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Molecular Pharmacological Approaches for 
Treating Abdominal Aortic Aneurysm

Takashi Miyake, MD, PhD, Tetsuo Miyake, MD, Tomohiro Kurashiki, MD,  
and Ryuichi Morishita, MD, PhD

Abdominal aortic aneurysm (AAA) is considered to be a 
potent life-threatening disorder in elderly individuals. Al-
though many patients with a small AAA are detected during 
routine abdominal screening, there is no effective therapeu-
tic option to prevent the progression or regression of AAA 
in the clinical setting. Recent advances in molecular biology 
have led to the identification of several important mol-
ecules, including microRNA and transcription factor, in the 
process of AAA formation. Regulation of these factors using 
nucleic acid drugs is expected to be a novel therapeutic op-
tion for AAA. Nucleic acid drugs can bind to target factors, 
mRNA, microRNA, and transcription factors in a sequence-
specific fashion, resulting in a loss of function of the target 
molecule at the transcriptional or posttranscriptional level. 
Of note, inhibition of a transcription factor using a decoy 
strategy effectively suppresses experimental AAA formation, 
by regulating the expression of several genes associated 
with the disease progression. This review focuses on recent 
advances in molecular therapy of using nucleic acid drugs 
to treat AAA.
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Introduction
Abdominal aortic aneurysm (AAA) is characterized by a 
permanent dilatation of aorta, associated with weakening 
of the aortic wall. The prevalence of AAA is approxi-

mately 5% in men and 1% in women over 60 years of 
age.1,2) Although AAA is usually asymptomatic, it gradu-
ally expands in many patients, and ruptured AAA has 
a high mortality.3) Therefore, AAA is considered to be a 
potent life-threatening disorder in elderly patients. The 
main purpose of human AAA management is AAA rup-
ture prevention and therapeutic intervention defined by a 
balance between operative risk and rupture risk. Patients 
with a large AAA receive elective surgical or endovascular 
repair to prevent rupture. Although a large number of 
asymptomatic patients with a small AAA are detected 
incidentally during routine abdominal screening, survival 
of patients with a small AAA is not improved by these 
interventional procedures in contrast to patients with a 
large AAA.4–7) Therefore, the dimension of a small AAA 
is monitored using noninvasive imaging methods, and 
surgical intervention is considered when the aneurysm 
diameter attains the interventional size. For treating small 
AAAs, many researchers are seeking a novel therapeutic 
approach, especially pharmacological therapy. Indeed, 
the efficacy of several medicines, such as the renin–angio-
tensin–aldosterone system (RAAS) inhibitors and statin 
and matrix metalloproteinase (MMP) inhibitors, on AAA 
formation has been confirmed in experimental studies.8–10) 
However, there is no evidence for a beneficial effect of 
these medicines on AAA progression in clinical trials.11) 
Therefore, the treatment strategy of patients with small 
AAAs remains an imperative clinical problem.

Recent progress in molecular and cellular biology iden-
tifies several important genes and intracellular pathways 
in the pathogenesis of several disorders, including AAA. 
These factors are thought to be potent therapeutic targets 
for treating specific diseases, and gene therapy, including 
nucleic acid-based therapy, is considered to be an innova-
tive and promising approach to modify the expression of 
target genes. Indeed, several types of nucleic acid drugs 
have been investigated for their therapeutic effects on nu-
merous pathologic conditions, such as cancer, inflamma-
tory bowel disease, and atherosclerosis, in experimental 
studies, and some of these agents have been used in clinical 
settings.12–14) This review focuses on the potential of gene 
therapy for the treatment of AAA.
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Gene Therapy
Gene therapy is a manipulation of gene expression and/or 
function to treat both hereditary and acquired diseases. 
One approach to alter gene expression is administration 
of a functional exogenous gene (DNA) into cells to restore 
gene function or to provide a therapeutic mediator. Re-
cently, the candidate gene association studies and genome-
wide association studies identified a number of mutated 
genes associated with AAA formation, and these genes are 
considered to be a potent therapeutic target.15) In addi-
tion, it has been reported that inhibition of experimental 
AAA development and/or occurrence were achieved via 
overexpression of therapeutic genes, such as cytochrome 
P450 epoxygenase 2J2 (CYP2J2), angiotensin converting 
enzyme 2 (ACE2), and lectin-like domain of thrombo-
modulin.16–18) CYP2J2, a member of the cytochrome P450 
superfamily of enzymes, metabolizes arachidonic acids to 
epoxyeicosatrienoic acids. Recombinant adeno-associated 
virus (AAV)-mediated CYP2J2 overexpression increased 
epoxyeicosatrienoic acids, resulting in the inhibition of 
angiotensin (Ang) II-induced AAA progression via ac-
tivation of peroxisome proliferator-activated receptor 
(PPAR)γ and anti-inflammatory effects in ApoE-deficient 
mice.16) Similarly, ACE2 is a well-known member of 
RAAS, and it induces the conversion of Ang I to the Ang 
1-9 and Ang II to Ang 1-7. Because these effector mol-
ecules mediate anti-inflammatory and anti-Ang II effects, 
ACE2 gene transfer inhibited Ang II-induced AAA forma-
tion in ApoE-deficient mice.17) The therapeutic effects of 
overexpression of lectin-like domain of thrombomodulin 
were also investigated in mouse CaCl2- and Ang II-
induced AAA models. Thrombomodulin is a co-factor for 
thrombin and acts as an anti-coagulant factor. One-time 
intravenous administration of recombinant AAV vec-
tors carrying the lectin-like domain of thrombomodulin 
inhibited the expression of high-mobility group box 1 
(HMGB1) and advanced glycation end product (RAGE), 
resulting in the prevention of AAA formation through 
downregulation of inflammatory response and oxidative 
stress.18) Overexpression of microRNA (miRNA) also in-
duced therapeutic effects on AAA progression. Lentivirus-
mediated miRNA-21, -24, or -145 overexpression inhib-
ited AAA expansion or reduced the incidence of AAA in 
mice.19–21) However, the therapeutic effects of the delivery 
of a single gene might be limited to treat AAA, because 
multiple mediators contribute to AAA formation.

Nucleic Acid Medicine
Nucleic acid-based therapy is included in criteria of gene 
therapy, because of their ability to modify the expression 
of a specific gene to treat a pathological condition.13,22) 

Nucleic acid drugs are synthetic single- or double-strand-
ed oligodeoxynucleotides (ODN) that contain a consensus 
sequence of the target factor. These ODN bind to the tar-
get mRNA, miRNA, or transcription factor in a sequence-
specific fashion via Watson–Click base pairing, resulting 
in a loss of function of the target molecule at the tran-
scriptional or posttranscriptional level.22) Typically, anti-
sense ODN, small interfering RNA (siRNA), micro RNA, 
anti-miRNA, aptamer, ribozyme, and decoy ODN are 
included in the nucleic acid drugs.23) Change in the activity 
of miRNA and transcription factor via nucleic acid drug 
can alter the expression of a set of genes associated with 
disease progression, whereas other technologies inhibit 
only one target gene. The therapeutic value of nucleic acid 
drugs has been reported in experimental models of many 
diseases, including AAA.24) Pathophysiology of AAA is 
characterized by chronic inflammation and degradation of 
the aortic wall.1) Therefore, inflammatory and proteolytic 
factors are considered to be the primary targets for nucleic 
acid-based therapy to treat AAA.

Antisense ODN
Antisense ODN are short single-stranded DNA or RNA 
molecules comprising 10–25 nucleotides that can spe-
cifically hybridize with a complementary sequence of the 
target mRNA. After binding of antisense ODN to mRNA, 
the translation of mRNA is arrested and mRNA is cleaved 
by ribonuclease H, resulting in the suppression of target 
protein synthesis.25,26) Therefore, antisense ODN are 
also useful tools in the study of gene function, because of 
the specific inhibition of target gene expression without 
changing the function of other genes. Recently, the ef-
fect of antisense ODN against heparin-binding EGF-like 
growth factor (HB-EGF) on Ang II-induced AAA forma-
tion was investigated in low-density lipoprotein-deficient 
mice. Although the association of hyperlipidemia with 
AAA development is controversial in humans, systemic 
administration of HB-EGF specific antisense ODN sup-
pressed AAA formation through antihyperlipidemic ef-
fects.27) This study suggests the importance of restoring 
environmental factors for managing patients with AAA.

Small Interfering RNA and MicroRNA
Both siRNA and miRNA silence the translation of target 
mRNA using RNA interference system, which is a normal 
physiological response to control the synthesis of a specific 
protein in cells. However, aberrant expression of siRNA 
and miRNA also contributes to initiation and progression 
of AAA, and several studies reported that miRNA might 
be available as a biomarker to predispose AAA forma-
tion.28) Therefore, a role of these molecules in the process 
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of AAA formation has gained research interest, and modu-
lation of their expression has been investigated in several 
experimental studies.

siRNA and miRNA are a class of non-coding double-
stranded RNA and induce posttranscriptional gene si-
lencing in a sequence-specific fashion. Typically, siRNA 
is composed of 21–23 nucleotides in the effector phase 
and has a complete complementary sequence of the tar-
get mRNA. After binding to the target mRNA, siRNA 
degraded mRNA via an RNA-induced silencing com-
plex.26,29) Although siRNA has been used to investigate 
the function of a gene in in vitro studies, its effects have 
also been evaluated in experimental models of AAA. Ad-
ministration of siRNA against resistin-like molecule-beta 
attenuated the incidence and severity of Ang II-induced 
mouse AAA via anti-inflammatory effects associated with 
the inhibition of extracellular signal-regulated kinase 
1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activa-
tion.30) In addition, silencing of hypoxia inducible factor-1 
(HIF-1) using lentivirus expressing HIF-1α shRNA also 
suppressed AAA formation in ApoE-deficient mice.31)

MicroRNA composed of 10–25 nucleotides has an in-
complete complementary sequence in the 3′ untranslated 
regions of mRNA. Because many mRNAs have the bind-
ing site against one miRNA, miRNA can hybridize several 
genes associated with both physiological and pathological 
conditions. In addition, a different kind of miRNA can 
bind to the same 3′ untranslated regions of mRNA, and 
the translation of mRNA is cooperatively regulated by 
these miRNA.32,33) There are two approaches to regulate 
miRNA activity using nucleic acid agent. Inhibition of 
miRNA activity is performed by antagomirs, which are 
synthetic single-strand RNA including the complemen-
tary sequence of target miRNA. An antagomir hybridizes 
with the target miRNA, resulting in the degradation of 
miRNA.32,33) In contrast, an increase in miRNA activity is 
induced by double-strand ODN, pre-miRNA, or miRNA-
mimics.34) Several clinical studies have demonstrated the 
altered miRNA expression in both human AAA wall and 
serum samples.28,35–39) Regulation of these miRNA via 
antagomirs or miRNA-mimics induces a potent therapeu-
tic effect on experimental AAA formation. Silencing the 
expression of miRNA-29b, -155, -181b, and -712 using 
antagomirs inhibited elastase or Ang II-induced AAA 
expansion in a mouse model.38–42) A detailed explanation 
of the role of miRNA in AAA formation and therapeutic 
value of antagomirs and miRNA-mimics on AAA forma-
tion has been provided in previous review articles.36,43,44)

Decoy Strategy
Several intracellular pathways are activated in the process 
of disease progression in humans. These cascades, includ-

ing compensatory pathways, converge on the activation 
of a specific transcription factor network. Activation of 
transcription factors leads to the transcription of a set 
of genes associated with a pathologic condition, as well 
as a physiological phenomenon. Some of these effector 
molecules have an ability to activate the transcription 
factors, resulting in the induction of a positive feedback 
loop that leads to sustaining disease condition. A decoy 
strategy is available to regulate the activity of endogenous 
transcription factor (Fig. 1). Decoy ODN are synthetic 
double-stranded ODN containing the consensus sequence 
of the target transcription factor (cis-element) binding 
site. Because decoy ODN can bind to target transcription 
factors in a sequence-specific fashion, the binding of the 
transcription factor to the promoter or enhancer region 
is blocked, resulting in the suppression of gene transcrip-
tion. In addition, administration of decoy ODN against a 
negative transcription factor enhances the expression of 
suppressed genes.45) Therefore, the decoy strategy leads 
to normalization of the aberrant gene expression profile 
associated with disease progression. Indeed, in experimen-
tal studies, the efficacy of decoy ODN has been reported 
in several diseases models, such as cancer, inflamma-
tory bowel disease, neointimal hyperplasia, and AAA.46–50) 
Based on a potent biological effect of decoy ODN, clinical 
studies using decoy ODN were performed in the field of 
cancer and restenosis after coronary intervention.51–53)

Fig. 1 Chimeric decoy strategy against NFκB and STAT6.
Chimeric decoy ODN contain consensus sequences of 
multiple transcription factors in one decoy ODN, resulting 
in simultaneous inhibition of target transcription factor acti-
vation. A part of the consensus sequences of two different 
transcription factors is overlapped in the structure of ODN. 
ODN: oligodeoxynucleotide; STAT: signal transducers and 
activator of transcription
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Target of Transcription Factors to Treat 
AAA
Recent clinical studies have demonstrated the upregula-
tion of several kinds of transcription factors in human 
AAA walls when compared with non-aneurysmal samples. 
These transcription factors mainly regulate the expres-
sion of pro-inflammatory factors, such as cytokines and 
adhesion molecules. Among them, nuclear factor-kappa 
B (NFκB) is thought to play an important role in the pro-
cess of AAA formation, because it is a key transcription 
factor in both acute and chronic inflammatory responses. 
NFκB directly regulates numerous cytokines and pro-
teases, such as Interleukin (IL)-1, IL-6, tumor necrosis 
factor-α (TNF-α), and MMPs, and TNF-α and IL-1b can 
also activate NFκB.54–57) NFκB also regulates the expres-
sion of adhesion molecules and chemokines, which induce 
the migration of inflammatory cells.58,59) Because inflam-
matory cells, including mast cells, are the primary source 
of inflammatory cytokines and proteases, inhibition of 
inflammatory cell recruitment indirectly suppresses the 
excess expression of inflammatory mediators. Indeed, 
our previous studies demonstrated that treatment with 
NFκB decoy ODN mediated a potent anti-inflammatory 
effect in rat and rabbit AAA models.50,60) Furthermore, 
NFκB inhibited the transcription of elastin and collagen 
genes, suppressing their synthesis.61,62) Therefore, NFκB is 
thought to be a main target of the decoy strategy to treat 
AAA.

Ets regulates the gene expression in response to mul-
tiple developmental and mitogenic signals, including cell 
growth, differentiation, and apoptosis. In addition, it is 
also known to regulate MMP-1, MMP-2, and MMP-9 
transcription.63,64) Several clinical studies have reported 

the activation of ets-1, -2, and -4 and ELF1 in the human 
aneurysm wall.60,65,66) Our previous study demonstrated 
that treatment with ets decoy ODN reduced the size of 
already-formed experimental AAA in rabbits.60)

The members of KLF family regulate the expression 
of various genes associated with cellular proliferation, 
differentiation, and apoptosis, and contribute to the de-
velopment and homeostasis of several tissues. Previous 
studies have demonstrated the activation of KLF4 in the 
human aneurysm wall, and deletion of KLF4 attenuated 
AAA formation in elastase- and Ang II-induced mouse 
AAA model.67) In contrast, concentration of KLF15 was 
reduced in human AAA tissues, and deficiency of KLF15 
induced AAA formation and heart failure in mice through 
activation of p53 and p300 acetyltransferase.68)

Signal transducer and activator of transcription (STAT) 
regulates the transcription of several genes associated with 
inflammatory and immune responses. In addition, STAT 
activation induces cellular differentiation, proliferation, 
and apoptosis in various cell types. Therefore, regula-
tion of STAT using decoy ODN has been investigated for 
treating cancer, asthma, and inflammatory bowel disease. 
A previous study demonstrated the activation of STAT1, 
2, 3, and 5 was in human AAA wall compared with 
non-aneurysm aortic wall samples.69) In an experimental 
study using ApoE-deficient mice, administration of Ang II 
induced STAT3 activation in the AAA wall through Toll-
like receptor 4 signaling, and pharmacological inhibition 
of STAT3 reduced the incidence and severity of Ang II-
induced AAA formation.70) Similarly, although an increase 
in IL-17 participates in Ang II-induced AAA formation in 
mice, IL-6-STAT3 signaling pathway induced the accu-
mulation of Th 17 cells in the AAA wall and inhibition of 
STAT3 activity suppressed AAA formation.71)

HIF-1 is activated under hypoxic conditions in tissues 
and regulates several genes responding to this environ-
mental stimulus. The function of these genes is mainly as-
sociated with inflammation, angiogenesis, and cell growth. 
Activation of HIF-1 was also observed in human AAA 
tissues.72) In addition, silencing of HIF-1 using shRNA 
reduced AAA diameter in an Ang II-induced ApoE-defi-
cient mouse AAA model via inhibition of upregulation of 
MMPs and inflammatory and angiogenic factors.31) A sim-
ilar observation was seen using pharmacological inhibi-
tion of HIF-1 in an elastase-induced mouse AAA model.72) 
In contrast, it has been reported that expression of HIF-1 
in myeloid lineage protects AAA formation. In myeloid-
specific HIF-1α and ApoE double-knockout mice, deletion 
of HIF-1 increased aneurysm diameter after infusion of 
Ang II.73) These findings suggest that the effects of HIF-1 
differ among different types of cells in the AAA wall.

Recent studies have also demonstrated that deletion of 
brain and muscle Arnt-like protein 1 in smooth muscle 

Table 1 Target transcription factor for treating AAA in experi-
mental studies

Transcription 
factor

Deletion/blockade
AAA  

formation
References

NFκB Decoy ODN ↓ 60
Ets Decoy ODN ↓ 60
KLF family

KLF4 KO (SMC) ↓ 67
KLF15 KO ↑ 65

STAT3 STAT3 inhibitor ↓ 70, 71
HIF-1α shRNA ↓ 31

KO (myeloid lineage cell) ↑ 73
XBP1 KO (SMC) ↑ 99
BMAL1 KO (SMC) ↓ 74

AAA: abdominal aortic aneurysm; BMAL1: brain and muscle 
Arnt-like protein-1; KO: knock out; SMC: smooth muscle cell; 
STATS: signal transducer and activator of transcription; ODN: 
oligodeoxynucleotide; XBP1: X-box binding protein 1
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cells inhibits AAA formation in AAA mice.74) This tran-
scription factor is known to regulate the circadian rhythm. 
Similarly, Runx1, a transcription factor for hematopoi-
esis, was also enhanced expression in the human AAA 
wall.65,75) Therefore, further studies are needed to clarify 
the transcription factor network associated with AAA 
formation, which can lead to a new therapeutic approach 
for AAA (Table 1).

Chimeric Decoy Strategy for Treating AAA
In the promoter region of DNA, there are binding sites 
for several transcription factors. Therefore, multiple tran-
scription factors can bind to the promoter region of one 
gene, and are thought to cooperatively regulate target gene 
expression, whereas the effect of an individual transcrip-
tion factor on transactivation of target genes differs in 
disease state, phenotypes, and cell types.76) This phenom-
enon suggests that the inhibition of multiple transcription 
factors is necessary to obtain sufficient gene regulation. 
In addition, combined blockade of multiple transcrip-
tion factors might affect a number of gene expressions 
associated with different aspects of disease progression. 
Therefore, attention of a new therapeutic approaches of 
decoy strategy are shifting toward inhibition of multiple 
transcription factors.77–82)

Although it might be possible to administrate several 
types of decoy ODN against a single transcription factor 
in cells, transfection efficiency of individual decoy ODN 
is thought to be significantly low, resulting in insufficient 
silencing efficiency. Therefore, a chimeric decoy strategy 
was developed to regulate multiple transcription factors 
simultaneously. Chimeric decoy ODN contain consensus 
sequences of multiple transcription factors in one decoy 
ODN, resulting in simultaneous inhibition of target 
transcription factor activation.13) Furthermore, a novel 

chimeric decoy ODN (Fig. 1) was used. Although conven-
tional chimeric decoy ODN contain individual consensus 
sequences at a separate site in their structure, a part of the 
consensus sequences of two different transcription factors 
was overlapped in the structure of ODN. The inhibitory 
effect of this type of decoy ODN on the activation of two 
target transcription factors was confirmed in a mouse 
asthma model.77) This modification results in shortening 
of the ODN length, leading to an increase in transfection 
efficiency and a decrease in production cost.

Chimeric decoy ODN typically contain a consensus 
sequence of two transcription factors, because ODN with 
a long sequence have low transfection efficiency and may 
induce conformational changes. Although any transcrip-
tion factor can be chosen for a chimeric decoy strategy, 
an appropriate selection of transcription factors against 
target disease is vital for achieving favorable outcomes 
(Table 2). We focused on inhibition of NFκB combined 
with another transcription factor for treating inflamma-
tory diseases. Our previous studies demonstrated that 
simultaneous inhibition of NFκB and E2F significantly 
suppresses anastomotic intimal hyperplasia via inhibition 
of inflammatory response and proliferation of VSMC 
(vascular smooth muscle cell) in rabbits, because E2F 
regulates the expression of cell cycle regulated genes.78) 
In addition, the efficacy of chimeric decoy ODN against 
NFκB and STAT6 on asthma exacerbation was confirmed 
in an ovalbumin-induced mouse asthma model.77) For 
treating AAA, we focused on simultaneous inhibition of 
NFκB and ets, because these transcription factors syner-
gistically regulate the expression of many inflammatory 
factors including MMPs. The prevention of AAA progres-
sion using chimeric decoy ODN against NFκB and ets 
was confirmed in elastase-induced rat and rabbit AAA 
models.50,83) Furthermore, treatment with chimeric decoy 
ODN induced regression of already-formed AAA in rab-

Table 2 Chimeric decoy strategy in experimental studies

Transcription factor Target disease Inhibitory effects References

NFκB/ets Aneurysm Inflammation 50, 60, 87
MMP activity

NFκB/SP1 Atherosclerosis Inflammation 79
Serum cholesterol level

Chronic kidney disease Fibrosis 80
NFκB/STAT6 Bronchial asthma Inflammation 77
NFκB/E2F Intimal hyperplasia Inflammation 78

VSMC proliferation
Smad/SP1 Chronic kidney disease Fibrosis 81

Inflammation
AP1/Smad Tissue fibrosis Fibrosis 82

Inflammation

AP1: activator protein 1; MMP: matrix metalloproteinase; SP1: specificity protein 1; STATS: signal transducer and activator of transcription; 
VSMC: vascular smooth muscle cell
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bits through the inhibition of inflammatory response and 
MMPs activation, and upregulation of elastin synthesis 
in the AAA wall.60) Importantly, the therapeutic effect of 
simultaneous inhibition of these two transcription factors 
on disease progression is significantly greater than that of 
inhibition of single transcription factor, NFκB, or ets.57) 
Similar observation was achieved in the experimental 
study of asthma.77) These findings indicate the feasibility 
of the chimeric decoy strategy for treating several inflam-
matory diseases via effective regulation of a wide range of 
aberrant gene expressions.

Structural Modification of Decoy ODN and 
Delivery System
ODN-based therapeutic strategy is expected to treat sev-
eral diseases, including AAA. However, the clinical use of 
ODN-based agents is associated with several concerns, 
such as easy degradation of ODN by endonucleases. 
Several chemical modifications of ODN, such as locked 
nucleic acids or morpholino oligomers, are used to in-
crease the stability of antisense ODN or miRNAs.30,84) 
In contrast, decoy ODN have received structural modi-
fication to increase stability and resistance against nucle-
ases. In a ribbon-type (dumbbell-type) decoy ODN, both 
double-stranded termini of the decoy ODN are linked 
by a circular structure of nucleic acids, because degrada-
tion of decoy ODN by nuclease begins at the site where 
ODN ends.52,85,86) Indeed, our previous study reported 
that ribbon-type decoy ODN against NFκB and ets could 
inhibit AAA progression in an elastase-induced rat AAA 
model despite systemic administration.87) In addition, our 
recent study and other studies have demonstrated that 
sense and antisense strands of decoy ODN were linked 
with a chemical spacer instead of nucleic acids.52,77) This 
type of decoy ODN leads to simplification of the synthesis 
process and a reduction of ODN production cost, in addi-
tion to enhanced stability. Furthermore, phosphorothioate 
modification is also provided to nucleic acids of ribbon-
type decoy ODN, resulting in a further increase in their 
stability and nuclease resistance in vivo.

Other limitation of ODN-based therapy is a lack of 
an accurate method for ODN administration into the 
aneurysm wall. In previous experimental studies, we 
administrated decoy ODN into the aortic wall using 
a cellulose-based sheet containing decoy ODN, which 
directly employed outer surface of the aortic wall.50,60) 
However, administration of decoy ODN in humans 
should be performed using noninvasive methods, such 
as systemic administration. Although internalization of 
ODN into target cells is thought to occur by some form 
of endocytosis, it is difficult to attach anionic ODN to the 
positively charged cell membrane. Although structural 

modifications of decoy ODN has a potential for systemic 
administration, an application of drug delivery system 
(DDS) is also an effective approach to deliver ODN into 
the aneurysm wall.88) Several DDS using nanocarriers, 
such as nanoparticles, liposomes, and micelles, have been 
developed. Among them, we used a poly(lactic-co-glycolic 
acid) (PLGA) nanoparticle-based delivery system, because 
PLGA is a natural polymer and is thought to be an ef-
ficient drug carrier due to its low immunogenicity, high 
safety, and biocompatibility.89) In this system, decoy ODN 
are entrapped in the PLGA nano-matrix, resulting in pro-
tection against enzymatic degeneration, and the particle 
surface is positively charged by chitosan coating. In ad-
dition, PLGA nanoparticles are thought to escape from 
endosome via the proton-sponge mechanism.90) Therefore, 
we consider this delivery system might induce a sufficient 
dose of decoy ODN into target cells via systemic admin-
istration.

Clinical Trial of Nucleic Acid Medicine
There are no clinical trials on treating AAA using nucleic 
acid drugs to date. However, several clinical trials using 
antisense or decoy ODN to treat human diseases have 
been performed. Among them, the second-generation an-
tisense ODN against apolipoprotein B-100 mipomersen 
was approved by Food and Drug Administration (FDA) 
for treating patients with homozygous familial hyperlip-
idemia. In phase 3 trial, this antisense ODN was admin-
istrated by weekly subcutaneous injection (200 mg) to pa-
tients with familial hyperlipidemia and/or coronary artery 
disease, and markedly reduced apolipoprotein-containing 
lipoproteins. However, this drug is known to cause liver 
and cardiovascular adverse effects.91,92) The use of nucleic 
acid medicines for human treatment is associated with 
certain concerns, such as nonspecific effects including 
nonsequence-specific binding to mRNA or protein.93) In 
addition, high-dose phosphorothioate ODN bolus injec-
tion was reported to have caused kidney damage, eleva-
tion of liver enzymes, and hypotension in experimental 
studies.94,95)

On the contrary, the therapeutic effects of decoy ODN 
have also been investigated in clinical trials for the preven-
tion of restenosis after vascular intervention and cancer 
treatment. Treatment with E2F decoy ODN did not pre-
vent graft failure after coronary artery bypass grafting in 
a phase 3 clinical trial.96) However, the efficacy of NFκB 
decoy ODN for preventing restenosis after percutaneous 
coronary intervention (PCI) was demonstrated in a phase 
I/IIa clinical trial.51) After stent implantation, NFκB decoy 
ODN (1 mg) was transfected using a Remedy catheter 
(dual balloon system) into the coronary arterial wall at the 
site of bare metal stent implantation. Significant restenosis 
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was found in only 1 of the 17 patients at 6 months after 
treatment, and no significant adverse effect occurred in 
any patients during this observation period. In addition, 
4 years after PCI, treatment with NFκB decoy ODN sup-
pressed neointimal hyperplasia when compared to the site 
with no decoy ODN transfection in the same artery of one 
patient.97) A recent clinical trial reported using a balloon 
catheter containing NFκB decoy ODN for treating arte-
riovenous fistula (AVF) stenosis.98) Percutaneous translu-
minal angioplasty via balloon catheter containing NFκB 
decoy ODN (89–134 µg) encapsulated nanoparticles was 
safe for clinical use and effective for prolonging the pri-
mary patency period, whereas no significant differences 
between treatment with NFκB decoy ODN and control 
were observed.

These results suggest that appropriate dose and delivery 
method of ODN can avoid adverse effects in humans. In 
addition, chemical and structural modification of ODN 
for reducing toxicity is important to treat human diseases.

Conclusion
Emerging evidence indicates that treatment with nucleic 
acid drugs induces a potent therapeutic effect for several 
diseases including AAA. In addition, recent advances in 
the modification techniques of ODN have contributed 
to their increased in vivo stability. Effective delivery sys-
tems have also been developed. However, these advances 
are not adequate to treat human AAA. Further studies 
to overcome the limitations of ODN-based therapy are 
needed for use in clinical settings.
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