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Abstract

The ground state intermolecular potential of bimolecular complexes of N-heterocycles

is analyzed for the impact of individual terms in the interaction energy as provided by

various, conceptually different theories. Novel combinations with several formula-

tions of the electrostatic, Pauli repulsion, and dispersion contributions are tested at

both short- and long-distance sides of the potential energy surface, for various align-

ments of the pyrrole dimer as well as the cytosine–uracil complex. The integration of

a DFT/CCSD density embedding scheme, with dispersion terms from the effective

fragment potential (EFP) method is found to provide good agreement with a refer-

ence CCSD(T) potential overall; simultaneously, a quantum mechanics/molecular

mechanics approach using CHELPG atomic point charges for the electrostatic inter-

action, augmented by EFP dispersion and Pauli repulsion, comes also close to the ref-

erence result. Both schemes have the advantage of not relying on predefined force

fields; rather, the interaction parameters can be determined for the system under

study, thus being excellent candidates for ab initio modeling.

K E YWORD S

dispersion, effective fragment potential, embedding, intermolecular interactions, Pauli
repulsion, QM/MM

1 | INTRODUCTION

Ab initio quantum chemistry is now an indispensable part of

chemical research. Although a large arsenal of methods is avail-

able, the cost of calculations grows rapidly with system size; and,

the more advanced the method, the faster the increase in cost. A

possible way to overcome this problem is the fragmentation of

the system into smaller components and applying an appropriate

formulation to account for their interaction. The number of

methods of this kind is tremendous, yet there are still many chal-

lenges. One of the biggest issues is how to cut chemical bonds

during fragmentation.

A specific situation is presented by molecular complexes, whose

fragments are molecules connected by non-covalent interactions. In

this case the Hamiltonian of a two-component system is trivially par-

titioned as

bH r1, r2ð Þ¼ bH1 r1ð Þþ bH2 r2ð Þþ bV r1, r2ð Þ, ð1Þ
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with bHi the Hamiltonian of the non-interacting fragments and bV r1, r2ð Þ
the interaction. This form evidently suggests perturbation theory as

the approach of choice, with the zeroth order wave function taken as

the product of the fragments' wave functions.

A large variety of methods with this ansatz are available today, of

various sophistication. Many of them offer the division of the interac-

tion energy into various, physically interpretable terms, including

purely electrostatic forces, dispersion, Pauli repulsion and other

smaller contribution s. The relative importance of the contributions

depends on the systems under investigation, as well as their distance.

The methods used for computing non-covalent interactions can be

classified as follows:

1. Symmetry-Adapted Perturbation Theory (SAPT)1,2 is in fact a hier-

archical set of methods based on double perturbation theory, with

respect to intermolecular interaction and electron correlation.

SAPT allows the calculation of individual, physically distinguishable

contributions, as well as the effect of electron correlation on them.

These methods are often used as reference in benchmarking

studies.

2. Classical force fields offer pre–calculated, transferable parameter

sets for the most important contributions to the non-covalent

interaction, such as electrostatic terms (partial charges, atomic

multipoles), as well as Lennard-Jones-type terms for dispersion

and Pauli repulsion.

3. Methods calculating the interaction energy directly from proper-

ties of the monomers. Among numerous methods of this type, the

Effective Fragment Potential (EFP) methods3 are the most

prominent.

4. Various energy decomposition approaches (EDA) of different com-

plexity and restrictions provide physically interpretable compo-

nents of the interaction energy, ranging from the early suggestion

of Morokuma,4 the Block-Localized Wave function (BLW)5 and

Natural EDA (NEDA) schemes6,7 to the Absolutely Localized MO

(ALMO) method by Head-Gordon et al.8,9

5. Embedding type methods include the interaction explicitly in the

Hamiltonian of the fragment(s). Most widespread are the quantum

mechanics (QM)/Molecular Mechanics (MM) approaches,10 but

other, density-based embedding methods are also available.

The authors of this paper have long been interested in the

description of the interaction of fragment–localized chromophores;

preliminary calculations showed that the most often used, purely elec-

trostatic approximations fail to provide the correct potential energy

surface, because further contributions are significant.10 This is particu-

larly true when the short–distance part of the potential is of interest,

for example for stacked interactions in DNA.

To find the best–suited approximation for these terms, the pre-

sent paper investigates the ground states of non-covalently inter-

acting bimolecular complexes and compares various methods for

different contributions to the interaction energy. Keeping our focus

on nitrogen–containing heterocycles, our test systems include pyrrole

dimers (denoted hereafter as Pyr-Pyr) in different orientations, as well

as stacked cytosine-uracil base pairs (Cyt-Ura). These complexes have

low-lying Frenkel-type pairs of excited states for which the proper

handling of non-covalent interactions is needed to obtain accurate

splitting.

The paper is organized as follows. Section 2 gives a short sum-

mary of the available methodologies, with emphasis on the differ-

ences in theoretical formulations and the possibility of incorporating

them into ab initio calculations. Based on this analysis, in Section 3 we

select a set of methods to be used in the tests. Section 4 describes

the computational details, and Section 5 presents the results.

2 | METHODOLOGIES OF MODELING
INTERMOLECULAR INTERACTIONS

Already at the dawn of quantum chemistry, it became clear that quan-

tum effects give rise to important short–range forces.11,12 By now,

the treatment of intermolecular interactions has a broad theoretical

background. Systematic overviews of the topic have been presented

in comprehensive texts.13–17

The contributions to the interaction energy are usually referred

to as1,15:

1. Electrostatic (eventually including polarization effects);

2. Dispersion;

3. Pauli repulsion (also called exchange repulsion);

4. Charge Transfer (CT);

5. and combinations of the above.

One way to distinguish these terms is offered by the SAPT the-

ory1,2 that, in different orders of perturbation theory, provides

approximate definitions for the individual terms of interaction. Of

course, one should always keep in mind that distinguishing these con-

tributions is physically not strict since an exact (or accurate) calcula-

tion on the complete system would give just one single, interaction

energy. Nevertheless, from the perspective of chemical and physical

intuition, and also for developing reasonable approximations, this dis-

tinction is well justified.

In SAPT, the electrostatic energy enters in first order in the inter-

action operator, with sizable contributions from the correlation

terms.1,2 Thus, a careful modeling of this contribution is essential.

The electrostatic interaction is traditionally incorporated into the

model via charges placed on the interacting molecules.18 If these char-

ges are at the atomic positions, the model corresponds to the chemi-

cal picture of atoms with partial charges. Also, this choice allows for

transferable force fields since charges can be assigned to atom types,

a concept used for other (intramolecular) parameters of the force

fields. Traditional force fields like AMBER19,20 or CHARMM21 use

such parametrization.

The ways of defining the partial charges have been reviewed

recently by Janeček et al.22 Here we just mention that the population

analysis concept used in the past is nowadays replaced by fitting

directly to ab initio results on interaction energies, dipole moments or
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electrostatic potentials. For the present study CHELPG23 is of special

importance since it represents a readily available algorithm to calcu-

late atomic charges for the particular monomer of interest. A recent

advance in this field is the W-RESP potential of Janeček et al.22

A more flexible parametrization of the electrostatic interaction

can be achieved using atomic multipoles, first suggested by Stone.14,24

Pioneering work in applying this technique was done within the

Effective Fragment Potential (EFP) framework.3 A recent version of

the method, termed EFP225,26 includes distributed multipoles up to

octupoles at the atomic centers and also at bond midpoints, with

polarizability included for localized molecular orbitals.27 Modern force

fields like AMOEBA (Atomic Multipole Optimized Energetics for

Biomolecular Applications),28 SIBFA (Sum of Interactions Between

Fragments Ab initio computed),29–31 DRF (Direct Reaction Field)32

also use this parametrization including multipoles up to quadrupoles,

often also with polarizable components.

For short intermolecular distances, however, the direct use of clas-

sical electrostatic interactions, whether in terms of charges or multi-

poles, does not work: the overlap of electronic densities cannot be

described correctly by discrete charge distributions.14 The importance

of this effect in, for example, stacked nucleobases was shown by Sherill

and co-workers33,34 in a comparison to SAPT0: the slightly repulsive

electrostatic interaction turns into attraction below 4 Å at the SAPT0

level, while AMBER and CHARMM remain repulsive. This effect plays

important role in compensating, e.g., for Pauli repulsion (see later). To

cover this artifact, damping terms have been introduced14 in several

model potentials like EFP,35 AMOEBA,36–38 SIBFA,39 or as a stand-

alone extension40; it has also been implemented in the Gaussian pro-

gram package41 for QM/MM type electrostatic modeling.

Two additional energy components decay fast with the distance

of the fragments but proved to be important in SAPT theory.1 One is

the dispersion energy, a result of correlation of the respective elec-

trons in the two fragments, which appears first in the second order

perturbation terms, thus correlation is clearly essential in it. Second is

the Pauli (exchange) repulsion, which arises when antisymmetrizing

the wave function of the complete system.42

In molecular force fields, dispersion and Pauli repulsion are often

considered together as one van der Waals potential, traced back to

Lennard-Jones.43 A comprehensive historical summary of the subject

was published recently.44 Lennard-Jones (LJ) (12–6) or Halgren's 14–

7 potentials45 are offered by various force fields. More sophisticated

models are also available, using more rigorous theoretical formulation

based on monomer properties. For example, S2-dependent functions

(with S being the orbital overlap) for Pauli repulsion is used in SIBFA46

and EFP.47–49

For dispersion, EFP2 calculates the so-called C6 coefficient of the

London expansion as the instantaneous dipole–induced-dipole inter-

action, obtained from the frequency dependent polarizabilities; it also

includes a C8 term estimated as one-third of C6.
50 The different ver-

sions of D corrections (D, D2, D3) on density functional theory (DFT),

to include dispersion, were developed by Grimme et al.51–53 for mole-

cules, but these can also be used to obtain intermolecular dispersion

energy. Similarly to the respective EFP2 term, it is based on a London

expansion up to C8, with C6 calculated from hydrides of the given

atoms. It also includes a theoretically justifiable damping factor and

three-body terms.

Beyond these a posteriori calculations, a more sophisticated way

to treat intermolecular interactions is to explicitly include them into

the Hamiltonian of the fragments. These models belong to the general

family of embedding methods.54 In these schemes the subsystem(s) is

(are) described by higher levels of theory, with the environment

approximated in a simpler model. The latter can be classical

continuum,55 MM10,56 or lower level QM.57

The simplest embedding scheme, QM/MM, places the quantum

system in a molecular mechanics environment. The QM Hamiltonian

of the fragment(s) is augmented by (possibly one-electron) interaction

terms usually taken from force fields. The point charges offered by

the force fields can readily be used in this scheme to include the elec-

trostatic contribution,10,56 but the inclusion of multipoles is also possi-

ble, see for example the QM/EFP2 method.26 An advantage of

QM/MM is that one can use (in principle) any QM level to calculate

the fragment's electronic structure under the influence of the environ-

ment10 and even excited states can be treated in a simplified manner.

The inclusion of Pauli repulsion and dispersion is less straightfor-

ward in QM/MM. Often these are just added as a posteriori correc-

tions to the energy. One should realize, however, that such potentials

depend only on the distance (of the atoms), the parameters are pre-

defined and do not reflect the actual electronic structure of the frag-

ments. In particular, the potentials have been optimized for ground

states, thus their use for excited states is not entirely justified.58

To overcome these problems, an embedding version of EFP2,

termed QM/EFP2 or ab initio /EFP2 has been introduced

recently.25,26,59 The method treats dispersion60 and Pauli exchange58

in the form of special one-electron operators. Reference [26] com-

pares individual terms obtained with EFP2 and QM/EFP2 with the

corresponding SAPT values for the S66 test set.61 It was found that

QM/EFP2 does not necessarily deliver superior interaction potentials;

this is most probably due to the lesser error compensation compared

to the regular EFP model. First applications to excited states give

promising results.58,62 Implementations of QM/EFP are available in

the GAMESS63 and Q-Chem64 program suites.

The embedding scheme also facilitates the treatment of all sub-

systems at QM level, with the advantage that the interaction with the

electron density of the environment can directly be calculated, with-

out discretization of the charge distribution or parametrization of

other contributions. Usually, the density of the surroundings is calcu-

lated at a lower level of theory. The Kohn–Sham (KS) DFT offers an

excellent framework for this QM based embedding as it scales favor-

ably with the system size while providing a relatively accurate descrip-

tion of the environment's density. In a typical DFT embedding scheme

the energy of the system is written as

E ρ½ � ¼ E ρA½ �þE ρB½ �þEint ρA,ρB½ �, ð2Þ

where A is the active subsystem, B the approximated environment,

and the third term their interaction; ρ denotes density. The main issue
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with DFT embedding is the treatment of kinetic energy contributions

appearing in the interaction term, which are not additive over the sub-

systems. This non-additivity can be eliminated by enforcing orthogo-

nality between the orbitals of the subsystems. Several methods,

including projector based approaches like the level shift method of

Manby et al.65 and the Huzinaga equation66 or basis set orthogonali-

zation67 can be applied to this end. The embedding scheme based on

the Huzinaga approach by Hégely and co-workers68,69 is especially

appealing since it provides a simple and formally exact framework.

Also, for the active site(s) DFT can be replaced by wave function

(WF) methods, allowing eventually the treatment of excited states.

This technique employs a subtractive embedding scheme where a

DFT calculation is performed on the entire system, which is then

divided into an active and an environment part. The energy of an

embedding calculation of this type can be given as

EWF�in�DFT
tot ¼ EDFT

tot �EDFT
A þEWF

eA
, ð3Þ

where EWF
eA

is calculated in the presence of the environment's density,

including thereby the electrostatic interaction of the subsystems.

Note that the exchange interaction between the two subsystems is

retained from the original super system calculation and included in the

final energy. However, since the underlying DFT calculation on the

super system does not describe dispersion correctly, this contribution

needs to be added afterwards.

In this work we test the two main categories of methods for

describing intermolecular interactions. First, a posteriori corrections

sourced from representative force fields including EFP2, the latter

considered as a system-specific FF. Second, embedding techniques,

which, to our knowledge, were not yet studied systematically for

intermolecular interactions beyond QM/MM. As comparison, SAPT

interaction terms are also evaluated for the two stacked complexes.

Note, however, that SAPT can only be used as a ground state bench-

mark since it is not yet set to be generally used for excited states,

although one should acknowledge a recent promising effort by Hapka

et al.70

3 | INTERACTION POTENTIALS

As outlined above, we want to test individual contributions to inter-

molecular non-covalent energy, as treated in various methods. The

aim is to find a combination of contributions, which is accurate

enough for ground states, can be combined with various QM

methods, and eventually can also be extended to excited states. Our

approach is pragmatic in the sense that instead of seeking general

conclusions, we intend to identify the best potentials/procedures to

TABLE 1 Overview of the methods and combinations used in this study

Method

Contribution

Electrostatics Pauli repulsion Dispersion Polarization CT

GAFF point charges (GAFF QM/MM) •

CHELPG point charges (CHELPG QM/MM) •

EFP2 multipole expansion (EFP2 El) •

Huzinaga embedding (Embed) • •

EFP2 Pauli repulsion (EFP2 Rep) •

EFP2 dispersion (EFP2 Disp) •

D3 correction (D3 Disp) •

GAFF Lennard-Jones (GAFF LJ) • •

GAFF Lennard-Jones C6 contribution (GAFF LJ Disp) •

EFP2 polarization (EFP2 Pol) •

EFP2 charge transfer (EFP2 CT) •

Total EFP2 (EFP2 Tot) • • • • •

Combinations

(EFP2 El + EFP2 Rep) • •

(EFP2 Rep + EFP2 Disp) • •

(EFP2 El + EFP2 Rep + EFP2 Pol + EFP2 CT) • • • •

(EFP2 El + EFP2 Rep + EFP2 Disp) • • •

(CHELPG QM/MM + GAFF LJ) • • •

(CHELPG QM/MM + EFP2 Rep + EFP2 Disp) • • •

(Embed + D3 Disp) • • •

(Embed + EFP2 Disp) • • •
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describe complexes of N-heterocycles at the vicinity of their equilib-

rium structures. Table 1 summarizes the methods we are going to

explore.

4 | COMPUTATIONAL DETAILS

4.1 | Ab initio calculations

The reference interaction energies were calculated at the CCSD(T)/

aug-cc-pVDZ level71 applying counterpoise (CP) correction72 for basis

set superposition error (BSSE). The choice of this relatively small basis

set seems justified by previous findings of Sinnokrot et al.73: for sta-

cked interactions the aug-cc-pVDZ basis, if used with CP correction,

performs well as compared to larger basis set results. The core elec-

trons were frozen in the correlation treatment.

The QM/MM calculations were performed at the CCSD/aug-cc-

pVDZ level using the CFOUR74,75 program package, with the MM point

charges incorporated into the one-electron Hamiltonian. The FF point

charges, as well as the parameters of the Lennard-Jones potential were

taken from the General Amber Force Field (GAFF).20 The relevant FF

parameters are listed in the Tables S1–S3 of the Supplementary material.

The determination of CHELPG point charges for the QM/MM

calculations was done at the CCSD/aug-cc-pVDZ level, using

GAMESS.63 The electrostatic potential of each molecule was calcu-

lated on a set of grid points around the molecule, with a step size of

0.8 Å and the most distant point from any atom set to 3 Å. The point

charges on the atoms were fitted to this potential, with the additional

requirement to reproduce the dipole and quadrupole moments

of the molecule. The CHELPG atomic charges are also found in

Tables S1–S3 of the Supplementary material.

The EFP2 interaction potentials were calculated using the

GAMESS built-in routine with default settings. The parameters include

the fitted multipole moments up to octupoles, exponential damping

functions for charge penetration effects, as well as dipole polarizabil-

ities and unique sets of parameters for Pauli repulsion, dispersion and

charge transfer. All of these were obtained from a restricted Hartree–

Fock calculation on the individual molecules using the 6–311++G

(3df,2p) basis set. The latter choice follows Slipchenko and Gordon76

in their study on the benzene dimer with different orientations.

For the DFT/WF embedding calculations we used the Huzinaga

embedding scheme of Hégely and co-workers.68,69 In this approach a

KS-DFT calculation is performed first on the entire system, which is

then divided into an active part and the environment. The orbitals are

localized on the subsystems and those on the active subsystem are

reoptimized by solving the Huzinaga equation, the latter including the

interaction with the environment represented by its occupied orbitals.

These resulting orbitals were subsequently used in the wave function

(WF) calculation on the active subsystem. The localization and par-

titioning of the orbital spaces plays an important role in this scheme:

not only does it separate the occupied orbitals of the active sub-

system and the environment, but the localization of virtuals also trun-

cates the supersystem's orbital space to the orbital space of the active

subsystem, thus lowering the computational cost of the ab initio elec-

tron correlation calculations. This localization is done using the Sub-

system Projected AO Decomposition (SPADE)77 approach, which

works in a black-box fashion, requiring only the atoms to be assigned

to the respective subsystems.

These embedding calculations were performed with the MRCC

program system,78,79 using again the aug-cc-pVDZ basis set. For the

KS-DFT part of the calculations the PBE80 functional was employed,

with the subsequent WF calculation on the active subsystem done at

the CCSD level (frozen core).

The PBE-D3 dispersion correction53 was evaluated using the

DFTD3 program with Becke–Johnson (BJ) damping.81 Only the inter-

molecular part of the dispersion was used; the relevant parameters

are given in Tables S11 and S12 of the Supplementary material.

SAPT calculations have been performed using the SAPT2020 pro-

gram42,82 connected with ATMOL1024,83 with the aug-cc-pVDZ basis

set used on the fragments. Selecting the SAPT=T keyword, all contri-

butions up to second order in the interaction potential1 have been

included in the total interaction energy, using correlation amplitudes

from CCSD calculations performed on the fragments. The assignment

of the various terms of SAPT to usual components (electrostatic, dis-

persion, Pauli exchange) has been done according to Equations (92)–

(95) in Reference.84

For non–symmetric complexes, that is when the two monomer

molecules are not equivalent, alternate choices for active/inactive

fragments (treated at high level, vs. lower level) are possible. The two

choices give minor differences in the QM/MM and embedding results

and their arithmetic mean was accepted as the final result.

4.2 | Molecular systems

The test systems under study are illustrated in Figure 1. In the discus-

sion below, the distance of monomers refers to that between the cen-

ters of masses.

For the pyrrole dimers six conformers were studied. Three of them

are co-planar (side to side orientations), denoted Pyr-Pyr (ILn)). In Pyr-Pyr

(IL1) the N–H bonds point in the same direction, with point group symme-

try of C2v; conformers Pyr-Pyr (IL2) and Pyr-Pyr (IL3) have D2h symmetry,

with the N-H groups pointing inward and outward, respectively. In addi-

tion, two T-shaped structures (Pyr-Pyr (T1)) and (Pyr-Pyr (T2)) (C1 point

group) and one stacked (Pyr-Pyr (S)) conformer was considered. In the lat-

ter, the fragments' dipoles point essentially in the opposite direction, but

the symmetry was lowered by a 10� in-plane rotation away from the C2h

structure. The cytosine-uracil complex was investigated in a stacked

(sandwich) setup (Cyt-Ura (S)), with oppositely oriented dipole moments.

The seven cases cover a broad spectrum of the nature of inter-

molecular interactions in the nitrogen heterocycles studied, with a

large variety of equilibrium separations. We thus aspire to draw

generic conclusions on the description of complexes of this type.

The equilibrium structures of the monomers, optimized at the

MP2/6-31G* level, were taken from Ref. 85 and are documented in

Tables S1–S3 of the Supplementary material along with the
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geometries of dimers at a representative distance in Tables S4–S10 of

the Supplementary material.

5 | RESULTS AND DISCUSSION

5.1 | Dispersion and Pauli repulsion

In Figure 2 the various dispersion and combined dispersion plus Pauli

repulsion potentials are compared. As of the dispersion potentials, the

EFP2 (EFP2 Disp, black), the D3 (D3 Disp, magenta) and the C6 part of

GAFF (GAFF LJ Disp, green) are considered, while for dispersion plus

Pauli repulsion, the EFP2 ([(EFP2 Rep + EFP2 Disp)], red) and Lennard-

Jones potential of GAFF (GAFF LJ, blue) are compared. For the pure

dispersion, the EFP2 gives significantly steeper curves than D3, and

GAFF is closer to the first one of the two. Consequently, for systems

with a larger distance between the closest atoms of the different frag-

ments, EFP2 and D3 will give similar results, while for systems with

shorter separation the D3 dispersion will be smaller, resulting in less

attractive or more repulsive total interaction curves (see later). In our

F IGURE 1 Orientation of the
molecules in the test systems used in this
study. The measure of the distance is
represented by the blue dotted line
connecting the centers of mass of the
fragments
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F IGURE 2 Distance dependence of various potentials describing dispersion and Pauli-repulsion contribution of the interaction energy. de
marks the reference equilibrium distance. For Cyt-Ura (S), due to technical difficulties, the SAPT dispersion curve only includes the E 20ð Þ

disp

contribution, which results in a slight overestimation of the magnitude of this term (see Figure S1 of the Supplementary material.)
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case this means that the choice between D3 and EFP2 is less relevant

for the co-planar structures, while for the T-shaped and sandwich

configurations the difference can go up to 0.002 a.u. or even larger

(0.01 a.u.), as in the case of Cyt-Ura (S).

The dispersion plus Pauli repulsion potential of EFP2 (EFP2 Rep +-

EFP2 Disp) corresponds, as also seen in Table 1, to the effects covered

by the GAFF Lennard-Jones potential. The behavior of the GAFF LJ

potential (blue curves on Figure 2) with respect to the corresponding

EFP2 curves (red curve) is not systematic. While EFP2 is generally more

repulsive, for Pyr-Pyr (IL2) the opposite is true. Although the general

shape of the curves appears to be similar, substantial energy differences

can occur even around the equilibrium distances of some structures. For

the Pyr-Pyr (IL1) and Pyr-Pyr (IL 2), as well as for Pyr-Pyr (S) the difference

is very small at the corresponding equilibrium distance, becomes, how-

ever, substantial on the repulsive side of the curve. In contrast, for Pyr-

Pyr (IL3) and Pyr-Pyr (T 1) where the proton attached to the N atom is

close to the other molecule, the discrepancy is remarkably large. Cyt-Ura

(S) is special in the sense that the two curves cross each other: at the

equilibrium separation the (EFP2 Rep + EFP2 Disp) shows a relatively

strong binding (0.005 a.u.) compared to the other examples in this study,

while the GAFF LJ curve is less bound with an interaction energy closer

to that of other structures (�0.002 a.u.). This is because for this system

the dispersion contribution in GAFF LJ is small, similar to D3, at least near

equilibrium (see the corresponding curves in Figure 2). This finding war-

rants the favorization of EFP2 potentials over Lennard-Jones type ones

for the dispersion contribution in similar systems. One has to keep in

mind, however, that other force fields can possibly show a better perfor-

mance than GAFF LJ parameters.

Figure 2 also includes SAPT results for the stacked systems,

which support many of the conclusions above. Not only appears EFP2

dispersion as preferred over D3 but also when combined with the

Pauli repulsion, the EFP2 follows the SAPT curve better than GAFF LJ

does. Nevertheless, the repulsive nature kicks in faster with SAPT

than with EFP2.

5.2 | Electrostatic interaction

In Figure 3 the distance dependence of the pure electrostatic contri-

butions obtained from the QM/MM approach with GAFF (GAFF

QM/MM, black), as well as CHELPG charges (CHELPG QM/MM, red)

and the corresponding EFP2 part (EFP2 El, blue) are seen, along with

the curve from the embedding calculation (which includes also Pauli

repulsion, see above) (Embed, orange) and the EFP2 curve

corresponding to it ([EFP2 El + EFP2 Rep], magenta). The figure also

includes the EFP2 curves augmented with the polarization and CT

contributions ([EFP2 El + EFP2 Rep + EFP2 Pol + EFP2 CT], green).

These latter terms do not turn out to be important in any case. In

fact, with the exception of Pyr-Pyr (IL1) where their inclusion reduces

the repulsive nature of the surface to some extent, the difference they

make is practically negligible.

When considering the pure electrostatic contributions (EFP2 El

and QM/MM curves) one should discuss the attractive and repulsive

cases separately. Attractive are Pyr-Pyr (IL1), Pyr-Pyr (T1) and Pyr-Pyr

(T2) as well as Cyt-Ura (S) curves. In these cases, even if QM/MM elec-

trostatic attraction is stronger at longer separations (Pyr-Pyr (IL1), Pyr-

Pyr (T2), Cyt-Ura (S)) EFP2 always predicts stronger interaction at

shorter distances. This latter effect is most probably due to the

damping/screening effect built into EFP2 but not in our QM/MM

approach. In the two cases possessing repulsive electrostatic interac-

tions (Pyr-Pyr (IL2) and Pyr-Pyr (S)), the EFP2 El curve shows a pro-

nounced turn-back at shorter distances, probably also caused by the

damping/screening formula employed in this model. At larger dis-

tances, before this turn-back occurs, the EFP2 El interaction is consid-

erably stronger than that predicted by the QM/MM models. The

largest relative discrepancy between the electrostatic curves is

observed for Pyr-Pyr (S), but note that the electrostatic interaction

here is very small compared to other cases. Still, this discrepancy will

influence even qualitatively the total interaction curve (see later). For

a better understanding of this effect, Figure 3 also shows the SAPT

electrostatic curves (in brown) for the Pyr-Pyr (S) and Cyt-Ura (S) sys-

tems. These support the above finding: screening/damping is impor-

tant, and its absence makes the QM/MM curves too repulsive or less

attractive at short distances. On the other hand, for Pyr-Pyr (S) the

EFP2 curve is overly repulsive at all distances, resulting in a quite bad

total energy curve for this system (see below). Similar discrepancy is

also observable for Cyt-Ura (S), but it is less severe.

There is no substantial difference between the curves obtained in

the QM/MM approach, using either CHELPG and GAFF point char-

ges. Therefore, we chose CHELPG in our further studies as the param-

eters can be obtained from an ab initio calculation for the molecules

in question.

Since the embedding model (Embed, orange curve of Figure 3)

automatically includes the Pauli repulsion contribution (see above),

the electrostatic part of the embedding cannot be compared directly

to the pure electrostatic curves. Instead, comparisons have to be

made to the (EFP2 El + EFP2 Rep) curves. In this regard, a very good

agreement is observed for Cyt-Ura (S), Pyr-Pyr (T1), Pyr-Pyr (T2), and

Pyr-Pyr (IL3), while for Pyr-Pyr (IL1) and Pyr-Pyr (IL2) the curves cross,

indicating a different distance dependence. The worst agreement is

observed for Pyr-Pyr (S) where embedding predicts a significantly wea-

ker repulsion, which, in light of the discussion on the pure electro-

static component above, is likely to be closer to reality. Near the

equilibrium, substantial (relative) difference is observed for the latter

three arrangements.

For the two sandwich configurations, the comparison of the

Embed (orange) curve to other electrostatic ones reveals the ultimate

importance of Pauli repulsion, changing the electrostatic interaction

qualitatively, even resulting in a minimum in case of the Cyt-Ura (S)

complex.

5.3 | Total interaction energy

In Figure 4 the total interaction energy of the investigated complexes

are shown. The black curve is the reference energy calculated for the
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complex using the CCSD(T) method and aug-cc-pVDZ basis with

CP correction. The total EFP interaction energy EFP2 Tot is shown

in red, the embedding curves augmented with two different disper-

sion corrections in green (Embed + D3 Disp) and orange (Embed +-

EFP2 Disp), while the CHELPG QM/MM electrostatics, augmented

with either the GAFF Lennard-Jones potential (CHELPG

QM/MM + GAFF LJ) or the EFP2 dispersion and Pauli repulsion

terms (CHELPG QM/MM + EFP2 Rep + EFP2 Disp), are displayed in

blue and magenta, respectively. The substantial differences in the

shape of the presented curves warrant the individual discussion of

the results for each test system. Additional information for this

analysis is given in Table 2 where the different contributions to the

F IGURE 3 Distance dependence of various potentials describing electrostatic and Pauli-repulsion contribution of the interaction energy. de
marks the reference equilibrium distance
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total interaction energy are listed at the respective equilibrium dis-

tance of the complex under study.

Pyr-Pyr (IL1) structure: Despite the fact that the dipole moments

of the two monomers are aligned in this system, there is a very weak

interaction between the monomers. Contrary to e.g. the sandwich

systems discussed below, here all three contributions to the interac-

tion energy are small (see Table 2). Both the EFP2 Tot and the (CHE-

LPG QM/MM + GAFF LJ) curves agree very well with the reference

one, while the (CHELPG QM/MM + EFP2 Rep + EFP2 Disp), as well as

the dispersion corrected embedding curves, show a weaker agree-

ment. The latter ones, in particular, have a minimum at a considerably

longer distance, although the interaction energy at the minimum is

similar to that of the reference. Contrary to the cases discussed

below, here a replacement of the D3 dispersion correction with the

EFP2 counterpart results in a negligible improvement. On the other

hand, by pairing the CHELPG QM/MM term with EFP2 dispersion and

Pauli repulsion instead of the GAFF LJ, the agreement with the refer-

ence curve becomes worse and the result is closer to the embedding

cases.

Pyr-Pyr (IL2) structure: The total interaction energy is even smaller

in this structure than in Pyr-Pyr (IL1). This is partly because the elec-

trostatic part is repulsive, thus compensating dispersion. Here the best

agreement with the reference is provided by (Embed + EFP2 Disp),

although the minimum is at a somewhat larger distance. The

(Embed + D3 Disp) combination provides a better location of the mini-

mum point, but the difference is not relevant, and the short-distance

repulsion is clearly overestimated by this model. The EFP2 Tot poten-

tial remains repulsive throughout the entire curve, thus failing to agree

even qualitatively with the reference. The (CHELPG QM/MM + GAFF

LJ) model is less bound than the reference, showing just the half of

the interaction energy, however, the position of the minimum reason-

ably agrees with the (Embed + EFP2 Disp) combination. Note that this

is the system where a large discrepancy between the GAFF LJ and the

(EFP2 Rep + EFP2 Disp) curves was observed above, the former being

more repulsive.

Pyr-Pyr (IL3) structure: The total interaction curve for this system

is repulsive in the investigated region, which is being reproduced by

all methods. The best agreement with the reference is provided by

the (CHELPG QM/MM + GAFF LJ) combination. However, contrary to

all other cases where the short-distance repulsion is clearly over-

estimated, this curve crosses the reference around 6 Å separation and

shows a considerably weaker repulsion below this point. This is in line

with the finding that the GAFF LJ curve considerably underestimates

the corresponding EFP2 curve (see Figure 2). The (Embed + EFP2

Disp) and (Embed + D3 Disp) combinations, as well as EFP2 Tot all

agree very well, showing a similar error of parallelity to the reference:

note that in this case the dispersion parts of the interactions were also

found to agree above.

Pyr-Pyr (T1) structure: The total interaction energy in this system

is the second largest among the investigated structures, with a strong

attractive electrostatic component (see Table 2). (Note that since the

two dipoles are perpendicular to each other, this part should be zero

in the dipole approximation.) The absolute values of the Pauli

repulsion and dispersion are also sizeable. The EFP2 Tot curve shows

the best agreement with the reference, slightly overestimating the

binding energy. The (CHELPG QM/MM + GAFF LJ) curve also comes

close to the reference one and underestimates the binding by just

15%, outperforming the (CHELPG QM/MM + EFP2 Rep + EFP2 Disp)

combination. This deviation is clearly caused by the discrepancy of

the GAFF LJ potential and the (EFP2 Rep + EFP2 Disp) terms discussed

in Section 5.1. With the combination of embedding and D3 (Embed +-

D3 Disp) the interaction energy is too weak by about 50%, a large

part of which can be corrected by replacing the D3 term with the

EFP2 dispersion (Embed + EFP2 Disp).

Pyr-Pyr (T2) structure: The interaction in this structure is domi-

nated by the dispersion, while the Pauli repulsion is mostly compen-

sated by the electrostatic attraction. A good agreement is seen

between most approximate methods, but they give only about half of

the interaction energy. Embedding can again be improved by replacing

D3 with EFP2 dispersion, resulting in an almost perfect agreement

with the reference. Since GAFF LJ and (EFP2 Rep + EFP2 Disp) were

found to agree very well in this case (see Section 5.1), the CHELPG

QM/MM result cannot be improved considerably by changing one to

the other.

Pyrrole-pyrrole sandwich(Pyr-Pyr (S)): Describing the interaction

in this system is a special challenge for theoretical methods.86 Near

the equilibrium, dispersion is the strongest contribution to the

interaction energy (�5 mEh), but it is largely canceled by the Pauli

repulsion and the (also repulsive) electrostatics, resulting in a very

small total interaction energy. It is thus an example where good

result can only be achieved with a method where a delicate balance

between the different contributions is present. Indeed, as Figure 4

shows, there is a substantial discrepancy between the two embed-

ding curves, with the one including D3 (Embed + D3 Disp 3) three

being less bonding. It is (Embed + EFP2 Disp) which has the smaller

absolute error (also the overall shape of the curve being similar to

the reference), while the former is similar to both QM/MM curves.

The agreement of the QM/MM curves is a consequence of the sim-

ilarity of the GAFF LJ and (EFP2 Rep + EFP2 Disp) potentials, dis-

cussed earlier in Section 5.1. Still, these methods yield only about

half of the reference total interaction energy. Contrary to other

cases, the EFP2 Tot curve is even qualitatively incorrect, showing a

constantly repulsive intermolecular interaction. This unexpected

behavior can be attributed to the overly strong electrostatic repul-

sion provided by the EFP2 method. Both the weaker performance

of the QM/MM approaches and the failure of the EFP2 method

was understood when comparing the electrostatic contributions to

SAPT in 5.2. Speaking of the latter, Figure 4 also shows the

corresponding curve in brown: the excellent agreement of

(Embed + EFP2 Disp) with the SAPT curve is very reassuring. This

system is thus an illustration of the extraordinary difficulty of

modeling weak interaction in stacked π-π complexes by approxi-

mate methods. In this regard, the good performance of the combi-

nation of embedding and EFP2 dispersion is remarkable.

Cytosine-uracil complex(Cyt-Ura (S)): Among the studied systems,

this complex shows the strongest interaction between the two
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F IGURE 4 Total interaction energy of the investigated complexes calculated at various levels of theory. de marks the reference equilibrium
distance. For Cyt-Ura (S), due to technical difficulties, the symmetry-adapted perturbation theory curve only includes the E 20ð Þ

disp dispersion
contribution which results in a slight overestimation of the attraction between the two molecules (see Figure S1 of the Supplementary material.)
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molecules (�14 mEh). Similarly to Pyr-Pyr (S), the interaction is dom-

inated by the dispersion (�12 mEh) which is about twice as large as

the size of the electrostatic and Pauli repulsion. Contrary to Pyr-Pyr

(S) however, the electrostatic part is attractive, compensating the

Pauli repulsion almost entirely. In comparison to the reference

curve, the EFP2 Tot as well as (Embed + EFP2 Disp) potentials turn

out to be the best choices. At longer distances also the (CHELPG

QM/MM + EFP2 Rep + EFP2 Disp) curve comes close to the refer-

ence, but the repulsion shown at the short-distance side of the min-

imum is clearly too strong due to the missing penetration

contribution (see Section 5.2). It is thus seen that for this system

the ab initio methods using EFP2 components clearly outperform

those with D3 or LJ corrections.

In summary, despite the very different bonding situations in the

model systems, most of the methods investigated here give reason-

able results.

The EFP2 Tot interaction curves agree very well with the refer-

ence curve in most cases, however this model fails even qualitatively

for the Pyr-Pyr (S) and Pyr-Pyr (IL2) systems, which are loosely bound

by other methods but not with EFP2 Tot.

CHELPG QM/MM, with either the GAFF LJ or the (EFP2 Rep +-

EFP2 Disp) term gives similar results for the stacked systems and Pyr-

Pyr (T2), while in other cases the curves with GAFF LJ correction are

substantially closer to the reference curves, except for Pyr-Pyr (IL2)

where GAFF LJ fails badly. Typically, the bonding provided by this

combination is a bit weaker than in the reference, representing a qual-

ity comparable to EFP2 Tot and somewhat less accurate than embed-

ding methods.

The dispersion corrected embedding curves (Embed + EFP2 Disp)

and (Embed + D3 Disp) are in most cases closer to the reference than

other methods investigated here. From these two, the former with

the EFP2 dispersion clearly gives the best agreement, outperforming

the latter, which uses D3 dispersion.

6 | CONCLUSIONS

Various approximate methods for the description of non-covalent

intermolecular interactions were investigated on certain conformers

of pyrrole-pyrrole and cytosine-uracil complexes as test systems. Spe-

cifically, the significance of various terms in the models and combina-

tions thereof were analyzed. Despite the approximate, in some sense

arbitrary definition of some contributions, we confirmed their general

importance. In fact, it was found that all contributions of a particular

model need to be included even for qualitatively correct potential

energy curves.

With future studies in mind, we paid special attention to models

that can be combined with any electronic structure methods. In this

respect, QM/MM type formulations with point charges are ideal since

they can easily be implemented in the one-electron Hamiltonian, with-

out affecting the execution of any level of calculation. However,

despite its widespread, successful applications to, e.g., solvent effects,

QM/MM is not suited per se for weakly bonded dimers. In our test

systems, other terms, such as dispersion or Pauli repulsion give non-

negligible, often dominating contributions. Thus, the electrostatic part

needs to be augmented with the latter. Most force fields contain a

Lennard-Jones type potential for this purpose; our calculations indi-

cate, however, that more sophisticated methods, e.g. the Effective

Fragment Potential technique, may be needed.

At the same time, one has to keep in mind that different models

address the division of interaction into individual terms by different

strategies. Therefore, it is not surprising that combinations of differ-

ent approaches tend to give inconsistent or controversial results.

Still, we found certain setups of promising performance,

approaching the reference CCSD(T) and, where available, also the

SAPT results. In particular, a DFT/CCSD embedding model covering

electrostatic and Pauli repulsion effects, if augmented with disper-

sion via the respective EFP2 term, proved to be a reasonable

TABLE 2 Energy contributions (in
mEh) of different terms and combinations
at the reference equilibrium point de

Pyr-Pyr
Cyt-Ura

(IL1) (IL2) (IL3) (T1) (T2) (S) (S)

de/a.u. 5.9 6.3 (6.0)a 4.5 4.9 3.9 3.3

Embed 1.7 0.6 9.6 �1.0 1.5 3.3 1.8

CHELPG QM/MM �0.4 0.5 7.3 �6.8 �0.4 2.1 �6.9

EFP2 El �0.4 0.9 7.8 �7.7 �0.3 3.7 �8.4

EFP2 Rep 1.6 0.5 2.5 6.6 2.9 3.0 11.6

EFP2 Disp �2.0 �1.4 �1.2 �5.0 �4.0 �5.4 �15.3

D3 Disp �1.8 �1.4 �1.4 �3.4 �2.7 �3.4 �9.0

GAFF LJ �0.9 �0.7 �0.9 �0.8 �1.1 �2.4 �0.4

(EFP2 Rep + EFP2 Disp) �0.4 �0.9 1.3 1.6 �1.1 �2.4 �3.7

EFP2 Tot �1.3 0.1 7.9 �8.8 �1.6 0.6 �13.7

(Embed + EFP2 Disp) �0.2 �0.7 8.4 �6.0 �2.5 �2.2 �13.4

(Embed + D3 Disp 3) 3 �0.1 �0.8 8.2 �4.5 �1.2 0.1 �7.0

Reference �1.4 �0.8 6.2 �8.1 �2.7 �1.7 �14.1

aSelected point as there is no minimum in the investigated range.
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working strategy. It has shown remarkable accuracy specifically for

the stacked interactions. A QM/MM style electrostatics using CHE-

LPG charges, with the point charges determined at the partner mol-

ecule's nuclei is also a viable alternative to the widely adopted force

field charges, also liberating the description from the dependence

on precalculated parameters and atom types. Combination with

either the EFP2 dispersion plus Pauli repulsion or with a Lennard-

Jones potential of the GAFF force field gave similar results, the lat-

ter being slightly better in some examples; but the latter finding is

probably specific to the choice of this particular FF and may not be

achievable for systems with different atom types. Also, the LJ con-

tribution is disturbingly random: depending on the specific arrange-

ment, it may severely overestimate, in other cases underestimate

the interaction. Thus, its application would be difficult to support

and we feel that the idea of a general, system-adopted description

provided by EFP2 is comforting enough to be favored over the LJ

approach of any force field.

The D3 dispersion correction, a strategy also founded on transfer-

able atomic parameters, was clearly outperformed by EFP2 in our

results (This finding is, of course, not related to the original applicabil-

ity of D-type corrections in DFT).

In summary, among the many alternative formulations arising

from the synthesis of different theories we have found combinations,

which not only offer good performance, but also retain the generality

and theoretical desirability of ab initio modeling. For future studies,

especially our planned work on excited states, the sophisticated

description offered by DFT/CCSD embedding and the easily

implementable QM/MM approach with CHELPG charges, both aug-

mented with missing terms from EFP, are the recommended tools.
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