setting Permanent Setting 3d 28d 3d 28d

Qualification 170 210 5.7 8.9 30 53.6

Table 2. Technical characteristics of water-reducing agent.

Water
Reduction (%)

Density
(g/cm3)

Chloride Ion
Content (%)

Alkali Content
(%)

Bleeding Rate
(%)

Compressive Strength Ratio (%)

7d 28d

21.2 1.031 0.21 3.5 30 150 135

Table 3. Technical characteristics of accelerating agent.

Setting Time (Min)
Fineness (%) Water Content (%)

28d Compressive
Strength Ratio (%)

1d Compressive
Strength (MPa)Initial Setting Permanent Setting

2–3 8–10 11.6 1.7 75 9
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Table 4. Technical characteristics of expansion agent.

Chemical Composition Fineness

Magnesium
Oxide (%)

Water Content
(%)

Total Alkali
Content (%) Chloride Ion (%)

Specific Surface
Area (m2·kg−1)

0.08 mm Material
Retained (%)

1.25 mm Material
Retained (%)

2.661 0.80 0.15 0.01 333 7.0 0.31

Table 5. Technical characteristics of nano-SiO2.

Particle Size (nm) Specific Surface Area (m2/g) Bulk Density (g/cm3) Purity (%) Appearance

15 600 0.21 99.8 White grainy

2.2. Methods

In this study, the orthogonal experimental method is used to determine the bench-
mark formulas of the cement grouting material, owing to the advantage in conveniently
analyzing the interrelations among different test factors and scientifically reducing the
experimental workload [32,33]. Subsequently, the effects of nano-SiO2 content on the
engineering performance of the benchmark formulas are analyzed to determine the final
high-fluidization, early strength cement grouting material. The fluidity (flowing time),
flexural strength (1 day, 3 days, and 7 days), compressive strength (1 day, 3 days, and
7 days), and dry-shrinkage rate (7 days and 28 days) are adopted to evaluate the engineer-
ing performance of the cement grouting materials. All the experiments are implemented
in accordance with the Chinese specification of “Test Methods of Cement and Concrete for
Highway Engineering” [34].

Moreover, the SEM (FEI Quanta 250, Anton Paar GmbH, Graz, Austria) test, XRD
(AXS, Bruker Corporation, Billerica, USA) test, DSC (SDT 650, TA Instruments, New Castle,
USA) test, and FTIR (Nicolet 5700, Thermo Fisher Scientific - CN, Shanghai, China) test
are adopted to reveal the mechanisms of the proposed high-fluidization, early strength
cement grouting material via microstructure and hydration products. The SEM test is
used for the detailed analysis of the micro-morphology of the hydration product. The
XRD test is used to investigate the types of hydration products with a scanning speed
of 10 ◦/min and a scanning angle of 10–65◦ (angle measurement error < 0.01◦ and angle
repeatability < 0.0001◦). The DSC test is used to analyze the content of hydration products
via the weight change and heat change, ranging from 0 ◦C to 600 ◦C, with a heating
rate of 15 ◦C/min (nitrogen atmosphere). The FTIR test is used to investigate functional
group characteristics in a spectral range of 400–4000 cm−1 in transmission mode using the
potassium bromide pressed-disk technique.

The samples used in the SEM tests, XRD tests, DSC tests, and FTIR tests are prepared
as follows:

• According to the standard method [34], the beam samples with a size of 4 cm × 4 cm
× 16 cm are prepared by curing the target age (1 day, 3 days, or 7 days).

• The sheet samples with a size of 2 cm × 2 cm × 1 cm are prepared by cutting the beam
samples, and are put into absolute ethyl alcohol for seven days (the absolute ethyl
alcohol must be replaced everyday).

• The treated sheet samples are prepared to cubic blocks with an approximate size of
1 cm × 1 cm × 1 cm after drying at 40 ◦C for 24 h.

• The SEM samples can be obtained via drying the cubic blocks at 40 ◦C for 48 h.
• The XRD, DSC, and FTIR samples can be obtained via drying the powder-grinded cu-

bic blocks at 40 ◦C for 48 h. It should be noted that the powder must be passed
through 80 µm, 150 µm, and 80 µm square sieves for the XRD, DSC, and FTIR
tests, respectively.
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3. Optimal Formula of High-Fluidization, Early Strength Cement Grouting Materials
3.1. Design of the Orthogonal Experiments

The orthogonal experimental factors and their levels are listed in Table 6. The experi-
mental schemes are presented in Table 7.

Table 6. Experimental factors and experimental levels.

Level Water–Cement
Ratio Expansion Agent (%) Water-Reducing

Agent (%)
Accelerating

Agent (%)

I 0.50 6 1.0 1.5
II 0.53 7 1.2 2.0
III 0.56 8 1.4 2.5
IV 0.60 9 1.6 3.0

Table 7. Experimental schemes.

No. Water–Cement
Ratio

Expansion
Agent (%)

Water-Reducing
Agent (%)

Accelerating
Agent (%)

1 0.50 6 1.0 1.5
2 0.50 7 1.2 2.0
3 0.50 8 1.4 2.5
4 0.50 9 1.6 3.0
5 0.53 8 1.0 2.0
6 0.53 9 1.2 1.5
7 0.53 6 1.4 3.0
8 0.53 7 1.6 2.5
9 0.56 9 1.0 2.5
10 0.56 8 1.2 3.0
11 0.56 7 1.4 1.5
12 0.56 6 1.6 2.0
13 0.60 7 1.0 3.0
14 0.60 6 1.2 2.5
15 0.60 9 1.4 2.0
16 0.60 8 1.6 1.5

3.2. Orthogonal Experiment Analysis

The results of the orthogonal experiments are listed in Table 8.

Table 8. Results of the orthogonal experiments.

No. Flowing Time (s)
Flexural Strength (MPa) Compressive Strength (MPa) Shrinkage Rate (%)

1-Day 3-Day 7-Day 1-Day 3-Day 7-Day 7-Day 28-Day

1 14.07 2.46 9.12 12.99 10.31 28.97 40.01 0.047 0.138
2 14.68 2.61 9.37 11.64 10.88 29.25 38.62 0.038 0.133
3 17.46 2.79 9.73 12.64 12.65 30.14 38.97 0.030 0.127
4 19.98 2.88 10.01 13.73 12.61 30.39 43.87 0.024 0.121
5 12.82 2.72 8.55 10.70 11.13 27.58 34.88 0.035 0.117
6 13.06 2.61 7.79 10.68 9.62 26.23 35.67 0.027 0.111
7 14.67 3.05 8.89 11.62 12.05 28.59 36.02 0.041 0.139
8 14.34 2.81 8.17 11.31 10.11 27.26 37.00 0.030 0.126
9 9.22 3.11 8.07 10.86 11.01 26.19 34.91 0.021 0.101
10 10.84 3.40 8.21 10.01 10.46 26.67 34.39 0.017 0.107
11 11.09 2.76 7.21 9.12 9.29 25.68 31.4 0.022 0.112
12 11.76 2.91 7.28 9.96 9.38 26.01 35.39 0.031 0.119
13 8.78 2.67 6.17 8.24 8.97 21.76 28.76 0.027 0.109
14 9.96 2.31 5.48 7.06 7.29 21.75 28.70 0.026 0.106
15 9.85 2.21 5.25 6.94 6.11 20.69 26.54 0.010 0.096
16 10.46 2.03 5.01 6.54 5.68 20.67 27.4 0.008 0.096
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According to Table 8, the ranges for each experimental factor and the corresponding
average values for each experimental level are calculated to analyze the orthogonal experi-
mental results, as presented in Table 9. The range is equal to the difference of the average
values among different experimental levels for the same experimental factor, as expressed
in Equation (1). The influence of the experimental factor increases as the range increases.
The process of the orthogonal experimental analysis is shown in Figure 3.

RA = TDmax − TDmin (1)

where TDmax and TDmin are the maximum value and minimum value of the target
property index in the case of different experimental levels of a certain experimental
factor, respectively.
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Table 9. Extreme deviation calculation of orthogonal experiment.

Index Water–Cement
Ratio

Water-Reducing
Agent

Accelerating
Agent

Expansion
Agent

Fluidity (Flowing
time) (s)

Average value
level I 16.55 11.22 12.17 12.62
level II 13.72 11.95 12.28 13.09
level III 10.73 13.27 12.57 12.90
level IV 9.76 14.14 13.58 13.03

Range 6.79 2.91 1.40 0.47

1-day flexural
strength (MPa)

Average value
level I 2.69 2.74 2.47 2.68
level II 2.80 2.73 2.61 2.71
level III 3.04 2.70 2.68 2.74
level IV 2.30 2.66 3.00 2.70

Range 0.74 0.09 0.54 0.06

1-day
compressive

strength (MPa)

Average value
level I 11.61 10.36 8.73 9.76
level II 10.73 9.72 9.37 10.17
level III 10.04 10.02 9.86 9.98
level IV 7.01 9.44 11.02 9.83

Range 4.60 0.91 2.30 0.41

3-day flexural
strength (MPa)

Average value
level I 9.56 7.98 7.28 7.69
level II 8.35 7.77 7.61 8.10
level III 7.69 7.77 7.72 7.88
level IV 5.48 7.62 8.32 7.78

Range 4.08 0.36 1.04 0.40

3-day
compressive

strength (MPa)

Average value
level I 29.69 26.13 25.39 26.33
level II 27.41 26.01 25.88 25.99
level III 26.13 26.28 26.10 26.27
level IV 21.22 26.08 26.85 25.88

Range 8.47 0.27 1.47 0.46
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Table 9. Cont.

Index Water–Cement
Ratio

Water-Reducing
Agent

Accelerating
Agent

Expansion
Agent

7-day flexural
strength (MPa)

Average value
level I 12.75 10.70 9.83 10.41
level II 11.08 10.02 9.81 10.61
level III 9.99 10.08 10.25 9.97
level IV 7.20 10.39 10.90 10.55

Range 5.56 0.68 1.09 0.64

7-day
compressive

strength (MPa)

Average value
level I 40.37 34.64 33.62 35.03
level II 35.89 34.40 33.86 35.23
level III 34.02 33.23 34.51 33.91
level IV 27.85 35.92 35.76 35.25

Range 12.51 2.68 2.14 1.34

7-day shrinkage
rate (%)

Average value
level I 0.035 0.033 0.026 0.036
level II 0.033 0.028 0.029 0.030
level III 0.023 0.026 0.027 0.023
level IV 0.018 0.023 0.027 0.021

Range 0.017 0.009 0.003 0.016

28-day shrinkage
rate (%)

Average value
level I 0.130 0.116 0.114 0.126
level II 0.123 0.115 0.116 0.122
level III 0.110 0.119 0.115 0.112
level IV 0.102 0.116 0.119 0.107

Range 0.028 0.004 0.005 0.018

The ranges of different properties are shown in Figure 4.
According to Figures 3 and 4, the key factor (44) and the secondary factor (4) for

different properties are listed in Table 10.

Table 10. The key factor and the secondary factor for different properties.

Property Index Water–Cement
Ratio

Expansion
Agent

Water-Reducing
Agent

Accelerating
Agent

Fluidity (flow time) 44 4 4
1-day flexural strength 44 4

1-day compressive strength 44 4
3-day flexural strength 44

3-day compressive strength 44
7-day flexural strength 44

7-day compressive strength 44
7-day dry-shrinkage ratio 44 44 4
28-day dry-shrinkage ratio 44 4
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According to Table 10, the average values for each experimental level can describe the
influence trends of the key and secondary experimental factors, as shown in Figures 5–9.
The blue and red curves correspond to the left and right ordinates, respectively.
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As shown in Figure 5, the flow time decreases as the water–cement ratio increases,
and the water-reducing agent and accelerating agent decrease. Moreover, when the water–
cement ratio is more than 0.56 and the accelerating agent is less than 2.5%, the above trend
of the flow time gradually begins to flatten. Hence, considering that the fluidity should
range from 9 s to 13 s, according to the Chinese specification “Technical Specification for
Road Semi-Flexible Pavement” [35], the water–cement ratio is suggested to be more than
0.56, the water-reducing agent is suggested to be less than 1.2%, and the accelerating agent
is suggested to be less than 2.5%. As shown in Figure 6, the 1-day compressive strength
linearly increases as the accelerating agent increases and the water–cement ratio decreases.
Moreover, the 1-day flexural strength increases as the accelerating agent increases; first, it
gradually increases and then rapidly decreases as the water–cement ratio increases. When
the water–cement ratio is equal to 0.56, the 1-day flexural strength achieves the highest
value. Hence, the water–cement ratio is suggested to be 0.53–0.56, and the accelerating
agent should be selected as a high level. As shown in Figures 7 and 8, the 3-day and 7-day
strengths decrease as the water–cement ratio increases. Considering that a higher strength
is better, the water–cement ratio should be selected as a low level. As shown in Figure 9,
the 7-day and 28-day dry-shrinkage rates decrease as the water–cement ratio, expansion
agent, and water-reducing agent increase. However, when the water–cement ratio and
expansion agent are more than 0.56 and 8%, respectively, the descending trend gradually
begins to flatten. Hence, the water–cement ratio and expansion agent are suggested to
be more than 0.56 and 8%, respectively. The water-reducing agent should be selected
as a high level. Note that the optimal proportion of water-reducing agent for the dry-
shrinkage rate is contrary to that for the fluidity. However, considering the importance of
the water-reducing agent on the fluidity is more significant than the dry-shrinkage rate.
The suggested content of water-reducing agent is 1.0%–1.2%. In summary, according to
the above analysis of different properties, the effective composition of cement grouting
material can be considered to be the following: water–cement ratio = 0.53–0.56, accelerating
agent = 2.0%–2.5%, water-reducing agent = 1.0%–1.2%, and expansion agent > 8%.

3.3. The High-Fluidization, Early Strength Cement Grouting Enhanced by Nano-SiO2

According to the conclusion of Section 3.2, four benchmark formulas are proposed
for further verification, as given in Table 11. The results of the engineering performance of
the four formulas are presented in Table 12. The performance standard of cement grouting
materials shown in Table 12 comes from the Chinese specification “Technical Specification for
Road Semi-Flexible Pavement” [35].
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Table 11. Test scheme.

No. Water–Cement
Ratio

Water-Reducing
Agent

Accelerating
Agent

Expansion
Agent

Y-1 0.53 1.0% 2.0% 9%
Y-2 0.53 1.0% 2.5% 9%
Y-3 0.56 1.2% 2.0% 8%
Y-4 0.56 1.2% 2.5% 8%

Table 12. Test results.

No. Fluidity (s)
Flexural Strength (MPa) Compressive Strength (MPa) Shrinkage Rate (%)

1-Day 3-Day 7-Day 1-Day 3-Day 7-Day 7-Day 28-Day

Y-1 12.86 2.69 8.35 11.10 10.82 27.11 35.89 0.018 0.121
Y-2 13.11 2.89 8.46 11.21 11.39 27.29 35.91 0.027 0.118
Y-3 10.01 3.13 8.06 10.35 10.29 25.86 34.17 0.019 0.101
Y-4 10.38 3.43 8.18 10.66 10.91 26.02 34.38 0.021 0.108

Requirement 9–13 – – ≥ 2 – – 10–30 – <0.5

As shown in Table 12, the fluidity of Y-3 and Y-4 is significantly better than Y-1 and Y-2.
Moreover, the flexural strength of Y-4 at an early curing age is higher than Y-3, especially
for the 1-day flexural strength. Hence, Y-4 is determined to be the optimal formula.

To further improve the engineering performance, nano-SiO2 (see Figure 9) is mixed
into the proposed benchmark formula (Y-4). The engineering performance of the cement
grouting materials with different contents of nano-SiO2 is presented in Table 13. Six
specimens are successfully tested for each data. The coefficients of variation (COV) are
presented in Table 14. According to the Chinese test specification “Test Methods of Cement
and Concrete for Highway Engineering (JTG E30-2005)” [34], the COVs of the fluidity, strength,
and shrinkage rate must be less than 10%, 10%, and 15%, respectively. It can be found
that the COVs all meet the requirements of the Chinese test specification, showing the
availability of the test results.

COV =
σ

µ
× 100% (2)

where σ is the standard deviation and µ is the average value.

Table 13. Performance of cement mortar with different nano-SiO2 contents.

Nona-SiO2
Content

Fluidity (s)
Flexural Strength (MPa) Compressive Strength (MPa) Shrinkage Rate (%)

1-Day 3-Day 7-Day 1-Day 3-Day 7-Day 7-Day 28-Day
0% 10.38 3.43 8.18 10.66 10.91 26.02 34.38 0.019 0.108
1% 10.61 3.77 8.46 10.68 12.18 27.16 35.01 0.017 0.111
2% 11.29 3.98 8.59 10.76 13.01 28.38 34.69 0.021 0.108
3% 12.89 4.11 8.68 10.61 14.68 29.02 34.61 0.019 0.113

Standard 9–13 – – ≥ 2 – – 10–30 – <0.5

Table 14. COV of performance of cement mortar with different nano-SiO2 contents.

Nona-SiO2
Content

COV (%)

Fluidity
Flexural Strength Compressive Strength Shrinkage Rate

1-Day 3-Day 7-Day 1-Day 3-Day 7-Day 7-Day 28-Day
0% 5.29 8.63 3.31 4.38 7.48 4.88 3.29 7.38 2.31
1% 7.31 3.52 4.87 3.45 4.62 6.20 5.13 10.89 4.98
2% 4.26 5.96 6.66 2.96 9.04 6.34 5.67 5.02 3.70
3% 8.60 7.29 5.88 3.77 5.11 3.07 4.74 9.97 2.11

Requirement <10 <10 <15
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As shown in Table 13, it can be found that the nano-SiO2 has a significant effect on
the 1-day strength, 3-day strength, and fluidity, especially for the 1-day strength. Every 1%
increase in the content of nano-SiO2 translates into, on average, a 6.21%, 10.43%, 1.99%, and
3.71% increase in the 1-day flexural strength, 1-day compressive strength, 3-day flexural
strength, and 3-day compressive strength, respectively, and translates into a 7.61% fall in
the fluidity. This indicates that nano-SiO2 can significantly improve the early age strength
and slightly weaken the fluidity.

Hence, considering the economy, the formula of the high-fluidization, early strength
cement grouting material (HCGA) can be determined as follows: water–cement ratio = 0.56,
water-reducing agent = 1.2%, accelerating agent = 2.5%, expansion agent = 8%, and nano-
SiO2 = 1%.

In addition, it should be noted that, although the chemical nature of nano-SiO2 is
stable, a possible hazard is breathing in dust because the fine nano-SiO2 particles are easy
to float in the air. Hence, the handlers must wear masks during construction.

4. Hydration Mechanisms of HCGA

The effects of curing age (1-day, 3-day, and 7-day) and nano-SiO2 content (0%, 1%,
2%, and 3%) on the microstructure and hydration products of HCGA are analyzed in
this section.

4.1. Microstructure of HCGA
4.1.1. The Curing Age of 1-Day

The microstructures of the HCGAs with different nano-SiO2 contents, at the curing
age of 1 day, are shown in Figure 10.
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Figure 10. Microstructure of HCGA with different contents of nano-SiO2 at 1 d curing age.
(a) ×20,000, 0%; (b) ×20,000, 1%; (c) ×20,000, 2%; (d) ×20,000, 3%.

As shown in Figure 10, the following observations can be made.
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The CSH (calcium silicate hydrate) gels and AFt crystals (ettringite) can be observed
in each HCGA, whether the nano-SiO2 is added or not. However, there are some obvious
voids in the microstructure of the HCGA without nano-SiO2. These voids gradually
decrease as the content of nano-SiO2 increases. It can be speculated that the nano-SiO2 is
helpful in improving the hydration of the cement grouting material.

Moreover, the CH(Ca(OH)2) crystals provide an effect to guarantee the stable existence
of cement hydration products. The CH crystals in the HCGA without nano-SiO2 are mainly
generated as layered joints at the interface of cement stone, which cannot be wrapped by
CSH gels, resulting in restriction of the strength formation. As the content of nano-SiO2
increases, the number and size of the layered CH crystals gradually decrease, and the
CSH gels accordingly increase, indicating that nano-SiO2 is beneficial to accelerate the
consumption of CH crystals and the formation of CSH gels. In addition, with the addition
of nano-SiO2, the CSH gel and AFt crystals are gradually connected to each other, and form
an interlaced skeleton structure. The phenomena also explain why the 1-day flexural and
compressive strengths of the HCGA increase as the content of nano-SiO2 increases.

Hence, it can be speculated that the mechanism of nano-SiO2 on the early strength
of the HCGA is to accelerate the generation of CH crystals, to reach saturation at a faster
rate and urge the CHS gels to generate early, while the mechanism is irrelevant to the AFt
crystals. In addition, owing to the accelerated reaction of CH crystals and CHS gels, caused
by nano-SiO2, the number and size of voids can be effectively controlled.

4.1.2. The Curing Age of 3-Day

The microstructures of the HCGA with different nano-SiO2 contents, at the curing age
of 3 days, are shown in Figure 11.
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Figure 11. Microstructure of HCGA with different contents of nano-SiO2 at 3 d curing age.
(a) ×20,000, 0%; (b) ×20,000, 1%; (c) ×20,000, 2%; (d) ×20,000, 3%.
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As shown in Figure 11, compared to the microstructure at the curing age of 1 day,
the number of voids and the amount of layered CH crystals in the HCGA at the curing
age of 3 days significantly decreases in the field of the microscope, and the amount of
CSH gel accordingly increases. This indicates that the hydration degree of the HCGA is
further strengthened. Moreover, as the content of nano-SiO2 increases, it can also be found
that the CHS gels increase and the layered CH crystals decrease, proving that the effect of
nano-SiO2 on early hydration still remains. However, the difference in the microstructures
in the case of different contents of nano-SiO2, at the curing age of 1 day, is less than that at
the curing age of 3 days, showing that the effect of nano-SiO2 gradually grows less as the
curing age increases.

4.1.3. The Curing Age of 7-Day

The microstructure of cement grouting materials with different nano-SiO2 contents at
7 days is shown in Figure 12.
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As shown in Figure 12, the hydration products are closely connected to form a rela-
tively dense and stable microstructure. This shows that the hydration of the HCGA has
tended to be completed at the curing age of 7 days. In addition, the differences in the
microstructure in the case of different contents of nano-SiO2 are not significant, indicating
that the nano-SiO2 has little effect on the hydration of the HCGA at the curing age of
7 days.

In previous studies [15,18], nano-SiO2 can also play a significant role in early strength
at the curing age of 7 days for common cement-based materials. In contrast, the effect
of nano-SiO2 weakened at the curing age of 3 days and disappeared at the curing age of
7 days for the HCGA proposed in this study. It can be speculated that the reaction period
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of nano-SiO2 is not fixed, which is related to the hydration rate. The effect of nano-SiO2 on
the strength will occur ahead, as the hydration rate quickens.

4.2. X-ray Diffraction Analysis

Figure 13 shows the XRD results of the HCGA in the case of different contents of
nano-SiO2 at the curing age of 1 day, 3 days, and 7 days. In Figure 13, C2S and C3S represent
dicalcium silicate and tricalcium silicate, respectively.
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As shown in Figure 13, the constituents of the HCGA in the case of different contents
of nano-SiO2 are similar in the XRD images. At the curing age of 1 day, the intensity of
the diffraction peak of C3S decreases as the content of nano-SiO2 increases, showing that
nano-SiO2 accelerates the consumption of C3S to generate CH crystals and CSH gels, to
realize the early strength. When the diffraction angle is 35◦, the changes in the CH crystals
are similar to when the diffraction angle is 28◦ [36,37], owing to the formation of the CSH
gels, caused by the reaction of nano-SiO2 and CH crystals. This is the reason that the
diffraction peak of CH crystals decreases as the content of nano-SiO2 increases. In addition,
the differences in the derivative peak of C2S in the case of different contents of nano-SiO2
are limited, showing that nano-SiO2 has little effect on the long-term strength of the HCGA.
The above phenomena show that nano-SiO2 mainly takes part in the hydration reaction of
C3S to improve the early strength in the HCGA, while it is irrelevant to the C2S.

Moreover, the diffraction peaks at the curing age of 3 days and 7 days are similar to
those at the curing age of 1 day, indicating that there is no new hydration reaction during
the curing age of 3 days and 7 days. The intensities of the diffraction peaks of C2S and C3S
decrease as the curing age increases. This implies that the hydration of the HCGA is still
ongoing at the curing age of 3 days and 7 days. In addition, the difference in the diffraction
peaks in the case of different contents of nano-SiO2 at the curing age of 7 days shows that
nano-SiO2 has little effect on hydration at the curing age of 7 days.
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4.3. Differential Scanning Calorimetry

The mass loss curve (TG curve, red) and heat flow curve (DSC curve, black) of the
HCGA are shown in Figure 14. In the curves, there are two obvious segments for the
weight loss and enthalpy change. The first thermal decomposition peak and the corre-
sponding weight loss that appeared at lower than 150 ◦C mainly represent the evaporation
of free water [38], abbreviated as I-stage. The second thermal decomposition peak and the
corresponding weight loss that appeared at 350–600 ◦C represent the decomposition of CH
crystals [39], abbreviated as II-stage. Moreover, the enthalpy change and weight loss in the
DSC curves are extracted to further analyze the effects of nano-SiO2 content and curing
age, as shown in Figure 15.
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(l) 7 days, 3% SiO2.
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As shown in Figures 14 and 15, at the curing age of 1 day and 3 days, the weight loss
and enthalpy change in the I-stage decrease by 3.34% and 0.97%, on average, for every 1%
increase in the content of nano-SiO2, respectively, while, in the II-stage, they accordingly
increase by 12.04% and 0.51%. The less free water there is, the more bound water there is,
and the more complete the hydration reaction is. This implies that nano-SiO2 promotes the
hydration reaction of the HCGA at an early curing age. Moreover, the increase in weight
loss in the II-stage indicates the accelerated generation of CH crystals. This shows that
nano-SiO2 is conducive, to accelerate the generation of CH crystals to reach saturation at a
faster rate, verifying the conjecture in Section 4.1.1. In addition, the change in weight loss
and enthalpy change at the curing age of 3 days is, on average, 35.83% and 5.33% less than
that at the curing age of 1 day, respectively, implying that the effect of nano-SiO2 on the
hydration reaction at the curing age of 3 day is lower than that at the curing age of 1 day.
When the curing age is 7 days, the difference in the weight loss and enthalpy change in the
case of different contents of nano-SiO2 is not significant, showing that nano-SiO2 has little
influence at the curing age of 7 days.

In addition, peak-splitting, for both the observed peaks, can be found in some DSC
curves. The DSC curve obtained by the chemical reaction should be a single smooth
peak under ideal test conditions. However, the peak shape may be deformed, resulting
from overlapping reactions in the process of sample preparation and testing, owing to
the unevenness of raw materials, the uncertainty of cement hydration, and the thermal
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decomposition reaction in an inert atmosphere. Moreover, considering the aging of the
apparatus used in this study, the above phenomenon is more significant.

4.4. Fourier Transform Infrared Spectroscopy

The results of the FTIR tests are shown in Figure 16.

Materials 2021, 14, 6144 19 of 22 
 

 

The results of the FTIR tests are shown in Figure 16. 

  
(a) (b) 

  
(c) (d) 

Figure 16. FTIR spectrums. (a) SiO2 = 0%; (b) SiO2 = 1%; (c) SiO2 = 2%; (d) SiO2 = 3%. 

The vibration peak mainly corresponds to the water molecules and Si-O-T (T = Si and 
Al) in CSH gels. At 4000–400 cm−1, the FTIR vibration bands of the HCGA with different 
contents of nano-SiO2 are almost the same. The peak values of tensile vibration and 
flexural vibration of bound water also do not change significantly. This indicates that the 
types of hydration products are the same in the case of different curing ages and nano-
SiO2 contents. The absorption peak at 3643–3645 cm−1 is caused by the –OH stretching 
vibration of Ca(OH)2 [40,41]. It can be found that the wave number slightly increases as 
the content of nano-SiO2 increases, showing that the bond energy of –OH in Ca(OH)2 is 
improved; that is to say that the amount of CH crystals increases as the content of nano-
SiO2 increases. This is consistent with the aforementioned analysis on the hydration 
process. In addition, the absorption peak at 1639–1646 cm−1 is due to the bending vibration 
caused by –OH in water molecules. The absorption peak at 1480–1485 cm−1 is due to the 
CO32− antisymmetric stretching vibration. This implies that the calcium hydroxide in the 
cement grout reacts with the carbon dioxide in the air to form calcium carbonate during 
the preparation of the samples. The range of 400–1400 cm−1 is generally identified as a 
fingerprint area. 

5. Conclusions 
A high-fluidization, early strength cement grouting material, enhanced by nano-SiO2 

(HCGA), is developed via the orthogonal experimental method in this study. Moreover, 
the mechanisms of nano-SiO2 on the microstructure and hydration products, in the case 
of different curing ages and nano-SiO2 contents, are analyzed through SEM tests, XRD 
tests, DSC tests, and FTIR tests. 
• The formula of the HCGA is water–cement ratio = 0.56, water-reducing agent = 1.2%, 

accelerating agent = 2.5%, expansion agent = 8%, and nano-SiO2 = 1%. The flexural 
and compressive strength of the HCGA at the curing age of 1 day is higher than 3.5 
MPa and 12 MPa, respectively, while the fluidity and shrinkage rate is less than 11 s 
and 0.15%, respectively; 

Figure 16. FTIR spectrums. (a) SiO2 = 0%; (b) SiO2 = 1%; (c) SiO2 = 2%; (d) SiO2 = 3%.

The vibration peak mainly corresponds to the water molecules and Si-O-T (T = Si and
Al) in CSH gels. At 4000–400 cm−1, the FTIR vibration bands of the HCGA with different
contents of nano-SiO2 are almost the same. The peak values of tensile vibration and flexural
vibration of bound water also do not change significantly. This indicates that the types
of hydration products are the same in the case of different curing ages and nano-SiO2
contents. The absorption peak at 3643–3645 cm−1 is caused by the –OH stretching vibration
of Ca(OH)2 [40,41]. It can be found that the wave number slightly increases as the content
of nano-SiO2 increases, showing that the bond energy of –OH in Ca(OH)2 is improved; that
is to say that the amount of CH crystals increases as the content of nano-SiO2 increases. This
is consistent with the aforementioned analysis on the hydration process. In addition, the
absorption peak at 1639–1646 cm−1 is due to the bending vibration caused by –OH in water
molecules. The absorption peak at 1480–1485 cm−1 is due to the CO3

2− antisymmetric
stretching vibration. This implies that the calcium hydroxide in the cement grout reacts
with the carbon dioxide in the air to form calcium carbonate during the preparation of the
samples. The range of 400–1400 cm−1 is generally identified as a fingerprint area.

5. Conclusions

A high-fluidization, early strength cement grouting material, enhanced by nano-SiO2
(HCGA), is developed via the orthogonal experimental method in this study. Moreover,
the mechanisms of nano-SiO2 on the microstructure and hydration products, in the case of
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different curing ages and nano-SiO2 contents, are analyzed through SEM tests, XRD tests,
DSC tests, and FTIR tests.

• The formula of the HCGA is water–cement ratio = 0.56, water-reducing agent = 1.2%,
accelerating agent = 2.5%, expansion agent = 8%, and nano-SiO2 = 1%. The flexural
and compressive strength of the HCGA at the curing age of 1 day is higher than
3.5 MPa and 12 MPa, respectively, while the fluidity and shrinkage rate is less than
11 s and 0.15%, respectively;

• Nano-SiO2 can significantly improve the flexural and compressive strength of the
HCGA at an early curing age, while it will slightly weaken the fluidity. The enhance-
ment of nano-SiO2 on the strength becomes weak when the content of nano-SiO2
exceeds 1%. Hence, considering economic costs, it is recommended that the recom-
mended content of nano-SiO2 is 2%. In addition, the effects of nano-SiO2 decrease
as the curing age increases, which has little significance at the curing age of 7 days.
The mechanism of nano-SiO2 on the early strength of the HCGA is to accelerate the
generation of CH crystals, to reach saturation at a faster rate and urge the CHS gels to
generate early, while it is irrelevant to the AFt crystals;

• The types of hydration products of the HCGA are almost the same in the case of
different curing ages and nano-SiO2 contents. Nano-SiO2 mainly takes part in the
hydration reaction of tricalcium silicate, to improve the early strength in the HCGA,
while it is irrelevant to the dicalcium silicate. The reaction period of nano-SiO2 is not
fixed, which is related to the hydration rate. Compared to common cement-based
materials, the effect of nano-SiO2 on the strength will occur ahead, as the hydration
rate quickens in the HCGA (early strength materials).

In addition, thermogravimetric analysis can be used for the quantitive analysis of
hydration products. Owing to the limitation of the obtained data in this study, more
in-depth quantitative analysis, based on DSC tests, will be addressed in future studies.
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