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It is commonly believed that higher values of heart rate variability (HRV) indices account

for better organization of the network of feedback reflexes driving an organism’s response

to actual bodily needs. In order to evaluate this organization in heart transplant

(HTX) recipients, 58 nocturnal Holter signals of 14 HTX patients were analyzed. Their

dynamical properties were evaluated by short-term HRV indices andmeasures grounded

on entropy. Estimates grouped according to the patients’ clinical progress: free of

complications versus with complications, and arranged in order of the length of time since

the HTX, lead us to the conclusion that higher HRV is associated with a worse outcome

for HTX patients. Moreover, short-term HRV indices that are constant, rather than

increasing over time, serve well in the prognosis of the future state of a HTX patient. These

findings suggest that increases observed in HRV indices are related to erratic rhythms

resulting from remodeling of the cardiac tissue (including heterogeneous innervation) in

long-term HTX patients. Therefore, we hypothesize that dynamical landscape markers

(entropy and fragmentation measures together with the short-term HRV indices) can

serve as a tool in the exploration of the genesis of (non-respiratory sinus) arrhythmia.

Keywords: heart rate variability, entropic measures, heart transplant patients, erratic rhythm, heart rate

fragmentation, autonomic nervous system

1. INTRODUCTION

Heart transplant (HTX) recipient heart rhythm is specific due to the complete denervation of the
donor heart after surgery. The basic source of heart rate variability (HRV) in a healthy heart, the
autonomic nervous system (ANS), is cut off from direct influence on the heart. The heart displays
an intrinsic rhythm of around 110 beats/min, which is determined by spontaneous depolarization
of pacemaker cells in the sinoatrial node (SAN). Accordingly, early post-HTX heart rate (HR) at rest
is higher than normal. However, the ANS regulation is served indirectly via, for example, circulating
hormones. With the passing of time after the surgery, the heart rhythm of the HTX patient changes.
As reinnervation of the recipient occurs over time post-HTX, the intrinsic heart rhythm has less
influence on the resting HR, reducing the HR to a lower value and leading to partially increased
HRV values (Awad et al., 2016). Reinnervation of the heart is clinically important, resulting in
improved exertional HR response, improved contractile function, and more sufficient myocardial
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blood flow, providing better quality of life (Grupper et al.,
2017). Therefore, for years it was believed that an increase in
HRV indicated the proper process of donor heart adaptation
to a new organism (Grupper et al., 2017). However, this is not
entirely clear (Nicolini et al., 2012). After heart transplantation,
the allograft undergoes characteristic alterations in myocardial
structure, including hypertrophy, increased ventricular stiffness,
ischemia, and inflammation which, together with the natural
process of aging, may lead to vasculopathy and fibrosis of the
donor heart (Alraies and Eckman, 2014; Coelho-Filho et al.,
2016). The scale and intensity of the spontaneous process of
reinnervation in the myocardial tissue progresses irregularly, and
differs greatly from patient to patient (Radaelli et al., 1996; Bengel
et al., 2004; Viola et al., 2004; Cornelissen et al., 2012; Vanderlaan
et al., 2012; Awad et al., 2016; Grupper et al., 2017).

Additionally, with the passing of time after the surgery, it
becomes very likely that the suture lines, which initially isolate
the native heart parts from the donor heart, lose their role.
All together, this impacts on progressive alternations in the
myocardial structure of the donor heart, which influences the
propagation of activation wavefronts. Therefore, a variety of
arrhythmias—abnormal heart rhythms, may occur (Thajudeen
et al., 2012; Hamon et al., 2014). As all the HTX patients
in our clinic are under permanent clinical control, their
electrocardiographic signals and relevant clinical and laboratory
data are collected during scheduled routine follow-up visits. In
consequence, our clinic possesses numerous signals recorded
from the same patient. This means that we can observe the
follow-up path and the evolution of the heart rhythm of
each patient separately. We have presented examples of such
investigations in our previous papers; seeWdowczyk et al. (2016)
andMakowiec et al. (2016). It seems that a group of HTX patients
can be regarded as a perfect sample for observations of the
birth of erratic rhythms and their further development into full
arrhythmia.

It has been proposed that changes in RR-intervals may encode
the short-term dependence of heartbeat dynamics (Makowiec
et al., 2015b; Costa et al., 2017). Accordingly, statistics based
on differences in consecutive RR-intervals, called RR-increments,
may be candidates for tools providing insight into this dynamics.
Heart rhythm statistics based on RR-increments indicate the
dynamical profile of RR-intervals. These statistics, together with
their evolution over time after HTX, serve as the dynamical
landscape for long-term HTX recipients. An additional benefit
is that the method allows us to discern the appearance of erratic
heart rhythm dynamics.

In the following, we hypothesize that an increase in certain
HRV indices indicating short-term variability discriminates HTX
patients who have a history of aspergilliosis and/or rejections
from HTX patients whose overall clinical state is free of
complications. In particular, we show that these indices, based on
RR-increments, increase with the passing of time after the surgery
inHTXpatients with complications, while in the case of the stable
HTX patients, they do not show any change.

Recently, it has been found that so-called fragmentation
indices may lead to a better assessment of the dynamics of heart
rate and also facilitate the detection of erratic heart rhythm

(Costa et al., 2017). The fragmentation indices characterize short
sequences with certain dynamical patterns, such as occurrences
of successive accelerations or successive decelerations. In the
following, we propose to include entropic measures for the
fragmentation, as entropic measures collect and summarize the
properties discovered by the fragmentation indices.

Entropic measures, such as approximate entropy or sample
entropy, have been used in HRV estimates for more than 20 years
(Pincus, 1991; Richman andMoorman, 2000). The novelty of our
approach consists of applying them to RR-increments instead of
RR-intervals. Accordingly, we also propose a modification of the
fragmentation approach. Our concept of fragmentation includes
zero value RR-increments. This extension is important because
in the case of heart rhythms of HTX patients, we observe an
abundance of zero RR-increments (Makowiec et al., 2013, 2014).

1.1. Outline
The rest of this article is organized as follows. Section 2 describes
in detail the methods used. Starting with a description of the
group of patients and the signals considered, we explain the
concept of the dynamical landscape, and define the entropic
measures based on Shannon entropy. Also, we present standard
indices used in estimates and introduce some fragmentation
indices. Our novel results are presented in section 3 and discussed
in section 4. Finally, section 5 gives the conclusions.

2. METHODS

2.1. Subject Data
2.1.1. Group of Patients
Patients who had received HTX in the Cardiosurgery
Department of the Medical University of Gdansk, Poland,
were eligible for the study. All the patients in the HTX group
were receiving standard immunosuppressive therapy. Beta-
blocker therapy was a part of the treatment during the follow-up
period. At the time of the measurements, the patients had
to be in good physical condition without echocardiographic
signs of acute rejection, heart failure or left ventricular
dysfunction. The following exclusion criteria were applied: a
history of pacemaker implantation, non-sinus rhythm, clinically
unstable condition, less than 3 recordings during the time of
the observations, and unwillingness to participate in Holter
monitoring. We also excluded ECG Holter recordings with
frequent ventricular and supraventricular arrhythmia and more
than 10% artifacts.

Depending on the progress of the HTX recipient after surgery:
progress free of complications or progress not free of complications,
the patients were divided into the two groups denoted as F
and NF, respectively. In Table 1, a clinical description of the
participants in both groups is given. The group of patients free
of complications consisted of six subjects with 24 signals. The
signals were identified by the patient’s ID and the number of
months since the surgery: F1 (12, 20, 67), F2 (14, 19, 96), F3 (14,
36, 50, 61, 86), F4 (12, 46, 57), F5 (8, 12, 24, 36, 66, 78), and
F6 (8, 12, 24, 36). The group of NF patients who experienced
complications after HTX consisted of eight subjects with 34
signals, and was arranged in the same way as the F group: NF1
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TABLE 1 | Patient demographic data.

Patient Sex Age Year/ Diagn. Graft HT DM Ch 2R C Stro- 1st LVEF Out-

ID at method before vascu- RF M ke year %graft come

HTX of HTX HTX lopathy V FI echo

HTX RECIPIENTS: PROGRESS WITH COMPLICATION

NF1 M 65 2008/ CAD 0 1 1 1 1 1 1 0 60 Survival

bicav

NF2 M 47 2009/ CAD 1 1 1 1 1 0 0 0 45 Death

bicav

NF3 M 59 2011/ CAD 0 1 1 0 1 0 1 1 65 Survival

bicav

NF4 F 36 2009/ myocar- 0 1 0 1 1 0 0 0 65 Survival

biatr ditis

NF5 F 55 2010/ DCM 0 1 1 0 1 0 0 0 65 Survival

bicav

NF6 M 33 2013/ DCM 0 1 1 0 0 0 1 1 60 Survival

bicav

NF7 F 57 2009/ CAD 1 1 1 1 1 0 0 0 60 Death

biatr

NF8 M 51 2010/ DCM 0 1 1 0 0 1 0 1 60 Survival

bicav

HTX RECIPIENTS: PROGRESS FREE OF COMPLICATIONS

F1 M 52 2011/ CAD 0 0 0 0 0 0 0 0 65 Survival

bicav

F2 M 51 2008/ CAD 0 1 0 0 0 0 0 0 65 Survival

biatr

F3 M 55 2009/ CAD 0 0 0 0 0 0 0 0 60 Survival

biatr

F4 M 49 2012/ DCM 0 1 0 0 0 0 0 0 57 Survival

bicav

F5 M 24 2010/ DCM 0 0 0 0 0 0 0 0 65 Survival

bicav

F6 M 61 2009/ CAD 0 0 0 0 0 0 0 0 60 Survival

biatr

CAD, coronary artery disease; DCM - dilated cardiomyopathy; HT, hypertension; DM, diabetes mellitus; ChRF, chronic renal failure; 2R, graft rejection; CMV, cytomegalovirus infection;

FI, fungal infection; bicav, bicaval heart transplant; biatr, biatrial heart transplant. The bold type indicates diseases discriminative for the NF group: HTX with complications.

(14, 24, 37), NF2 (20, 24, 25, 26, 36, 63), NF3 (6, 12, 50, 64, 75),
NF4 (6, 32, 39, 91), NF5 (9, 12, 19, 36, 61), NF6 (7, 17, 36), NF7
(12, 63, 78), NF8 (14, 23, 38, 39, 42).

2.1.2. Control Group
The control group was constructed from the pool of healthy
people described in Makowiec et al. (2015a), whose age matched
the age of the HTX patients considered. In total, this group
consisted of 12 women and 15 men, aged 60–69. All the subjects
passed routine tests for an overall healthy state.
All the subjects gave their written, informed consent, which was
approved by the Ethics Committee of Medical University of
Gdańsk.

2.1.3. Signals Studied and Their Preprocessing
Twenty-four-hour ECG Holter recordings were analyzed on a
Del Mar Reynolds system (Spacelabs Healthcare, United States).

The sampling rate of ECG was 128 Hz, which ensured 8 ms
accuracy for the times of identification of R-peaks of the QRS
complex. The quality of the ECG recordings and accuracy of R-
peak detection were verified by visual inspection by experienced
cardiologists. All normal beats were carefully annotated, so that
only normal sinus rhythms were considered in our investigations.
The period of nocturnal rest was discerned individually, in each
recording separately, according to the appearance of consecutive
hours with a low heart rate. The rate analysis was based on
one-hour average windows. Each signal started at the hour
with the slowest heart rhythm. This means that we can assume
that parts with the strongest transitions in ANS due to the
sleep cycle are included. Since erratic rhythms tend to be
episodic, longer recordings (in terms of hours) had to be
considered.

Each signal was edited to preserve RR-intervals between
normal-to-normal beats only. Short segments, consisting of less
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than 5 values, with artifacts or not normal beats were substituted
by the medians estimated from the last seven normal beats.
Longer segments with wrong data were deleted, which was
annotated correspondingly in the time-lapse data. Hours with
an overall quantity of normal-to-normal beats of less than 95%
were excluded from further analysis. Finally, twenty thousands
subsequent beats were removed, starting at the beginning of the
nocturnal period.

2.2. Dynamical Landscape Method
2.2.1. Method Description and Motivation
A non-linear system approach provides a variety of methods
which can reveal dynamical preferences of a system based
on time series (see Bradley and Kantz, 2015 for the latest
review). In the case of cardiac dynamics represented by RR-
intervals (see Figure 1), time intervals between successive heart
contractions, a popular idea is to associate symbols with values
of the heart rhythm and then quantify dynamical preferences
of the RR-interval signal by regularities/irregularities in the
symbolic signal representation (Sassi et al., 2015). The simplest
example of symbolization follows heart rhythm accelerations a
and decelerations d. Then the dynamics is analyzed according
to short-term pattern representations of time sequences (see
Figure 1, bottom plot).

Having extracted successive RR-intervals (see Figure 1 the
middle line plot):

RR :RR0,RR1,RR2, . . . ,RRN

the sequence of differences between consecutive RR-intervals,
called RR-increments, is derived:

1RR : δRR1, δRR2, . . . , δRRN

with δRRi = RRi − RRi−1 for i = 1, . . . ,N. Each δRRi positive
denotes a heart rate deceleration, while δRRi negative means
a heart rate acceleration. When δRRi equals zero, it must be
assumed that there is no change in the heart rate dynamics.

It is of note that the classification of any RR-increment into
deceleration, acceleration or zero-change, depends on the signal
resolution. We found that our Holter system resolution of 8 ms
was fine enough to filter out the noise HRV from the system
HRV. However, in a general case, when the resolution is smaller,
one should consider a tolerance ε to associate RR-increments
which in modulus are lower than ε with the zero class and then,
accordingly, group the other RR-increments into classes labeled
according to the desired resolution. For example, if the resolution
equals to 1 ms, the resolution of 7 ms can be achieved by the
following grouping {. . . , (−10, −9, −8, −7, −6, −5, −4), (−3,
−2, −1, 0, 1, 2, 3), (4, 5, 6, 7, 8, 9, 10), . . . }, where values in bold
are labels for the subsequent classes {. . . ,−7, 0, 7, . . . }.

In our case, all the recordings were at the 8 ms
resolution and therefore all the signals were preprocessed
with this discretization. Application of the symbolization
described above, in place of a sequence of RR-increments
(e.g.,{. . . , 24, 0,−8,−8, 16, 0, . . . }) provides a sequence of
symbols ({. . . d, 0, a, a, d, 0, . . . }, respectively). In this way, each
RR-increment is represented by one of the three symbols,

elements of the set S = {a, d, 0}. The set of symbols S will be
called the space of actions, while its elements will be called
actions. A variety of single actions: d, a, 0, a variety of patterns
of two-consecutive actions: dd, da, ad, aa, d0, 0d, a0, 0a, 00, and
in general, a variety of L-consecutive actions, is the source for
quantification of signal dynamics.

If one takes into account not only the sign of an RR-increment
but also its magnitude, a significantly larger space of actions
than {a, d, 0} can be constructed. In the case of RR-intervals
recorded with 8 ms accuracy, the largest action space is the space
constructed at the signal recording accuracy, and it consists of
actions S = {. . . ,−16,−8, 0, 8, 16, . . . }, which are delimited by
the largest acceleration on the left and the largest deceleration on
the right. This means that the actions are symbols representing
RR-increment values. Consequently, it is possible to investigate
the probability distributions for a single action, i.e., for the
appearance of a given RR-increment, for the presence of 2
given consecutive RR-increments, or in general L consecutive
RR-increments. Note that with different scaling of the space of
actions, it is possible to observe the dynamics at another scale.
Namely, by manipulating the resolution, it is possible to estimate
variability related to events at a certain scale.

Irregularities in short timescales are investigated with so-
called short-term HRV indices. These are standard indices such
as RMSSD, pNN50 or HF, which are well-recognized measures of
short-term variability (Task Force, 1996; Goldberger and Stein,
2015). In general, irregularities within segments consisting of
less than ten RR-intervals are assumed to describe short-term
HRV (Sassi et al., 2015). It is known that if the patient is
predominantly in normal sinus rhythm, such variability can
be interpretable for ANS assessment purposes (Goldberger and
Stein, 2015).

The method considered here, called the dynamical landscape
of long-term HTX recipients, includes the group of estimators
of short-term HRV. It extracts and then qualifies heart period
dynamics according to the following three aspects: (A) RR-
increments, (B) certain statistics of RR-increments, and (C)
changes in statistics with the passing of time.

In particular, we concentrate on information obtained from
statistics of short segments of RR-increments by Shannon
entropy (Shannon, 1948) and concepts related to Shannon
entropy concepts describing stochastic dynamics. However,
different statistics of RR-increments could be considered for
aspect (B). We will work with standard HRV indices to obtain
the reference point. Results provided by entropic tools will
be compared with fragmentation heart rate indices (Costa
et al., 2017)—a novel group of estimators of short-term HRV,
which is based on symbolic dynamics of accelerations and
decelerations.

2.2.2. Short-Term HRV Indices Studied
In Figure 2we give a list of names of all indices studied in the rest
of the paper, grouped according to the commonly used classes
(Task Force, 1996). Below, we introduce/explain them.
(a) Standard HRV indices

From the set of standard HRV indices (Task Force, 1996;
Goldberger and Stein, 2015; Sassi et al., 2015), we decided that
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FIGURE 1 | Illustrations of the nomenclature and concepts used. The differences δRR are calculated for the numbered RR-intervals extracted from the ECG

recording. A positive difference is encoded as d; a negative difference is encoded as a. A signal δRR is represented as signals of symbols d and a.

FIGURE 2 | Table of HRV indices: standard and new ones, considered in the paper.
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the best information about the overall variability and short-
term variability of the signals presented would be gained by the
following measures:

• mean HR - heart rate in [1/min];
Mean HR is strongly advised to be the first number to be
evaluated to give the rest of the values some context. As
we consider nocturnal recordings, we expect to observe the
slowest rhythm of the circadian cycle.

• SDNN - standard deviation of RR-intervals in [ms];
SDNN is said to capture the total HRV. It estimates the
variation of a signal with respect to the mean signal value.
In the case of cardiac patients, low values of SDNN (<50)
have been associated with a markedly higher risk of mortality
(Nolan et al., 1998).

• VLF - very low frequency power in [ms2];
VLF captures the magnitude of underlying oscillations in RR-
intervals of periods between 25 s to 5 min (from 0.003 to
0.04Hz). In healthy adults, VLF appears to reflect vagal activity
since it is abolished by atropine administration and unaffected
by beta-blockade (Goldberger and Stein, 2015). It also appears
to reflect the activity of the renin-angiotensin system, since it is
reduced by ACE inhibition (Taylor et al., 1998; Tripathi, 2011).
In contrast, VLF power is increased by sleep abnormalities
such as sleep disordered breathing events, which should be
taken into account in the case of our nocturnal recordings.
Decreased VLF power has been shown to be strongly related
to adverse outcomes (Goldberger and Stein, 2015).

• RMSSD - the square root of the mean of the sum of the squares
of δRR in [ms];
RMSSD is said to refer to vagal tone, as it directly estimates
variation among consecutive RR-intervals, avoiding the mean
of a signal as the reference value (Kleiger et al., 2005).

• pNN50 - the percentage of |δRR| greater than 50 ms;
pNN50 captures activity of the vagal system as it accounts
for large accelerations or decelerations, which are assumed to
result from high activity of the vagal system.

• HF spectral power in oscillations between 0.15 Hz and 0.40 Hz
in [ms2];
HF in the case of sinus rhythm reflects modulation of efferent
vagal activity by respiration (respiratory sinus arrhythmia).
For a subject in the supine position, the HF spectrum
has a peak corresponding to the predominant respiratory
frequency.

• LF spectral power in oscillations of 0.04 and 0.15 Hz in [ms2];
LF is assumed to describe the combined modulation of
vagal and sympathetic activity, which is often related to the
baroreflex feedback loop (Goldstein et al., 2011).

• pNN20 - the percentage of |δRR| greater than 20 ms;
pNN20 is supposed to provide enhanced discrimination
between a variety of normal and pathological conditions
(Mietus et al., 2002), especially in the case of HTX patients,
when the overall variability is low.

(b) Entropic measures

It is said that the occurrence of an action i carries an uncertainty
which should be quantified as ln(1/p(i)) (Shannon, 1948; Kaiser

and Schreiber, 2002). So the smaller the probability is of
observing an action i, the larger the uncertainty related to this
action is. Averaging uncertainty over all actions, we obtain the
simplest tool for quantification of the variety of actions in a
system represented by a given signal. This tool is called Shannon
entropy (Shannon, 1948). It occurs that for more predictable
signals, the Shannon entropy is lower. In particular, Shannon
entropy attains the lowest value (zero) when a signal is completely
predictable, while the maximal value entropy (logarithm of the
number of states in S) is attained when all actions occur with the
same probability.

Let SL denote the state space of L consecutive actions of a given
RR-interval signal. Let i denote any RR-increment from the space
S1, (i, j) ∈ S2 stand for 2 consecutive RR-increments and (i, j, k) ∈
S3 stand for 3 consecutive RR-increments. Subsequently, for each
1RR signal, we quantify its properties by the following entropic
measures:

• entropy of a single action encoded by RR-increment:

H1(1RR) = −
∑

i∈S1

p(i) ln p(i) (1)

• entropy of a pair of successive RR-increments:

H2(1RR) = −
∑

(i,j)∈S2

p(i, j) ln p(i, j) (2)

• entropy of a triplet of successive RR-increments:

H3(1RR) = −
∑

(i,j,k)∈S3

p(i, j, k) ln p(i, j, k). (3)

Moreover, so-called excess entropy, defined as hi = Hi − Hi−1

for i = 2, 3, . . . , measures the increase of entropy when an extra
RR-increment precedes the given sequence of RR-increments
(Hlavackova-Schindler et al., 2007). In the case of dynamical
series, the excess entropy h2 is known to be the best estimator
of the entropy of transition rates ST , i.e.,:

ST(1RR) = H2(1RR)−H1(1RR). (4)

ST evaluates the system dynamics as if it were a Markov
chain (Ciuperca and Girardin, 2005), i.e., memoryless dynamics
governed by a table of transition probabilities. It has been proved
that ST is equal to approximate entropy (ApEn) (Pincus, 1991), a
popular metrics used in assessment of signals with RR-intervals.

Clearly, other excess entropies can also be of interest. If these
entropies drop when the length of a sequence of RR-increments
grows, the process is regular and predictable. Conversely, a
constant value of hi, called the entropy rate, suggests that each
new action is not completely predictable (Sassi et al., 2015).
The entropy rate is a basic characterization of Markov chain
dynamics.

Self-transfer entropy (sTE)—a concept proposed by Schreiber
(2000), and considered further in Kaiser and Schreiber (2002),
to measure the coupling between any two interacting systems,
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applied in a way that accounts for the influence of the past
on the current action, which can be expressed as the following
difference:

sTE(1RR) = h3(1RR)− h2(1RR). (5)

sTE describes whether a simplified model, represented as a
Markov chain, is coupled to its past. So, sTE estimates memory
effects, which are not encoded in a transition matrix of the
Markov chain model.

Finally, let us underline that if RR-increments occur in a signal
independently of each other, H2 = 2H1, H3 = 3H1. These
relations lead to ST = H1 and sTE = 0, which means that the
Markov chain model with the transition matrix driven by the
distribution of single actions describes completely the dynamics
of RR-increments.
(c) Heart rate fragmentation indices

As the vagal activity results in rapid changes in heart rhythm,
it can be hypothesized that smoothness of the signal, i.e.,
consecutive accelerations or consecutive decelerations, can
be related to the vagal modulation (Costa et al., 2017).
Conversely, alternations between accelerations and decelerations
are attributed to non-vagally mediated regulatory mechanisms.
These properties could be directly linked to short-term
variability, precisely to the presence or absence of a particular
type of L-symbol clusters. It has been shown that the participation
of abrupt changes in the sign of RR-increments increases with
age (Costa et al., 2017). The corresponding metrics, called heart
rate fragmentation indices, have been proposed as markers of the
integrity of the regulatory network of heartbeats.

Pursuing this idea, we investigate the occurrence of patterns
which have a clear dynamical classification. Namely, if a denotes
an acceleration, and d denotes a deceleration, we estimate
probabilities of the following events (see Figure 1):

• segments describing monotonic increases or decreases:

– P(aa): probability of two successive accelerations: (δRRi <

0, δRRi+1 < 0)
– P(dd): probability of two successive decelerations: (δRRi >

0, δRRi+1 > 0)
– P(aaa): probability of three successive accelerations:

(δRRi < 0, δRRi+1 < 0, δRRi+2 < 0)
– P(ddd): probability of three successive decelerations:

(δRRi > 0, δRRi+1 > 0, δRRi+2 > 0)

• segments describing alternations in dynamics;

– P(ad): probability of two alternates, acceleration first
(δRRi < 0, δRRi+1 > 0)

– P(da): probability of two alternates, deceleration first
(δRRi > 0, δRRi+1 < 0)

– P(ada): probability of three alternates, acceleration first
(δRRi < 0, δRRi+1 > 0, δRRi+2 < 0)

– P(dad): probability of three alternates, deceleration first
(δRRi > 0, δRRi+1 < 0, δRRi+2 > 0)

The quantities defined above, when grouped appropriately,
provide approximate estimates for the fragmentation indices of
Costa et al. (2017). They approximate these only if we exclude

the zero RR-increments from the counts. Subsequently,
– PIP, percentage of abrupt changes in the sign of RR-increments,
can be estimated as

PIP = P(ad)+ P(da)

– PSS, complement to the percentage of short RR-intervals in
monotonic sequences, can be estimated as

PSS = 1− [P(aaa)+ P(ddd)]

– PAS, percentage of alternative L-clusters, in the case of L = 3 is

PAS = P(ada)+ P(dad).

Quantities from the above list influence the Shannon entropy
value selectively. However, by summing up all of these
particular ingredients, we gain the total measure of the
difference between the actual probability distribution and the
flat distribution where all events have the same probability of
occurring.

2.3. Statistical Analysis
The counts of events were performed with our own
software (C++ language). The entropy calculations, as well
as fragmentation indices and standard HRV indices, were
processed with MATLAB R2016b (MathWorks Inc.). As the
normality test (Shapiro-Wilk) was not passed for data pooled in
the patient groups F and NF (p < 0.05), differences between the
groups were estimated by Kruskal-Wallis One-way ANOVA on
ranks. The t-test for paired data (Wilcoxon Signed Rank Test if
normality failed) was performed on groups in order to discover
the importance of the dynamics. Additionally, with logistic
regression (Bewick et al., 2005), we investigated the classification
abilities of the HRV measures investigated: free of complications
vs. with complications. The linear regression estimates were
used in the evaluation of the evolution of indices. The tests were
performed with One-way ANCOVA. Sigma Plot 13.0 (Systat
Software, Inc) was utilized in all the tests described above.

As the set of data is rather small in size, a leave-one-subject-out
cross-validation technique was used to verify the robustness of
the correlation coefficient estimates. This means that N-1 (out of
N) patients in a group were used to estimate the global regression
coefficient. This procedure was carried out with exclusion of each
subject in each group. It was observed that the values for the
regression remained appreciably similar when different subjects
were selected in estimates.

3. RESULTS

3.1. Dynamical Landscape Resulting From
Standard HRV Indices
Table 2 presents a descriptive characterization of the standard
indices of short-term HRV values studied. We show indices
describing the overall variability of signals to find the general
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message which can be derived from standard indices estimated
from the signals considered. The indices of short-term variability
are presented together: RMSSD, pNN50, pNN20, and HF (in
bold).

Section (a) of the table provides a static characterization of
the signals of all the groups studied, including characterization
of healthy coevals. We see that the values of the standard
HRV indices obtained for the groups of the HTX patients are
strongly distinct from the values obtained for healthy people
in their sixties. In general, the heart rhythm of HTX patients
is significantly faster than the rhythm of healthy persons.
Indices pNN20, pNN50 and all spectral indices show the most
striking difference. The healthy population provides many times
larger values for these measures. We can also see that all
short-term HRV indices, namely RMSSD, pNN20, pNN50 and
HF, discriminate (statistically significantly) the F group from the
NF group. In all cases, the results of the NF group are higher
than those of the F group. Logistic regression analysis reveals
that RMSSD and pNN20 provide for a statistically validated
classification of the F and NF group: 18/19 signals in the F group
and 25/24 signals in the NF group were properly classified by
RMSSD/pNN20, respectively.

Section (b) of the table presents results of the evolution over
time of all the indices studied, obtained by the regression analysis
performed on the F group and the NF group. It occurs that

all short-term HRV indices obtained for the NF group exhibit
growth with time after HTX. These regressions are statistically
significant. This property does not hold for the indices found
for the F group. Here, no significant relation between the index
value and the passing of time has been found. Moreover, the One-
way ANCOVA test for equal slopes in both groups failed for all
short-term indices.

In conclusion, the standard indices of short-term HRV prove
the difference between the groups F and NF consisting of both
the value of the index (higher in NF) and the tendency to change
over time (growing in NF).

The entropic measures quantify the system dynamics based
on the probability distribution of events, here actions with
accelerations or decelerations. In Figure 3, we show the mean
probability of a pair of actions obtained from signals of healthy
sexagenarians and the mean of the HTX patients, divided into
the F and NF groups. We also show the difference in two-
point distributions between the NF and F groups. The bottom
line describes the first RR-increment of a pair. The vertical line
corresponds with the second RR-increment. All the plots display
a kind of symmetry with respect to the diagonal NW – SE
(NW for North-West and SE for South-East are geographic map
directions). This shows that after any acceleration, a deceleration
of the similar size is the most probable event. It is noticeable that
in the case of healthy people, after any deceleration there is not

TABLE 2 | Descriptive statistics and linear regression analysis for typical HRV indices.

Index symbol HTX F HTX NF p-value Healthy sexagenarians

(a) Descriptive statistics:median [25%, 75%] and p-value (in bold in case p< 0.05) for difference inmedians between theHTXgroups

HR 85.4 [75.6, 93.9] 79.6 [70.4, 86.4] 0.038 60.6 [57.8, 67.8]

RR 703 [641, 798] 757 [695, 862] 0.048 963 [892, 1,051]

SDNN 29.6 [21.7, 45.9] 29.0 [21.4, 54.8] 0.912 73 [61, 86]

RMSSD 8.31 [7.45, 8.95] 10.9 [7.91, 21.0] 0.001 25 [21, 37]

pNN20 1.22 [0.37, 2.27] 6.31 [0.89, 16.5] 0.001 40 [29, 54]

pNN50 0.025 [0.001, 0.064] 0.083 [0.036, 2.05] 0.001 3.6 [2.1, 13]

VLF 736 [329, 1345] 567 [320, 1332] 0.825 4,575 [3127, 7253]

LF 2.8 [1.2, 7.3] 6.63 [3.07, 61.0] 0.003 477 [317, 717]

HF 13.0 [8.6, 17.2] 27.03 [10.2, 101.9] 0.007 207 [137, 364]

(b) Regression analysis: slope ± stderr (R, p-value) for the given HTX group dependence on time after surgery (in bold regression which is statistically

significant at p < 0.05), and p-value (in bold in case p < 0.05) for difference in the regressions between the HTX groups

HR −0.43± 1.0 (−0.09, 0.679) −1.47± 0.91 (−0.27, 0.117) 0.451

RR 4.7± 9.6 (0.10, 0.629) 15.0± 10.2 (0.25, 0.150) 0.467

SDNN 1.68± 1.50 (0.23, 0.274) 9.02 ± 3.02 (0.47, 0.005) 0.044

RMSSD 0.03± 0.12 (0.05, 0.790) 12.2 ± 3.93 (0.48, 0.004) 0.007

pNN20 0.110± 0.179 (0.13, 0.545) 3.49 ± 1.11 (0.48, 0.004) 0.008

pNN50 −0.002± 0.017(0.00, 0.924) 1.47 ± 0.48 (0.48, 0.004) 0.007

VLF 34.3± 102 (0.07, 0.738) 291± 188 (0.26, 0.131) 0.258

LF 0.39± 0.72 (0.12, 0.587) 91 ± 35 (0.42, 0.014) 0.021

HF −0.19± 0.72 (0.05, 0.799) 631 ± 245 (0.41, 0.015) 0.022

(a) Difference between groups by one-way ANOVA on ranks (normality failed) results: medians [25%, 75%], and p-value for the difference between groups.

(b) Linear regression estimates with respect to age: linear regression coefficient ± StdErr (R, p-value: of the test H0: slope = 0, H1: slope 6= 0), and p-value of the test H0: equal slopes,

H1: different slopes, provided by one-way ANOCOVA.
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FIGURE 3 | The probability density (in %, log-scale) of a pair of events in the case of healthy sexagenarians (top-left), HTX patients free of complications (top-right),

and with complication (bottom-left). Note that the scales are different. Finally, the difference between density of the groups NF and F is shown (bottom-right).

such a strong prevalence for an acceleration as there is in the
case of the HTX patients. There is an evident difference between
healthy people and HTX patients from the F group, reflected in
the sizes of accelerations and decelerations. In the case of the
signals from the F group, most changes are within ± 50 ms,
which is much less than the spread of changes in healthy people.
These observations suggest that the signals of HTX patients are
significantly more predictable than those of healthy people. The
probability distributions obtained from patients in the NF group
initially resemble the distribution of healthy coevals. However,
closer examination reveals that the NW–SE spread is larger
than in the plot of healthy people. It is also very different
from the distribution estimated from signals of patients in the
F group. This difference is shown in Figure 3, bottom-right
plot.

A descriptive characterization of the values of entropic
measures is given in section (a) of Table 3. It shows that
all entropic measures H3,H2,H1, ST , and sTE take values
considerably lower than levels obtained for the corresponding

healthy coevals. It is noticeable that the median value obtained
from the HTX patients pooled in the NF group is higher than the
median obtained for the F group. In each case, with the exception
of sTE, the difference has a high statistical significance. Logistic
regression analysis additionally ensures that all the entropic
measures provide a statistically satisfactory separation between
the groups studied. The best classification abilities are found for
sTE and H1 which, when applied simultaneously, provided a
proper classification of 19 signals in the F group and 27 signals
in the NF group.

Finally, we performed tests for the presence of dynamical
dependencies, i.e., the complexity of the signals collected in
the groups F and NF. Subsequently we tested the hypothesis
H0 : ST < H1 vs. H1 : ST ≥ H1, H0 : sTE = 0 vs. H1 : sTE 6=

0, H0 :H2 < 2H1 vs. H1 :H2 ≥ 2H1, and H0 :H3 < 3H1

vs. H0 :H3 ≥ 2H1. Our data prove that all H0 can be rejected
at a high significance level, for almost all tests p < 0.001, in
both groups of patients. Hence the heart rate dynamics is not
stochastic but involves cardiovascular properties.
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TABLE 3 | Descriptive statistics and linear regression analysis for entropic measures.

Index symbol HTX F HTX NF p-value Healthy sexagenarians

(a) Descriptive statistics:median [25%, 75%] and p-value (in bold in case p< 0.05) for difference inmedians between theHTXgroups

H3 3.80 [3.42, 3.97] 4.60 [3.90, 5.51] <0.001 7.32 [6.61, 7.89]

H2 2.63 [2.44, 2.80] 3.20 [2.64, 3.90] <0.001 5.02 [4.53, 5.69]

H1 1.38 [1.29, 1.47] 1.67 [1.37, 2.11] 0.001 2.53 [2.31, 2.90]

ST 1.25 [1.11, 1.32] 1.51 [1.27, 1.83] 0.002 2.49 [2.24, 2.72]

sTE 0.10 [0.07, 0.14] 0.13 [0.08, 0.21] 0.195 0.24 [0.17, 0.45]

(b) Regression analysis: slope ± stderr (R, p-value) for the given HTX group dependence on time after surgery (in bold regression which is statistically

significant at p < 0.05), and p-value (in bold in case p < 0.05) for difference in the regressions between the HTX groups

H3 0.007± 0.04 (0.04, 0.849) 0.35 ± 0.10 (0.51, 0.002) 0.006

H2 0.011± 0.03 (0.08, 0.689) 0.26 ± 0.08 (0.52, 0.002) 0.005

H1 0.008± 0.013 (0.13, 0.553) 0.15 ± 0.04 (0.53, 0.001) 0.004

ST 0.003± 0.014 (0.04, 0.830) 0.12 ± 0.04 (0.50, 0.003) 0.008

sTE 0.006± 0.005 (0.27, 0.196) 0.034 ± 0.011 (0.47, 0.005) 0.035

(a) Difference between groups by one-way ANOVA on ranks (normality failed) results: medians [25%, 75%], and p-value for the difference between groups.

(b) Linear regression estimates for age: linear regression coefficient ± StdErr (R, p-value of the test H0: slope = 0, H1: slope 6= 0), and p-value of the test H0: equal slopes, H1: different

slopes, provided by one-way ANOCOVA.

FIGURE 4 | Time runs of the entropic measures estimated for RR-increments of individuals from HTX groups. Blue marks and curves refer to the F group of patients.

Red notation is used for the NF patients. The bold curves represent the best linear regression approximation to the group data. The line is dashed if the hypothesis of

the zero regression coefficient cannot be rejected. For both lines, R2 correlation coefficients are shown. Points corresponding to the same patient are connected by

faded lines.

Furthermore, the HTX patients’ signals pooled into the F
group do not show any significant dependence on the time that
has elapsed since the surgery, while the signals grouped in the
NF class present a clear dependence on time—they grow as time
progresses; see section (b) of Table 3. These dependencies on

time are shown in subsequent panels of Figure 4. The regression
coefficients R2 for entropies obtained from the NF group are
not impressive, however they are high enough for the statistical
validation of the linear growth of these entropies with time
after the surgery. Note that this growth changes from patient
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TABLE 4 | Descriptive statistics and linear regression analysis for dynamical patterns indices.

Index symbol HTX F HTX NF p-value Healthy sexagenarians

(a) Descriptive statistics:median [25%, 75%] and p-value (in bold in case p< 0.05) for difference inmedians between theHTXgroups

PATTERNSOFMONOTONICDYNAMICS

P(aa) 2.84 [1.7, 4.3] 5.3 [2.2, 8.8] 0.009 17.1 [14.9, 18.5]

P(dd) 2.29 [1.8, 3.85] 4.9 [2.5, 7.7] 0.004 16.6 [12.2, 19.2]

P(aaa) 0.10 [0.03, 0.16] 0.36 [0.06, 1.2] 0.004 4.54 [3.17, 6.13]

P(ddd) 0.07 [0.03, 0.23] 0.33 [0.06, 0.75] 0.006 4.23 [2.61, 6.62]

PATTERNSOFDYNAMICSWITHALTERNATIONS

P(ad) 15.6 [14.4, 16.7] 17.3 [15.6, 21.5] 0.002 19.7 [16.8, 24.0]

P(da) 16.1 [15.1, 17.0] 17.5 [16.0, 21.6] 0.006 19.1 [16.2, 23.3]

P(ada) 7.32 [5.95, 8.41] 7.94 [6.60, 11.1] 0.060 6.45 [5.22, 1.01]

P(dad) 6.84 [5.65, 7.79] 8.14 [6.57, 10.6] 0.007 6.26 [4.89, 10.5]

(b) Regression analysis: slope ± stderr (R, p-value) for the given HTX group dependence on time after surgery (in bold regression which is statistically

significant at p < 0.05), and p-value (in bold in case p < 0.05) for difference in the regressions between the HTX groups

PATTERNSOFMONOTONICDYNAMICS

P(aa) −0.01± 0.15 (0.00, 0.948) 0.82 ± 0.31 (0.42, 0.013) 0.027

P(dd) −0.08± 0.13 (0.13, 0.528) 0.69 ± 0.26 (0.42, 0.013) 0.015

P(aaa) −0.01± 0.02 (0.13, 0.557) 0.07± 0.06 (0.21, 0.240) 0.222

P(ddd) −0.02± 0.02 (0.23, 0.272) 0.11 ± 0.05 (0.39, 0.022) 0.017

PATTERNSOFDYNAMICSWITHALTERNATIONS

P(ad) 0.20± 0.13 (0.32, 0.131) 0.75 ± 0.34 (0.36, 0.034) 0.160

P(da) 0.26± 0.15 (0.34, 0.099) 0.65 ± 0.32 (0.34, 0.048) 0.299

P(ada) 0.16± 0.14 (0.23, 0.271) 0.42± 0.28 (0.25, 0.144) 0.440

P(dad) 0.11± 0.11 (0.21, 0.329) 0.27± 0.28 (0.17, 0.344) 0.626

(a): Difference between groups by one-way ANOVA on ranks (normality failed) results: medians [25%, 75%], and p-value for the difference between groups.

(b): Linear regression estimates for age: linear regression coefficient ± StdErr (R, p-value: of the test H0: slope = 0, H1: slope 6= 0), and p-value of the test H0: equal slopes, H1: different

slopes, provided by one-way ANOCOVA.

to patient, and that there is one patient, NF6, in whom the
growth is not observed. Note also that the highest speed of
the growth exhibits the entropy H3, namely entropy which
estimates the distribution of three RR-increments. In the case
of the group of signals representing the F group, none of the
entropies considered pass the test for non-zero increase with
time. Therefore, we can hypothesize that there is no change in
entropic measures in the signals of the F group.

3.2. Dynamical Landscape Resulting From
Measures of Fragmentation
Fragmentation indices describe the system dynamics
concentrating on three actions only: acceleration, deceleration
and no change. RR-increments are filtered only by the definition
of the no-change action. In our estimations, we assumed the same
level—the level of signal resolution, for discerning the no-change
action. The statistics of counts of actions (medians together
with their 25th and 75th percentiles) of the fragmentation
indices introduced by us are presented in Table 4. The indices
are grouped into two classes corresponding to patterns of the
monotonic dynamic and patterns of dynamics with alternations.

First of all, let us admit the large distinction between
values of indices describing the presence of the monotonic
patterns in healthy sexagenarians and HTX patients, and the
almost equivalent presence of the patterns corresponding to

alternations in the dynamic. It occurs that persistent acceleration
or deceleration of the heart after HTX is of many times lower
probability than in a healthy organism. In the case of two-
action patterns, this observation reveals the symmetry NW-SE of
both probability distributions shown in Figure 3. This symmetry
reflects the antipersistency in organization of accelerations
and decelerations. However the sequences of accelerations and
decelerations could occur with smaller steps than the signal
resolution and therefore be hidden behind no-change actions.
Referring to the two-element patterns aa, dd, ad, da, the values
presented in section (a) of Table 4 allow an exact estimation of
the role of the patterns of the no-change action. This calculation
means that in the case of healthy sexagenarians, the statistics
presented in the table cover 76.5% of all actions, while in the case
of the F group of HTX patients, it represents only 36.8% actions,
and in the case of the NF group of HTX patients, it represents
45% of actions.

3.3. Dynamical Landscape Resulting From
Entropic Measures
Comparing fragmentation indices of the two HTX groups,
F and NF, we see differences between the group values
[statistically significant, p < 0.05, for all indices with the
exception of P(ada)]. All indices show greater values for the NF
group. The logistic regression test has proved that the groups
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FIGURE 5 | Time runs of fragmentation measures estimated for RR-increments obtained from the HTX groups. Blue marks and curves refer to the group of patients

free of complications. Red notation is used for HTX patients with complications. The bold curves represent the best linear regression approximation to the group data.

This line is dashed if the hypothesis of the zero regression coefficient cannot be rejected. For both lines, R2 correlation coefficients are shown. Points corresponding to

the same patient are connected by faded lines.

are statistically satisfactorily separated by almost all standard
statistical measures. The best classification abilities have been
found for dad + aaa: 20 signals of the F group and 25 of the NF
group were properly classified.

Some of the fragmentation indices show ameaningful increase
with time after surgery in the case of the NF group, while these
indices stay constant in the case of the F group. This refers to
events of two successive accelerations, two or three successive
decelerations and two successive alternates: acceleration and
deceleration in any order; see section (b) of Table 4. The
relations of indices of particular patients over time are shown in
Figure 5. The steepest increase is observed in the pattern of two
accelerations. The properties described could provide hints at an
explanation of the increases in the entropic measures discussed

in the previous subsection for the NF group of HTX patients and
stable values obtained for the patients in the F group.

4. DISCUSSION

The healthy heart repeatedly and tirelessly alternates between
accelerations and decelerations in response to the actual needs
of the organism. It is believed that these changes follow the
activity of the ANS (Task Force, 1996). The healthy human heart
remains under the permanent influence of both branches of the
ANS: the parasympathetic (considered to slow down HR) and
the sympathetic (considered to speed up HR). Many measures
estimating HRV have been proposed in order to quantify the
regulatory function of the ANS (Task Force, 1996; Billman,
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2011; Goldberger and Stein, 2015; Sassi et al., 2015; Laborde
et al., 2017). Intensive healthy population studies have found a
correlation between an increase in age and a decrease in many
HRV indices, including indices such as RMSDD, pNN50 and HF,
which describe the short-term variability (Reardon and Malik,
1996; Umetani et al., 1998; Pikkujämsä et al., 1999; Stein et al.,
2009; Schumann et al., 2010; Makowiec et al., 2015b), which has
been explained as being an impairment of heart adaptability with
age. Also, reduced HRV has been associated with an adverse
prognosis in patients with heart disease (Kleiger et al., 1987; Task
Force, 1996; Bigger, 1997; DeJong and Randall, 2005; Thayler
et al., 2010).

In the case of patients following HTX, any bicaval or biatrial
technique interrupts neural conduction to the heart, though heart
denervation is not complete as the intrinsic cardiac network, or
ganglia of the transplanted heart, has the potential to function
independently in the absence of central neuronal input (Armour,
2008; Karemaker, 2017). The HR becomes almost constant,
which means that the HRV is very low (Ramaekers et al., 1996).
Therefore it could be expected that any increase in HRVmight be
a manifestation of the regeneration of the autonomic regulation,
possibly due to the process of reinnervation (Ramaekers et al.,
1996; Cornelissen et al., 2012). However, the investigations
presented here suggest that the increase in HRV indices results
from the reconstruction in the myocardium due to complications
in the patient after HTX, rather than from ANS regulation.

For our analysis, we selected long-term HTX patients whose
progress after HTX was with complications. We decided to
consider all the patients who suffered from fungal infection
in their first year after the surgery (3 patients) and/or graft
rejection (6 patients). All of them displayed hypertension (8
patients). Some were diabetics (7 patients), had chronic renal
failure (4 patients), had suffered a stroke (3 patients) or had
cytomegalovirus infection (3 patients); see Table 1 for details.
The signals obtained from these patients were compared with
signals recorded from HTX patients whose progress after the
surgery was free of any complications although two of these
patients, F2 and F4, displayed hypertension. Hypertension is
noted in over 90 percent of HTX recipients (Lund et al.,
2017), and is mainly connected with immunosuppressive drugs
administration. In our patient groups, hypertension was treated
according to cardiological standards with good results. No
complications connected with hypertension were noted. To
clarify whether hypertension was involved in the results obtained,
we estimated separately the time development of HRV dynamical
landscape indices of the two patients F2 and F4. We found that
both patients perfectly displayed the F group properties, i.e.,
HRV indices were stable or going down with time. Therefore
differences in HRV behavior in time, found between the two
groups F and NF, encourage us to seek to understand HRV
dynamic measures as the potential tools in the evaluation of
patient prognosis.

Detailed studies of HTX patients have confirmed complete
denervation within the first 1–6 months after HTX (Awad
et al., 2016). There is evidence that sympathetic reinnervation
progresses over time and increases even late after transplantation.
It occurs that myocardial sympathetic reinnervation starts in

basal parts of the anterior wall and subsequently progresses
to distal parts of the myocardium. The parasympathetic
nervous system reinnervates mainly atria, and to a much lesser
extent the left ventricle (Grupper et al., 2017). Sympathetic
reinnervationmay occur without parasympathetic reinnervation,
causing an unbalanced response to stimuli, but parasympathetic
reinnervation seems to occur only in patients with sympathetic
reinnervation. Parasympathetic reinnervation of the sinoatrial
node is evaluated by respiratory sinus arrhythmia, which is
connectedmainly to vagal reinnervation (Crasset et al., 2001). An
increase in HRV post-HTX might suggest vagal reinnervation,
although some studies have failed to show any evidence of
parasympathetic reinnervation (Grupper et al., 2017). In general,
the reinnervation process appears in some but not all recipients,
and it remains incomplete and regionally limited (Bravo et al.,
2015; Grupper et al., 2017), and so is referred to as partial or
patchy (Awad et al., 2016).

In contrast, among healthy people, especially at an elderly
age, it has been observed that HRV may encompass not only
autonomic modulation, but also variability from abnormal HR
patterns. This phenomenon was referred to by Stein et al. (2002)
as erratic rhythm, and consists of irregular sinus arrhythmia
of non-respiratory origin (Stein et al., 2008; Nicolini et al.,
2012; Costa et al., 2017). The erratic rhythm may have a
confounding effect on age-related changes. Higher scores are
observed, especially among short-term HRV indices (Makowiec
et al., 2015a). The nature of erratic rhythms is unknown but, in
general, the presence of the erratic rhythm impairs the prognostic
power of HRV measures and age-related changes in HRV. Our
investigations imply that the increase in short-term HRV indices
observed in HTX patients may be related to the emergence of
erratic rhythms. New methods are needed to distinguish ANS
modulation from the erratic rhythm (Nicolini et al., 2012). The
fragmentation indices introduced by Costa et al. (2017) are a
proposition in this direction.

Erratic rhythm events are rather rare, and therefore long
signals are required in order to obtain satisfactory statistics. We
used signals consisting of 20,000 normal-to-normal RR-intervals,
and we underline again that only sinus rhythm was considered.
We decided to investigate nocturnal signals because of the
supposed increase in vagal activity associated with sleep (Viola
et al., 2004; Tobaldini et al., 2013; Chouchou and Desseilles,
2014), which slows down the heart rhythm, and in this way
becomes a natural background against which the erratic rhythm
can develop. An important factor was that none of the patients
included in the study presented any sleep disorders caused by
breathing. Moreover, the sleep recordings were substantially
less perturbed by all kinds of artifacts than other parts of
the Holter recording, and required minimal editing of the
signals. Furthermore, as with normal sleep, there are prominent
physiological rhythms associated with each approximately 90-
min cycle of deep phase sleep with high vagal activity, followed by
the REM phase with high sympathetic activity. This then switches
between non-REM and REM, allowing insights into strong
sympathetic and strong vagal activity and into the transition
between these (Chouchou and Desseilles, 2014). The signals
considered by us corresponded with approximately the first
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4–6 h of sleep, hence two or three sleep cycles have been
included.

Entropic measures are among the most frequently used
methods of quantification of the signal complexity. They are
based on the concept of the unpredictability of a state yielded
by a system (Shannon, 1948). The entropy perfectly separates
systems with the ideal order (the entropy is zero), when a
system stays in the same state all the time, from completely
random systems (entropy attains its maximal value), in which
each state has an equal probability of occurring. In general,
entropy provides an estimation of a given probability distribution
of states (Hlavackova-Schindler et al., 2007). The dynamic aspects
of an evolving system can be evaluated by relative quantities, such
as the entropy rate ST or self-entropy transfer sTE (Schreiber,
2000; Hlavackova-Schindler et al., 2007).

The visualization of HR dynamics presented in Figure 3

displays the crucial message of our analysis. It shows the mean
diversity of the two successive states: actions of accelerations
and decelerations, which remain stable over many years of
uncomplicated progress after the surgery. The constant levels of
all the HRV indices studied with the passing of time after the
HTX for the patients in the F group, all together, support our
main thesis that steady HRV serves well for the prognosis of the
future state of a HTX patient.

The entropy estimates are driven by the action space, i.e., the
way in which accelerations and decelerations are categorized.
In the following, we have relied in the state space construction
on the signal resolution. The action space and, consequently,
the pattern classification are given with 8 ms accuracy. Such a
resolution ensures that changes larger than 8 ms are discerned,
though accelerations and decelerations of a size smaller than
8 ms cannot be evidenced. Therefore, the total of occurrences
of the pairs of accelerations and decelerations aa, ad, da,
and dd provided in Table 4 is far from 1. It is worth noting
the similarity in the levels of the alternative patterns of ad
and da between healthy coevals and HTX patients, together
with the large discrepancy between these two groups in the
case of the levels of the monotonic patterns aa and dd. This
observation indicates possibly different mechanisms behind the
dynamics of alterations in HR and behind the dynamics of
speeding up or slowing down the HR. The alterations could
be related to an accidental change in the velocity of impulse
spreading the excitations in the myocardium tissue with the
regular rhythm issued by the sinoatrial node. The minor
occurrence of sequences of accelerations or decelerations in the
HTX patients may be a manifestation of the effect of slow
acceleration and deceleration ability after the HTX, verified,
for example, by tests measuring the exercise capacity (Carvalho
et al., 2009, 2013). Such a slow dynamics could be realized
by patterns with “0,” namely patterns of a0a or d0d type are
likely to be more common among the HTX patients than in
the healthy group. Also, it is worth noting that the dynamical
patterns studied, both monotonic and with alternations, are at
significantly greater levels in the patients of the NF class than
in patients of the F class; see Table 4. This could indicate a
greater diversity of sources participating in the production of
heartbeats.

The indicesH1(1RR), RMSSD, and pNNx where x = 20 or 50,
measuring the variability between two successive RR-intervals,
provide estimates for a single RR-increment: its unpredictability,
amplitude or frequency of occurrence, respectively. The results
obtained are consistent with each other, independently of the
differences in the measure concepts used in the construction of
the short-term variability estimators. The levels of these indices
found for HTX patients with complications, NF, are many times
higher than for the F group patients, whose progress was free of
complications. Moreover, all the indices display a tendency for an
increase over time in patients in the NF group.

The entropy of a pair of successive RR-increments H2(1RR)
and a triplet of successive RR-increments H3(1RR) provides
HRV measures which are not accessible with standard HRV
estimators. Similarly, the indices of fragmentation support
standard HRV analysis. By considering metrics based on patterns
classified due to the dynamical features they represent, we
have achieved a comprehensive description of the dynamics
of heart contractions. The entropic measures applied to the
distributions of these patterns have provided us with a
total measure of the fragmentation of a signal. They have
confirmed the importance of the dynamics. The properties of
ST and sTE have proved the presence of non-stochastic drivers
in this dynamics. Among these drivers, the erratic rhythm
driver should be inspected. In particular, properties of sTE
together with H1 have been found promising in discerning
abnormalities in the rhythm as they appear to be the best
discriminators between signals of the patients in the F and NF
groups.

5. CONCLUSIONS

HRV is reduced immediately after HTX and may increase
gradually with time, which is related to autonomic reinnervation.
Beside the standard HRV indices, we have investigated features
of segments with successive differences between heartbeats.
For our analysis, we have selected long-term HTX patients
who experienced complications after HTX or who were free
of major complications. Differences in HRV found between
these two groups encourage us to understand HRV dynamic
measures as potential tools in the evaluation of patient
prognosis.

The visualization of HR dynamics displays the crucial message
of our analysis. It shows the mean diversity in patterns of the
two successive states: actions of accelerations and decelerations,
which remain stable over many years of uncomplicated progress
after the surgery. The constant levels of all the HRV indices
studied with the passing of time after the HTX in the patients
in the F group, all together, support our main thesis that a steady
HRV serves well in the prognosis of the future state of a HTX
patient.

Our findings suggest that the increase in HRV indices
observed is related to erratic rhythms resulting from remodeling
of the cardiac tissue, including heterogeneous innervation,
over-activated neurohormones, the aging process and
immunosuppressive drugs taken chronically in long-term
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HTX patients. Therefore, we claim that short-term HRV indices
can serve as a tool in the study of the genesis of non-respiratory
sinus arrhythmia. Due to the regular observation of the heart
rhythms of HTX patients, these data form a good starting point
for this exploration.
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