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Abstract: Pharmacovigilance is a science that involves the ongoing monitoring of adverse drug
reactions to existing medicines. Traditional approaches in this field can be expensive and time-
consuming. The application of natural language processing (NLP) to analyze user-generated content
is hypothesized as an effective supplemental source of evidence. In this systematic review, a broad
and multi-disciplinary literature search was conducted involving four databases. A total of 5318 pub-
lications were initially found. Studies were considered relevant if they reported on the application of
NLP to understand user-generated text for pharmacovigilance. A total of 16 relevant publications
were included in this systematic review. All studies were evaluated to have medium reliability and
validity. For all types of drugs, 14 publications reported positive findings with respect to the identi-
fication of adverse drug reactions, providing consistent evidence that natural language processing
can be used effectively and accurately on user-generated textual content that was published to the
Internet to identify adverse drug reactions for the purpose of pharmacovigilance. The evidence
presented in this review suggest that the analysis of textual data has the potential to complement the
traditional system of pharmacovigilance.

Keywords: pharmacovigilance; adverse drug reactions; ADRs; computational linguistics; machine
learning; public health; user-generated content

1. Introduction

In drug development, there exists a strong tension between accessibility and safety.
While drugs can effectively cure diseases and improve life [1], the required process of
research and development of drugs is expensive, and pharmaceutical companies have a
high stake in yielding a profit on their investment [2]. This increases the urgency to make
effective drugs available to the public. In contrast, medicines can also induce adverse
drug reactions (ADRs) that may result in mortality, and the identification of such reactions
demands thorough and time-consuming testing of the drug’s safety, drastically increasing
the time-to-market of new drugs [3]. In fact, the potential consequences of ADRs are
significant. In the European Union (EU), five percent of hospital admissions and almost
200,000 deaths were caused by ADRs in 2008, and the associated societal cost totaled EUR
79 billion [4].

A system that applies tools and practices from the research field of pharmacovigilance
was introduced to alleviate this tension [5]. This system performs ongoing monitoring of
ADRs of existing drugs [5]. It also minimizes the time-to-market of effective drugs, and it
allows their long-term safety post market authorization to be continuously examined [6].
Overall, pharmacovigilance is the cornerstone in the regulation of drugs [1]. The traditional
system that applies pharmacovigilance is very expensive and often fails to monitor ADRs
experienced by users if these are not reported to the authorities, pharmaceutical companies,
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or medical professionals [6,7]. The reporting of these ADRs is important because it may
help to protect public health [1].

In today’s society, many people share personal content on social media [8–10]. An
abundance of studies have already demonstrated that user-generated content can be used
accurately for remote sensing, among others, to gauge public health [11–30]. This naturally
raises the valid question whether user-generated textual content can also be analyzed
for the purpose of pharmacovigilance. Such automated analysis may provide a cheap
and efficient supplement to the expensive and time-consuming traditional methods for
pharmacovigilance, and it may also include first-hand experiences about ADRs from
users that were not reported to the authorities, pharmaceuticals, or medical professionals.
Although various studies [31–41] were conducted that investigated the suitability of natural
language processing (NLP) for pharmacovigilance, to our awareness, no systematic review
has yet been conducted that aggregated the reported evidence or assessed the quality of
those studies.

To address this research gap, the purpose of this study is to review the existing evidence
on, and the effectiveness of natural language processing to understand user-generated
content for the purpose of pharmacovigilance. According to our review, it is worthwhile
to analyze user-generated content that has already been published to the Internet, to
proactively and automatically identify ADRs, without relying on users to actively report
those cases to the authorities, pharmaceutical companies, or medical professionals.

2. Background

A severe limitation in the process of bringing new drugs to market is the potential of
drugs to cause ADRs. While pre-clinical and clinical studies include testing drug safety and
potential ADRs, only a total of a few hundreds or thousands of participants are included
in these studies [1]. In addition, these studies are performed under controlled clinical
conditions that may not represent every real-world situation or circumstance [1]. Therefore,
not all ADRs may have been identified prior to making the drug generally available [3].
As long as the benefits outweigh potential costs, it is generally considered unethical to
withhold the general public from using an effective drug at this stage, thus accepting that
some people may develop ADRs in the future.

2.1. Traditional Approaches

To counteract the limitations of pre-clinical and clinical testing, existing drugs on the
market are constantly being monitored for safety and ADRs [3]. The long-term monitoring
of existing drugs is crucial, because potential ADRs, interactions, and other risk factors,
may only emerge many years or even decades after the drug initially received market
authorization [3].

The long-term monitoring of drug safety beyond market authorization is named phar-
macovigilance [5], which is defined by the WHO as “the science and activities relating to
the detection, assessment, understanding and prevention of adverse effects or any other
medicine-related problem” [3]. As such, the application of tools and practices from phar-
macovigilance by public health authorities results in a pro-active system that is intended
to promote and protect public health [1]. It involves a wide array of activities, including
data collection about drug safety, obligating pharmaceuticals and medical professionals to
report ADRs, inviting patients to report experiences with drugs, and the detection of signals
that may indicate drug safety issues [6]. There are, however, significant costs associated
with the processing and administration of the reported cases of ADRs [7]. In addition, the
current system of collecting data to monitor drug safety is suboptimal because end-users
are not obliged to report cases of ADRs [6].

2.2. Improving Pharmacovigilance Using Natural Language Processing

In the preceding 15 years, many technological innovations have enabled the storage,
processing, and analysis of big data [42–44]. In particular, with the emergence of Web 2.0
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and social media platforms, there has been a significant increase of user-generated content
that is published to the Internet [8–10]. Among others, vast amounts of textual data are
generated on blogs, forums, and social media [45]. Similarly, there have been significant
developments in artificial intelligence that resulted in powerful methods and algorithms for
NLP [46], which enabled the processing and understanding of human-generated text [45,47].
This opened new opportunities for mining social media and analyzing texts [48]. In recent
years, these fields experienced significant innovations [49].

Text mining is frequently defined as the analysis of textual data, such as unstructured
or semi-structured text, with the purpose to extract hidden patterns and information [45].
As such, it combines data mining with NLP [43]. Text mining has emerged from a need to
analyze large amounts of text containing human language, which can be mined for insights
that facilitate data-driven decision-making [45]. However, many standard data mining
techniques cannot be applied to unstructured textual data. Therefore, text mining is applied
as pre-processing for unstructured data [50,51], e.g.,:

• tokenization: the separation of text into smaller units, like words, characters, or
sub-words (n-grams);

• transformation of cases, such as uniform lowercasing or uppercasing;
• stop word removal: the removal of words carrying very little meaning; and such as

pronouns;
• reducing inflected words to their word stem (stemming).

Once text mining has been applied to extract structured data from a semi-structured
or unstructured source, conventional data mining algorithms can subsequently be used
to process and analyze these structured data further to yield the valued insights [47]. The
complexity that is involved with analyzing unstructured textual data and in particular its
irregularities, makes the process of text mining a difficult area in artificial intelligence [52].

The applications of text mining are numerous, and include:

• assigning affective states to text (sentiment analysis) [43];
• the discovery of associations between words or other tokens [53];
• the summarization of documents [43];
• clustering texts according to some similarity measurement [54,55];
• classification of text into various categories [56,57];
• predicting words or other lexical units (as part of a word processor or chatbot) [58,59]; and
• the extraction of concepts, entities, and the relationships between them [43].

Among others, NLP was used to monitor public health, such as surveilling allergies [20,24,26],
depressions [21,22,30], suicide-related thoughts and conversations [11,16,27], obesity [13,17], mar-
ijuana and drug abuse [12,25,28,29], tobacco and e-cigarettes [14,18,19,23], and to gauge public
health concerns [15].

3. Materials and Methods

This systematic review was guided by the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [60,61]. However, most of the reviewed
papers do not contain controlled trials, comparable statistical analysis, or methodology,
making it impossible to apply the complete PRISMA 2020 checklist to this review. Therefore,
we only applied items on the checklist if they were applicable, and thus our review does not
conform completely to the guideline. The quality of this systematic review was evaluated
using the PRISMA Checklist in Appendix A.

3.1. Search Strategy

To cover all related disciplines, a broad selection of databases was made that included
PubMed, Web of Science, IEEE Xplore, and ACM Digital Library. These databases were
selected because they index studies in a wide range of fields. Specifically, PubMed was
included because it predominantly indexes research in the field of public health, healthcare,
and medicine. IEEE Xplore and ACM Digital Library were searched because these databases
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index publications in information technology and information management. Web of Science
was included because it is a very large database that indexes studies in various disciplines,
and also because of its multidisciplinary nature, there exists a consensus among researchers
that it is good practice to include this database in systematic reviews. We recognize that
Google Scholar is increasingly used as a source for systematic reviews, but that there exists
a debate among scientists about its appropriateness [62]. A common argument against
Google Scholar is that its algorithm for ranking the relevance of publications is updated
frequently, thereby making the search results unreliable for reproduction [62]. Therefore,
we have excluded Google Scholar as an information source in this review. Furthermore,
because it is a commonality in information technology and computational linguistics that
materials are not always published in peer-reviewed journals, but instead it is frequently
published only in conference proceedings or conference papers, both journal articles and
conference proceedings were included in this systematic review. It was not expected
that this would have a significant effect on the reliability of studies, because conference
proceedings and conference papers are also subject to a peer-review process.

For each of the included databases, an optimized search strategy was formulated
(see Appendix B). The search query was constructed from two blocks. The first block
addresses the concept of NLP, and the second block includes search terms related to health
surveillance. The systematic literature search was performed on 25 March 2020 for all
databases. All publications appearing up to this point were considered in the search. After
the databases were searched, the method for de-duplication by Bramer et al. [63] was
performed to identify and remove duplicate studies. Studies eligible for this systematic
review were selected in three subsequent phases and visualized in Figure 1.

Figure 1. Flow diagram for literature search and study selection.

3.2. Study Selection

First, the titles were screened for the presence of subjects related to public health
monitoring or public health surveillance. The screening was very global to prevent the
unnecessary exclusion of studies. Therefore, not only terms such as “adverse drug reactions”
were considered relevant, but titles containing more indirect terms such as “medication
outcomes” were also included. In addition, if it was ambiguous whether a study was
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relevant or not, it was still included for further screening in the next phase. Studies that
were not relevant were omitted from the library.

Second, the abstracts were screened for information related to NLP, public health
monitoring, public health surveillance, and pharmacovigilance. The keywords provided
with the manuscript for indexing purposes were also screened for these concepts. This
phase was also intended to be broad. For example, abstracts were considered relevant if
they contained terms directly related to pharmacovigilance, such as “adverse effects of
drug treatment”, but also indirectly related terms such as “drug reviews”. Drug reviews
involve an extensive process where experimental drugs are assessed on safety (e.g., toxicity
and side effects) and effectiveness using various clinical trials [1]. Drug reviews are mainly
performed by pharmaceutical companies which document their tests for review by the
European Medicines Agency (EMA) or the U.S. Food and Drug Administration (FDA) [1].
Post market authorization, existing drugs and their side effects are continuously being
monitored by medical doctors, laboratories, pharmaceutical organizations, and health
authorities [1]. Publications were still included if their relevance was considered ambiguous,
for further screening in the next phase. Irrelevant manuscripts were removed.

Third, the full text was downloaded and read. Studies were considered relevant if
they investigated the application of NLP to understand text with the purpose of public
health monitoring or public health surveillance within the discipline of pharmacovigilance.
Eligible studies reported on the application and results of using computational linguistics
to identify adverse drug reactions from textual sources, such as forums, patient records,
and social media.

3.3. Inclusion and Exclusion Criteria

Overall, studies were only eligible for inclusion in this systematic review if they aimed
to identify adverse drug reactions using computational linguistics. Both journal articles
and conference proceedings were included. In addition, we only included studies if written
in the English language, irrespective of the language of the dataset of user-generated
content that these studies utilized. There were no limitations regarding the publication
date, institutional affiliation, or the journal that these studies were published in.

Publications were excluded if they only reported on a framework instead of the actual
application. For example, authors may suggest a process to investigate adverse drug
reactions using computational linguistics without actually applying it and evaluating the
results. Likewise, studies were excluded if they were published in a language other than
English. We only excluded studies if the manuscript was not written in English, irrespective
of the language that its dataset was written in. Furthermore, if the same publication was
published in different formats, for example as both a conference proceeding and a journal
article, only one format of the publication, namely the journal article, was retained.

3.4. Reliability and Validity

The included publications were evaluated on quality by assessing their reliability and
validity. This assessment was performed using the strategy of Kampmeijer et al. [64]. A
publication was evaluated as reliable if it reported a thorough and repeatable description of
the performed process, methods, data collection, and data analysis [64]. A reliable study
provides a well-defined, transparent, and consistent protocol for the collection, processing,
and analysis of data. It facilitates researchers to establish its consistency and identify
potential flaws in the research design. In addition, a reliable study provides sufficient
details such that it can be reproduced. Under the same conditions, if repeated, a reliable
study will produce similar findings.

A publication was evaluated as valid if the reported findings are logically the result of
the described process, methods, data, and analyses that were used to find that result [64].
The validity of a study refers to its accuracy; the study indeed measures what it intended
to measure. This evaluation requires that researchers are transparent about their protocol.
Assessing the validity of a study involves identifying that the reported results and conclu-



Pharmaceutics 2022, 14, 266 6 of 25

sions in a study are consistent with the study hypotheses and research design. In addition,
it involves the verification that the reported findings from one study are comparable to
other studies utilizing a comparable research protocol. The identified consistency within
one paper, or consistency in reported findings among comparable papers, are indications
that a paper was evaluated as valid.

The reliability and validity of studies were assessed qualitatively and discussed among
researchers until consensus was achieved. Studies with “low” reliability did not provide a
well-defined, transparent, and consistent protocol or this information provided insufficient
details. Instead, studies with “high” reliability provided this information and this infor-
mation was thorough. In all intermediate cases, these studies were marked as “medium”
reliability. Similarly, studies with “low” validity had either limited consistency between the
hypotheses and research design on the one hand, with the results and conclusions on the
other hand, or their findings were not consistent with studies that utilized a comparable
research design. Instead, if the consistency was high and their findings were comparable
to similar studies, the validity of these studies was marked as “high”. In all intermediate
cases, the validity was considered “medium”.

Although the quality assessment was rigorous and based on scientific standards, all
identified publications were included in the systematic review.

3.5. Data Analysis

Thematic analysis was used to analyze the included publications [65]. The themes
were defined by the objectives of the present systematic review. The following themes
were extracted from the full text: authors, year of publication, type of drugs, data source,
sample size, users, unique users, origin of users, average number of followers, years of
data collection, horizon of data collection, software used, techniques and classifiers used,
outcome, drugs studied, result, and a description of the result.

For each publication, the extracted themes were processed into an extraction matrix.
This matrix was used to synthesize and narratively present the extracted information by
theme. The results are summarized and presented using tables.

4. Results

The procedure that was followed for the selection of studies is presented in Figure 1.
The 5318 initial records, which were identified through an inclusive search strategy, were
assessed for the presence of duplicate publications. Consequently, 744 duplicate results
were identified and omitted. Therefore, the literature search yielded 4574 unique studies.
According to the thorough study selection strategy described in Section 3.2, the first se-
lection phase identified 4347 irrelevant studies to be excluded. In the second phase, the
remaining 227 results were screened by reading the abstract; 206 irrelevant studies were
omitted. For example, studies were excluded when not mentioning “adverse effects of drug
treatment” or other related but rather general terms such as “drug reviews” in the abstract.
In the third phase, the full text of the remaining 21 publications was read. Five studies were
considered irrelevant because they did not investigate the application of computational
linguistics to understand text, with the purpose of public health monitoring or public health
surveillance within the discipline of pharmacovigilance.

Overall, this yielded 16 publications that were considered relevant and were included
in this systematic review. All studies were published between 2009 and 2019. Most of the
studies (69%) were published in the last five years (2015–2019) [31–41]. A summary is
provided in Table 1, and it will be further elaborated in the rest of this section.

The reliability and validity of all studies were assessed as medium. While all studies
were performed reasonably well, they failed to be entirely transparent about their process,
methodology, used software, and the used technologies and classifiers. As is presented
in the detailed overview of the characteristics of the included studies in Appendix C, all
studies failed to disclose a complete overview of crucial information.
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Table 1. Summary of characteristics of publications included in the analysis.

Authors Data Source Sample Size Horizon of Data
Collection Software Used Techniques and Classifiers Used Outcome Result Description of Result

[31] Social media Twitter.com:
1642 tweets 3 years Toolkit for Multivariate

Analysis

Artificial Neural Networks (ANN),
Boosted Decision Trees with

AdaBoost (BDT), Boosted Decision
Trees with Bagging (BDTG),

Sentiment Analysis, Support Vector
Machines (SVM)

Reported ADRs for
HIV treatment Positive

Reported adverse effects are
consistent with

well-recognized toxicities.

[32] Forums DepressionForums.org:
7726 posts 10 years

General Architecture for Text
Engineering (GATE), NLTK

Toolkit within MATLAB,
RapidMiner

Hyperlink-Induced Topic Search
(HITS), k-Means Clustering, Network

Analysis, Term-Frequency-Inverse
Document Frequency (TF-IDF)

User sentiment on
depression drugs Positive

Natural language
processing is suitable to
extract information on

ADRs concerning
depression.

[66] Social media Twitter.com:
2,102,176,189 tweets 1 year Apache Lucene MetaMap, Support Vector

Machines (SVM)
Reported ADRs

for cancer Neutral

Classification models had
limited performance.

Adverse events related to
cancer drugs can potentially

be extracted from tweets.

[33] Social media Twitter.com:
6528 tweets Unknown

GENIA tagger, Hunspell,
Snowball stemmer, Stanford

Topic Modelling Toolbox,
Twokenizer

Backward/Forward Sequential
Feature Selection (BSFS/FSFS)

Algorithm, k-Means Clustering,
Sentiment Analysis, Support Vector

Machines (SVM)

Reported ADRs Positive ADRs were identified
reasonably well.

[34] Social media Twitter.com:
32,670 tweets Unknown Hunspell, Twitter tokenizer Term Frequency-Inverse Document

Frequency (TF-IDF) Reported ADRs Neutral ADRs were not identified
very well.

[67] Social media Twitter.com:
10,822 tweets Unknown Unknown

Naive Bayes (NB), Natural Language
Processing (NLP), Support Vector

Machines (SVM)
Reported ADRs Positive ADRs were identified well.

[35] Drug reviews
Drugs.com,

Drugslib.com:
218,614 reviews

Unknown BeautifulSoup Logistic Regression,
Sentiment Analysis

Patient satisfaction
with drugs, Reported

ADRs, Reported
effectiveness of drugs

Positive Classification results were
very good.

[36] Social media Twitter.com:
172,800 tweets 1 year Twitter4J Decision Trees, Medical Profile Graph,

Natural Language Processing (NLP) Reported ADRs Positive

Building a medical profile of
users enables the accurate

detection of adverse
drug events.
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Table 1. Cont.

Authors Data Source Sample Size Horizon of Data
Collection Software Used Techniques and Classifiers

Used Outcome Result Description of Result

[37] Social media Twitter.com:
1245 tweets Unknown

CRF++ Toolkit, GENIA
tagger, Hunspell, Twitter
REST API, Twokenizer

Natural Language Processing
(NLP) Reported ADRs Positive ADRs were identified

reasonably well.

[38] Drug reviews WebMD.com: Unknown Unknown SentiWordNet, WordNet
Sentiment Analysis, Support

Vector Machines (SVM), Term
document Matrix (TDM)

User sentiment on
cancer drugs Positive

Sentiment on ADRs
was identified

reasonably well.

[39] Drug reviews, Social
media

DailyStrength.org:
6279 reviews, Twitter.com:

1784 tweets
Unknown Unknown

ARDMine, Lexicon-based,
MetaMap, Support Vector

Machines (SVM)
Reported ADRs Positive ADRs were identified

very well.

[40] Drug reviews, Social
media

PatientsLikeMe.com:
796 reviews, Twitter.com:

39,127 tweets, WebMD.com:
2567 reviews, YouTube.com:

42,544 comments

Not applicable Deeply Moving Unknown Patient-reported
medication outcomes Positive

Social media serves as a
new data source to

extract patient-reported
medication outcomes.

[68] Forums
Medications.com:

8065 posts,
SteadyHealth.com: 11,878

Not applicable Java Hidden Markov Model
library, jsoup

Hidden Markov Model (HMM),
Natural Language Processing

(NLP)
Reported ADRs Positive

Reported adverse
effects are consistent
with well-recognized

side-effects.

[69] Electronic Health
Record (EHR) 25,074 discharge summaries Not applicable MedLEE Unknown Reported ADRs Positive

Reported adverse
effects are consistent
with well-recognized
toxicities (recall: 75%;

precision: 31%).

[41] Social media Twitter.com:
3251 tweets Not applicable

AFINN, Bing Liu sentiment
words, Multi-Perspective

Question Answering
(MPQA), SentiWordNet,

TextBlob, Tweepy, WEKA

MetaMap, Naive Bayes (NB),
Natural Language Processing

(NLP), Sentiment Analysis,
Support Vector Machines (SVM)

Reported ADRs Positive Several well-known
ADRs were identified.

[70] Forums MedHelp.org: 6244
discussion threads Unknown Unknown Association Mining Reported ADRs Positive ADRs were identified.
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4.1. General Characteristics

A general description of the publications included in the analysis is provided in Table 2.
To establish differences between them, various characteristics of these publications were
compared and the observed differences are presented in Table 3.

Only one study by Adrover et al. [31] discussed the geographical location of users
that published the included posts. They report that the users were from Canada, South
Africa, the United Kingdom, or the United States [31]. The remaining 15 studies did not
disclose the geographical location of users.

Studies disclosing the date of publication of the textual samples (74%) were published
between 2004 and 2015 [31,32,36,40,41,66,68,69]. Content published since 2010 was included
in more studies compared to content published before 2010. The remaining 26% of studies
did not discuss when the posts were published [33–35,37–39,67,70].

Studies that reported the date of publication of the included content (50%) were used
to compute the time horizon of the collected data [31,32,36,40,41,66,68,69]. In 13% of studies,
this horizon was one calendar year [36,66]. In 6% of the studies, this horizon was between
two and five years [31]. In another 6%, the horizon ranged between 6 and 10 years [32].
In four studies (25%), the time horizon could not be computed because the data were
published within the same calendar year [40,41,68,69]. The remaining studies (50%) did not
present the date on which the included data were published [33–35,37–39,67,70]. Therefore,
the horizon of data collection could not be computed.

Discounting the studies that did not present the type of drugs that were studied, drugs
to treat asthma (5%) [40], cancer (11%) [38,66], cystic fibrosis (5%) [40], depression (5%) [32],
HIV (5%) [31], rheumatoid arthritis (5%) [40], and type 2 diabetes (5%) [40] were investi-
gated. In a majority of studies (58%), the type of drugs was not specified [33–37,39,41,67–70].

The studies also differed with respect to the number of drugs for which ADRs were in-
vestigated. Most studies (31%) included posts concerning 20 or more drugs [36,38,39,67,68],
followed by 25% that studied between five and nine drugs [32,41,66,69]. Two studies (13%)
included between ten and fourteen drugs [40,70], while only one study (6%) addressed less
than five drugs [31]. No studies included between 15 and 19 drugs. The remaining 25% of
studies did not disclose the number of drugs that were investigated [33–35,37].

Table 2. General description of publications included in the analysis.

Category Sub-Categories n (%) References

Year of publication 2009 1 (6) [69]
2010 0 (0) -
2011 0 (0) -
2012 2 (13) [66,70]
2013 0 (0) -
2014 2 (13) [67,68]
2015 7 (43) [31,36–41]
2016 2 (13) [32,33]
2017 0 (0) -
2018 1 (6) [35]
2019 1 (6) [34]

Type of drugs Asthma 1 (5) [40]
Cancer 2 (11) [38,66]

Cystic fibrosis 1 (5) [40]
Depression 1 (5) [32]

HIV 1 (5) [31]
Rheumatoid arthritis 1 (5) [40]

Type 2 diabetes 1 (5) [40]
Unknown 11 (58) [33–37,39,41,67–70]

Data source Drug reviews 4 (22) [35,38–40]
Electronic Health Records (EHR) 1 (6) [69]

Forums 3 (17) [32,68,70]
Social media 10 (56) [31,33,34,36,37,39–41,66,67]
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Table 2. Cont.

Category Sub-Categories n (%) References

Sample size Less than 5000 3 (19) [31,37,41]
5000 to 9999 4 (25) [32,33,39,70]

10,000 to 14,999 1 (6) [67]
15,000 to 19,999 1 (6) [68]
20,000 or more 6 (38) [34–36,40,66,69]

Unknown 1 (6) [38]

Users HIV-infected persons undergoing
drug treatment 1 (6) [31]

Unknown 15 (94) [32–41,66–70]

Unique users Less than 5000 2 (13) [31,36]
5000 to 9999 0 (0) -

10,000 to 14,999 0 (0) -
15,000 to 19,999 0 (0) -
20,000 or more 0 (0) -

Unknown 14 (88) [32–35,37–41,66–70]

Origin of users Canada 1 (5) [31]
South Africa 1 (5) [31]

United Kingdom 1 (5) [31]
United States 1 (5) [31]

Unknown 15 (79) [32–41,66–70]

Average number of followers Less than 5000 1 (6) [31]
5000 to 9999 0 (0) -

10,000 to 14,999 0 (0) -
15,000 to 19,999 0 (0) -
20,000 or more 0 (0) -

Unknown 15 (94) [32–41,66–70]

Years of data collection 2004 2 (6) [32,69]
2005 1 (3) [32]
2006 1 (3) [32]
2007 1 (3) [32]
2008 1 (3) [32]
2009 2 (6) [32,66]
2010 3 (10) [31,32,66]
2011 2 (6) [31,32]
2012 3 (10) [31,32,68]
2013 2 (6) [31,32]
2014 3 (10) [32,36,40]
2015 2 (6) [36,41]

Unknown 8 (26) [33–35,37–39,67,70]

Horizon of data collection 1 year 2 (13) [36,66]
2 to 5 years 1 (6) [31]
6 to 10 years 1 (6) [32]

Not applicable 4 (25) [40,41,68,69]
Unknown 8 (50) [33–35,37–39,67,70]

Software used AFINN 1 (3) [41]
Apache Lucene 1 (3) [66]
BeautifulSoup 1 (3) [35]

Bing Liu sentiment words 1 (3) [41]
CRF++ toolkit 1 (3) [37]

Deeply Moving 1 (3) [40]
General Architecture for Text

Engineering (GATE) 1 (3) [32]

GENIA tagger 2 (6) [33,37]
Hunspell 3 (9) [33,34,37]

Java Hidden Markov Model
library 1 (3) [68]

jsoup 1 (3) [68]
MedLEE 1 (3) [69]

Multi-Perspective Question
Answering (MPQA) 1 (3) [41]

NLTK toolkit within MATLAB 1 (3) [32]
RapidMiner 1 (3) [32]

SentiWordNet 2 (6) [38,41]
Snowball stemmer 1 (3) [33]
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Table 2. Cont.

Category Sub-Categories n (%) References

Stanford Topic Modelling Toolbox 1 (3) [33]
TextBlob 1 (3) [41]

Toolkit for Multivariate Analysis 1 (3) [31]
Tweepy 1 (3) [41]

Twitter REST API 1 (3) [37]
Twitter tokenizer 1 (3) [34]

Twitter4J 1 (3) [36]
Twokenizer 2 (6) [33,37]
Unknown 3 (9) [39,67,70]

WEKA 1 (3) [41]
WordNet 1 (3) [38]

Techniques and classifiers used ARDMine 1 (2) [39]
Artificial Neural Networks (ANN) 1 (2) [31]

Association Mining 1 (2) [70]
Backward/forward sequential feature

selection (BSFS/FSFS) algorithm 1 (2) [33]

Boosted Decision Trees with AdaBoost
(BDT) 1 (2) [31]

Boosted Decision Trees with Bagging
(BDTG) 1 (2) [31]

Decision Trees 1 (2) [36]
Hidden Markov Model (HMM) 1 (2) [68]
Hyperlink-Induced Topic Search

(HITS) 1 (2) [32]

k-Means Clustering 2 (5) [32,33]
Lexicon-based 1 (2) [39]

Logistic Regression 1 (2) [35]
Medical Profile Graph 1 (2) [36]

MetaMap 3 (7) [39,41,66]
Naive Bayes (NB) 2 (5) [41,67]

Natural Language Processing (NLP) 5 (12) [36,37,41,67,68]
Network Analysis 1 (2) [32]

Sentiment Analysis 5 (12) [31,33,35,38,41]
Support Vector Machines (SVM) 7 (17) [31,33,38,39,41,66,67]
Term Document Matrix (TDM) 1 (2) [38]

Term-Frequency-Inverse Document
Frequency (TF-IDF) 2 (5) [32,34]

Unknown 2 (5) [40,69]

Outcome Patient satisfaction with drugs 1 (6) [35]
Patient-reported medication outcomes 1 (6) [40]

Reported ADRs 11 (61) [33–37,39,41,67–70]
Reported ADRs for cancer 1 (6) [66]

Reported ADRs for HIV treatment 1 (6) [31]
Reported effectiveness of drugs 1 (6) [35]

User sentiment on depression drugs 1 (6) [32]
User sentiment on cancer drugs 1 (6) [38]

Drugs studied Less than 5 1 (6) [31]
5 to 9 4 (25) [32,41,66,69]

10 to 14 2 (13) [40,70]
15 to 19 0 (0) -

20 or more 5 (31) [36,38,39,67,68]
Unknown 4 (25) [33–35,37]

Result Positive 14 (88) [31–33,35–41,67–70]
Neutral 2 (13) [34,66]

Negative 0 (0) -

Reliability Low 0 (0) -
Medium 16 (100) [31–41,66–70]

High 0 (0) -

Validity Low 0 (0) -
Medium 16 (100) [31–41,66–70]

High 0 (0) -
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4.2. Input Sources

Publications used data from four sources. A majority of studies (56%) used textual
information from social media to extract ADRs [31,33,34,36,37,39–41,66,67]. Drug reviews
were also a popular source of unstructured data (22%) [35,38–40]. Forums (17%) [32,68,70]
and electronic health records (6%) [69] were used less often.

There was a wide diversity in the sample size of the posts used, which ranged from 1245 [37]
to more than two billion [66] tweets. Three studies (19%) included less than 5000 posts [31,37,41],
six publications (38%) used at least 5000 but less than 20,000 posts [32,33,39,67,68,70], and six
studies (38%) were performed using more than 20,000 posts [34–36,40,66,69]. The sample size
was not reported in one study (6%) [38].

Only one study (6%) by Adrover et al. [31] provided contextual information about the
background of the publishers of the included posts. In the remaining studies (94%), the
background of these users was not disclosed [32–41,66–70].

The vast majority of studies (88%) did not provide information about the unique num-
ber of users that published the analyzed content [32–35,37–41,66–70]. In only two studies
(13%), it was disclosed that less than 5000 users had published the posts [31,36]. Similarly,
only one study (6%) discussed that a user had an average of fewer than 5000 followers [31].
The remaining studies (94%) provided no information about this theme [32–41,66–70].

Most studies (56%) included at least unstructured data from social
media [31,33,34,36,37,39–41,66,67]. In particular, all of these studies included data from
Twitter, while one study additionally used content from YouTube [40]. This study analyzed
42,544 comments from YouTube to identify patient-reported medication outcomes [40].
The majority of these studies reported that ADRs could indeed be extracted from textual
content from social media. In addition, drug reviews (22%) [35,38–40] and content from
forums (17%) [32,68,70] were studied less frequently. For both data sources, ADRs were
identified correctly. The least studied source involved electronic health records, for which
also positive results were reported [69].

4.3. Employed Methods

The studies reported a vast difference in software that was used (see Table 3). In total,
27 software products were discussed. Often, studies also used alternatives for the same
type of software. For example, although some studies used Tweepy (3%) [41], Twitter
REST API (3%) [37], or Twitter4J (3%) [36] to retrieve data from Twitter using a different
programming language, these software products can be aggregated in the type of Twitter
API. By frequency, the spelling checker Hunspell was used most often (9%) [33,34,37]. This
tool can reduce the dimensionality of NLP tasks by considering various spellings of a
single word. For example, misspellings (e.g., “organiezation”) or inconsistent types of
English such as “organization” and “organisation”, would then be transformed into the
U.S. word “organization”. Notably, three studies (9%) did not present the software that
was used [39,67,70].

Likewise, a vast number of 21 different techniques and classifiers were reported.
The more generic term “NLP” [36,37,41,67,68] and the more particular task of sentiment
analysis [31,33,35,38,41] were mentioned in five studies (12%). In terms of particular tech-
niques, two studies (5%) and one study (2%) reported the use of term-frequency-inverse
document frequency (TF-IDF) [32,34] and term document matrix (TDM) [38], respec-
tively. In terms of models, support vector machines (SVM) was used most often in seven
studies (17%) to analyze the quantitative features that were extracted from unstructured
data [31,33,38,39,41,66,67]. The remaining 5% of the studies did not disclose the techniques
and classifiers that were used [40,69].
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Table 3. Publications by classification category and result.

Category Sub-Categories Positive (n %) Neutral (n %) Negative (n %) References

Type of drugs Asthma 1 (5) 0 (0) 0 (0) [40]
Cancer 1 (5) 1 (5) 0 (0) [38,66]

Cystic fibrosis 1 (5) 0 (0) 0 (0) [40]
Depression 1 (5) 0 (0) 0 (0) [32]

HIV 1 (5) 0 (0) 0 (0) [31]
Rheumatoid arthritis 1 (5) 0 (0) 0 (0) [40]

Type 2 diabetes 1 (5) 0 (0) 0 (0) [40]
Unknown 10 (53) 1 (5) 0 (0) [33–37,39,41,67–70]

Data source Drug reviews 4 (22) 0 (0) 0 (0) [35,38–40]
Electronic Health

Records (EHR) 1 (6) 0 (0) 0 (0) [69]

Forums 3 (17) 0 (0) 0 (0) [32,68,70]
Social media 8 (44) 2 (11) 0 (0) [31,33,34,36,37,39–41,66,67]

Origin of users Canada 1 (5) 0 (0) 0 (0) [31]
South Africa 1 (5) 0 (0) 0 (0) [31]

United Kingdom 1 (5) 0 (0) 0 (0) [31]
United States 1 (5) 0 (0) 0 (0) [31]

Unknown 13 (68) 2 (11) 0 (0) [32–41,66–70]

Horizon of data
collection 1 year 1 (6) 1 (6) 0 (0) [36,66]

2 to 5 years 1 (6) 0 (0) 0 (0) [31]
6 to 10 years 1 (6) 0 (0) 0 (0) [32]

Not applicable 4 (25) 0 (0) 0 (0) [40,41,68,69]
Unknown 7 (44) 1 (6) 0 (0) [33–35,37–39,67,70]

Outcome Patient satisfaction
with drugs 1 (6) 0 (0) 0 (0) [35]

Patient-reported
medication outcomes 1 (6) 0 (0) 0 (0) [40]

Reported ADRs 10 (56) 1 (6) 0 (0) [33–37,39,41,67–70]
Reported ADRs for

cancer 0 (0) 1 (6) 0 (0) [66]

Reported ADRs for
HIV treatment 1 (6) 0 (0) 0 (0) [31]

Reported
effectiveness of drugs 1 (6) 0 (0) 0 (0) [35]

User sentiment on
depression drugs 1 (6) 0 (0) 0 (0) [32]

User sentiment on
cancer drugs 1 (6) 0 (0) 0 (0) [38]

Drugs studied Less than 5 1 (6) 0 (0) 0 (0) [31]
5 to 9 3 (19) 1 (6) 0 (0) [32,41,66,69]

10 to 14 2 (13) 0 (0) 0 (0) [40,70]
15 to 19 0 (0) 0 (0) 0 (0) -

20 or more 5 (31) 0 (0) 0 (0) [36,38,39,67,68]
Unknown 3 (19) 1 (6) 0 (0) [33–35,37]

Reliability Low 0 (0) 0 (0) 0 (0) -
Medium 14 (88) 2 (13) 0 (0) [31–41,66–70]

High 0 (0) 0 (0) 0 (0) -

Validity Low 0 (0) 0 (0) 0 (0) -
Medium 14 (88) 2 (13) 0 (0) [31–41,66–70]

High 0 (0) 0 (0) 0 (0) -

4.4. Study Effectiveness

Although all included studies investigated how NLP can be applied to understand
text for pharmacovigilance, and thus all studies investigated reported ADRs, some studies
were more explicit than others in discussing their outcome. For example, several studies
explicitly disclosed that the outcome was reported ADRs for cancer (6%) [66], reported
ADRs for HIV treatment (6%) [31], user sentiment on depression drugs (6%) [32], and
user sentiment on cancer drugs (6%) [38]. The remaining studies were rather inconsistent
by presenting the outcome as patient satisfaction with drugs (6%) [35], patient-reported
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medication outcomes (6%) [40], reported ADRs (61%) [33–37,39,41,67–70], and reported the
effectiveness of drugs (6%) [35].

The studies reported consistent evidence that NLP can be successfully used to under-
stand text for the purpose of pharmacovigilance. A vast majority of studies (88%) presented
positive results [31–33,35–41,67–70]. These studies claimed that ADRs could indeed be
extracted accurately and reliably from content published by patients. These studies often
compared the accuracy of the adverse effects that were extracted from posts against a
list of known ADRs, for example, from the medical package insert or from other reliable
sources. Only 13% of the studies reported neutral findings [34,66]. No studies reported a
negative result.

For example, Nikfarjam et al. [39] addressed the challenges of patients who use in-
formal language and express medical concepts in lay terms, which may obstruct utilizing
patients’ digital content for public health monitoring for pharmacovigilance. They devel-
oped a system for extracting ADRs from highly informal and unstructured content from
both Twitter and a website for drug reviews. They find that it is possible, with reasonably
high performance, to extract complex medical concepts from these platforms. In addition,
Sampathkumar et al. [68] aimed to identify mentions about ADRs from user-generated
content that were published by drug users to healthcare-related forums and to use those
mentions for the purpose of pharmacovigilance. They find that it is possible to extract those
mentions about ADRs with good performance and that the mentions are consistent with
known ADRs. Likewise, Wu et al. [41] developed a pipeline “for collecting, processing,
and analyzing tweets to find signals” about ADRs. They were able to identify several
well-known ADRs. Furthermore, Yang et al. [70] mined the associations between drugs and
the ADRs that patients published to online healthcare communities. These identified asso-
ciations were then compared to ADR alerts from the U.S. Food and Drug Administration.
They find that association mining appears to be promising for the detection of ADRs.

For named diseases, only one study observed neutral effectiveness for oncological
drugs [66]. Specifically, Bian et al. [66] developed an approach to identify drug users and
extract ADRs concerning cancer from tweets. They used high-performance computing to
analyze more than two billion tweets using NLP, and classified tweets using support vector
machines. They, however, find that their classification model had limited performance.

There were no significant inconsistencies in the effectiveness of NLP to identify ADRs
with respect to the outcome that was under investigation in each study. For a vast majority
of the outcomes, ADRs could indeed be established. For the outcome of reported ADRs
for cancer, only neutral effectiveness was reported [66]. Although most of the studies that
investigated the outcome of reported ADRs observed positive findings, only one study
found a neutral result [34]. There were no notable differences in the effectiveness of NLP
with respect to the number of drugs that were considered in the publications.

5. Discussion

The purpose of this study was to review the existing evidence on the methods and
effectiveness of natural language processing to understand user-generated textual content
for the purpose of pharmacovigilance.

The first main finding of this systematic review is that the potential of applying NLP
for pharmacovigilance looks very promising. Studies included in this systematic review
consistently reported positive results on the effectiveness and accuracy of using NLP that
is applied to user-generated digital content to identify ADRs. For all diseases investigated,
a vast majority of studies reported that the identified ADRs were consistent with the infor-
mation provided on the medical package insert. For example, Ru et al. [40] analyzed and
compared content about patient-reported medication outcomes concerning asthma, cystic
fibrosis, rheumatoid arthritis, and type 2 diabetes, published to the social media sites Pa-
tientsLikeMe.com, WebMD.com, Twitter, and YouTube. They find that, although advising
that more emphasis should be placed on developing more reliable methods for NLP and
text mining, social media platforms are indeed suitable and complementary sources for
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investigating outcomes of medication. In addition, Mishra et al. [38] assessed pharmaceuti-
cal oncological drug reviews authored by patients and published to user forums, and they
compared the reported drug-related issues with official drug labels. They used support
vector machines to classify sentiments about ADRs with good performance. Furthermore,
Akay et al. [32] investigated how user-generated content on a depression-related forum
can be used for modeling the exchange of information between users about drug-related
treatments for depression. They find that it is possible to use NLP on this content to identify
the ADRs of these drugs in greater detail, and they confirmed the identified ADRs using
medical literature about these drugs. In another study, Androver et al. [31] studied the
potential of using user-generated tweets to identify ADRs for HIV-related drugs and to
gauge patient sentiments about these drug treatments. They find that the identified ADRs
are consistent with well-recognized toxicities.

The second main finding of this systematic review is that some studies also correctly
identified ADRs that were previously unknown. In [68], the authors identified increased
suicide risk for the drug Singulair, and an increased risk of acute pancreatitis and altered
kidney function for the drug Byetta. In both cases, the FDA required the manufacturing
companies to conduct an investigation, and update the labels of the products with a warning
indicating these risks. This result suggests that NLP may also be used to identify novel
ADRs, and it may serve as a suitable tool for pro-active and real-time health surveillance
using remote sensing. As such, this automated system may identify trends and periodically
report novel insights to policymakers and public health professionals, and it may support
and enable these professionals to initiate interventions timely to protect public health and
to maintain, and perhaps even increase, the quality of healthcare further [32].

Although this systematic review finds that the application of computational linguistics
may be effective for pharmacovigilance, it does not suggest that the traditional system is
obsolete and should be replaced by computational linguistics. Instead, it may be worthwhile
to apply computational linguistics as a complementary tool to retrieve and process adverse
drug reactions that end-users share on the Internet. This information and the insights may
be combined with the adverse drug reactions that are reported by medical professionals,
with the purpose to achieve a more complete overview of adverse drug reactions. Similarly,
computational linguistics may be a suitable tool for the real-time monitoring of adverse
drug reactions.

6. Limitations

The systematic literature search and study selection were performed by only one
researcher. Therefore, it was not possible to establish inter-rater reliability. However, the
process of study selection and the included studies were discussed by the authors until
consensus was achieved. Nevertheless, it may be possible that this has introduced selection
bias, but this could not be verified.

All studies that were included in this systematic review were found to have a medium
quality. Quality was operationalized using reliability and validity. The process and assess-
ment of the quality of the included studies were discussed by the authors until consensus
was achieved.

It was observed that studies often failed to report information on the themes that
were used to extract relevant information (see Appendix C). Consequently, the absence of
these data limited the analyses of the studies with respect to their methodology, sample
characteristics, and the utilized techniques. In addition, various publications failed to
disclose information on the diseases that the identified ADRs were related to. We highly
recommend authors disclose this information. This information has great value, among
others, to establish the quality of these studies and to enable replicability, but it may
also benefit the research community if the methodology and processes are explained in
greater detail.

Because it is a commonality in the field of information technology and computational
linguistics that findings are not always published in peer-reviewed journals, but instead
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it is often only published in conference proceedings or conference papers, both types of
publications were included in this systematic review. This is important, because it may
be possible that the process of peer-review is more rigorous when performed by journals
compared to conferences. It was also observed that a significant number of included
publications were not journal articles.

A common and unavoidable limitation of studies using user-generated content from
social media (including all data sources listed in this review) is the inherent noisiness
and bias of these data sources. In the context of the reviewed studies, users are usually
unqualified to assess their symptoms, they might exaggerate mild or unrelated symptoms,
they might just follow popular trends in criticism, or be biased or even malicious (e.g.,
seeking to discredit competition). These factors have to be taken into account when judging
the effectiveness of the proposed tools.

As we discussed in the methods section, due to the interdisciplinary nature of the
reviewed studies and their limitations, it was impossible to apply the complete PRISMA
2020 checklist in this systematic review. Therefore no registration was made in PROSPERO
either. We acknowledge this as a limitation of this work.

7. Conclusions and Future Outlook

Our findings suggest that the user-generated textual content that drug users share
on the Internet may have the potential to augment or enhance the expensive and time-
consuming traditional system of pharmacovigilance. NLP may thus be used to automate
the monitoring of ADRs using content that users publish to social media and other digital
platforms [40]. This novel tool may not only contribute to improving public health and
the quality of healthcare, but it could potentially also reduce the costs and processing
time that are associated with conducting pharmacovigilance. Therefore, this tool may
be a viable solution that addresses two of the most prominent challenges of traditional
pharmacovigilance, namely the reduction of the high associated costs [7] and the inclusion
of ADRs as experienced by the end-users [6]. It is strongly suggested for policymakers
to consider the automated analysis of user-generated textual content for the purpose of
pharmacovigilance, and to employ it ethically, responsibly, and with great respect to the
privacy and anonymity of these drug users.

We acknowledge that we ought to be limited in describing the architecture of such tools
for pharmacovigilance in the present paper. On an abstract level, this tool would subscribe
to the Twitter API and filters Tweets based on keywords related to ADRs. Relevant Tweets
are then subject to sentiment analysis and processed using NLP techniques. Based on
the informational needs of researchers, further processing and analysis can be performed
to extract key information on ADRs for medicines of interest and the related sentiment
expressed by drug users.
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Appendix A. PRISMA 2020 Checklist

Table A1. PRISMA checklist.

Section/Topic # Checklist Item Reported on Page #

TITLE

Title 1 Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist. 1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of what is already known. 1

Objectives 4 Provide an explicit statement of the objective(s) or question(s) the review
addresses. 2

METHOD

Eligibility criteria 5 Specify the inclusion and exclusion criteria for the review and how studies were
grouped for the syntheses. 5

Information sources 6
Specify all databases, registers, websites, organisations, reference lists and other

sources searched or consulted to identify studies. Specify the date when each
source was last searched or consulted.

3

Search strategy 7 Present the full search strategies for all databases, registers and websites, including
any filters and limits used. 3, 19

Selection process 8

Specify the methods used to decide whether a study met the inclusion criteria of
the review, including how many reviewers screened each record and each report

retrieved, whether they worked independently, and if applicable, details of
automation tools used in the process.

4

Data collection process 9

Specify the methods used to collect data from reports, including how many
reviewers collected data from each report, whether they worked independently,
any processes for obtaining or confirming data from study investigators, and if

applicable, details of automation tools used in the process.

4

Data items 10a

List and define all outcomes for which data were sought. Specify whether all
results that were compatible with each outcome domain in each study were sought
(e.g. for all measures, time points, analyses), and if not, the methods used to decide

which results to collect.

4

10b
List and define all other variables for which data were sought (e.g. participant and

intervention characteristics, funding sources). Describe any assumptions made
about any missing or unclear information.

4, 5

Study risk of bias assessment 11

Specify the methods used to assess risk of bias in the included studies, including
details of the tool(s) used, how many reviewers assessed each study and whether
they worked independently, and if applicable, details of automation tools used in

the process.

5

Effect measures 12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference)
used in the synthesis or presentation of results. n. a.

Synthesis methods 13a
Describe the processes used to decide which studies were eligible for each

synthesis (e.g. tabulating the study intervention characteristics and comparing
against the planned groups for each synthesis (item #5)).

5

13b Describe any methods required to prepare the data for presentation or synthesis,
such as handling of missing summary statistics, or data conversions. 6

13c Describe any methods used to tabulate or visually display results of individual
studies and syntheses. 6

13d

Describe any methods used to synthesize results and provide a rationale for the
choice(s). If meta-analysis was performed, describe the model(s), method(s) to

identify the presence and extent of statistical heterogeneity, and software
package(s) used.

6

13e Describe any methods used to explore possible causes of heterogeneity among
study results (e.g. subgroup analysis, meta-regression). n. a.

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized
results. n. a.

Reporting bias assessment 14 Describe any methods used to assess risk of bias due to missing results in a
synthesis (arising from reporting biases). n. a.

Certainty assessment 15 Describe any methods used to assess certainty (or confidence) in the body of
evidence for an outcome. 5
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Table A1. Cont.

Section/Topic # Checklist Item Reported on Page #

RESULTS

Study selection 16a
Describe the results of the search and selection process, from the number of records

identified in the search to the number of studies included in the review, ideally
using a flow diagram.

4

16b Cite studies that might appear to meet the inclusion criteria, but which were
excluded, and explain why they were excluded. n. a.

Study characteristics 17 Cite each included study and present its characteristics. 7
Risk of bias within studies 18 Present assessments of risk of bias for each included study. 20

Results of individual studies 19
For all outcomes, present, for each study: (a) summary statistics for each group

(where appropriate) and (b) an effect estimate and its precision (e.g.
confidence/credible interval), ideally using structured tables or plots.

9

Results of syntheses 20a For each synthesis, briefly summarise the characteristics and risk of bias among
contributing studies. n. a.

20b

Present results of all statistical syntheses conducted. If meta-analysis was done,
present for each the summary estimate and its precision (e.g. confidence/credible
interval) and measures of statistical heterogeneity. If comparing groups, describe

the direction of the effect.

n. a.

20c Present results of all investigations of possible causes of heterogeneity among
study results. n. a.

20d Present results of all sensitivity analyses conducted to assess the robustness of the
synthesized results. n. a.

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting
biases) for each synthesis assessed. 15

Certainty of evidence 22 Present assessments of certainty (or confidence) in the body of evidence for each
outcome assessed. n. a.

DISCUSSION

Discussion 23a Provide a general interpretation of the results in the context of other evidence. 14
23b Discuss any limitations of the evidence included in the review. 15
23c Discuss any limitations of the review processes used. 15
23d Discuss implications of the results for practice, policy, and future research. 16

OTHER INFORMATION

Registration and protocol 24a Provide registration information for the review, including register name and
registration number, or state that the review was not registered. 15

24b Indicate where the review protocol can be accessed, or state that a protocol was not
prepared. 15

24c Describe and explain any amendments to information provided at registration or
in the protocol. 15

Support 25 Describe sources of financial or non-financial support for the review, and the role
of the funders or sponsors in the review. 16

Competing interests 26 Declare any competing interests of review authors. 16

Availability of data, code and
other materials 27

Report which of the following are publicly available and where they can be found:
template data collection forms; data extracted from included studies; data used for

all analyses; analytic code; any other materials used in the review.
n. a.

Appendix B. Search Strategies

The systematic literature search was performed on 25 March 2020 for all databases.
All publications appearing up to this point were considered in the search.

Appendix B.1. Search Strategy for PubMed

Block 1: Computational Linguistics

artificial intelligence[Title/Abstract] OR Artificial Intelligence[MeSH Terms] OR ma-
chine learning[Title/Abstract] OR Machine Learning[MeSH Terms] OR text mining[Title/
Abstract] OR computational linguistics[Title/Abstract] OR natural language processing[Title/
Abstract] OR Natural Language Processing[MeSH Terms] OR nlp[Title/Abstract] OR sen-
timent analysis[Title/Abstract] OR word embedding*[Title/Abstract] OR natural language
toolkit[Title/Abstract] OR nltk[Title/Abstract]

Block 2: Health Surveillance

public health surveillance[Title/Abstract] OR Public Health Surveillance[MeSH Terms]
OR health surveillance[Title/Abstract] OR public health monitoring[Title/Abstract] OR
health monitoring[Title/Abstract]

Filters:

Article types: Journal Article
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Languages: English

Appendix B.2. Search Strategy for Web of Science

Block 1: Computational Linguistics

TS=(artificial intelligence) OR TS=(machine learning) OR TS=(text mining) OR
TS=(computational linguistics) OR TS=(natural language processing) OR TS=(nlp) OR
TS=(sentiment analysis) OR TS=(word embedding*) OR TS=(natural language toolkit) OR
TS=(nltk)

Block 2: Health Surveillance

TS=(public health surveillance) OR TS=(health surveillance) OR TS=(public health
monitoring) OR TS=(health monitoring)

Filters:

Document types: Article, Proceedings Paper
Languages: English

Appendix B.3. Search Strategy for IEEE Xplore

Block 1: Computational Linguistics

“All Metadata”:artificial intelligence OR “All Metadata”:machine learning OR “All
Metadata”:text mining OR “All Metadata”:computational linguistics OR “All Metadata”:
natural language processing OR “All Metadata”:nlp OR “All Metadata”:sentiment analysis
OR “All Metadata”:word embedding* OR “All Metadata”:natural language toolkit OR “All
Metadata”:nltk

Block 2: Health Surveillance

“All Metadata”:public health surveillance OR “All Metadata”:health surveillance OR
“All Metadata”:public health monitoring OR “All Metadata”:health monitoring

Filters:

Document types: Conferences, Journals

Appendix B.4. Search Strategy for ACM Digital Library

Block 1: Computational Linguistics

artificial intelligence OR machine learning OR text mining OR computational linguis-
tics OR natural language processing OR nlp OR sentiment analysis OR word embedding*
OR natural language toolkit OR nltk

Block 2: Health Surveillance

public health surveillance OR health surveillance OR public health monitoring OR
health monitoring

Filters:

Searched within: Abstract, Author Keyword, Title All publications: Proceedings,
Research Article
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Appendix C. Characteristics of Publications

Table A2. Characteristics of publications included in the analysis.

Authors Type of
Drugs

Drugs
Studied Data Source Sample Size Users Unique

Users
Origin of

Users

Average
Number of
Followers

Years of Data
Collection

Horizon of
Data

Collection

Software
Used

Techniques and
Classifiers Used Outcome Result Description

of Result Reliability Validity

[31] HIV
Atripla,
Sustiva,
Truvada

Social media Twitter.com:
1642 tweets

HIV-infected
persons

undergoing
drug

treatment

512
(male: 247;
female: 83;
unknown:

182)

Canada,
South Africa,

United
Kingdom,

United States
(New York
City, San

Fransisco)

2300 2010, 2011,
2012, 2013 3 years

Toolkit for
Multivariate

Analysis

Artificial Neural
Networks (ANN),
Boosted Decision

Trees with
AdaBoost (BDT),
Boosted Decision

Trees with Bagging
(BDTG),

Sentiment Analysis,
Support Vector

Machines (SVM)

Reported
ADRs for

HIV
treatment

Positive

Reported
adverse

effects are
consistent
with well-
recognized
toxicities.

Medium Medium

[32] Depression

Citalopram,
Chlorpro-
mazine,

Cyclobenza-
prine,

Dulexetine,
Promethazine

Forums
Depression
Forums.org:
7726 posts

Unknown Unknown Unknown Unknown 2004–2014 10 years

General
Architecture

for Text
Engineering

(GATE),
NLTK Toolkit

within
MATLAB,

RapidMiner

Hyperlink-Induced
Topic Search (HITS),
k-Means Clustering,
Network Analysis,
Term-Frequency-

Inverse Document
Frequency (TF-IDF)

User
sentiment on
depression

drugs

Positive

Natural
language

processing is
suitable to

extract
information

on ADRs
concerning
depression.

Medium Medium

[66] Cancer

Avastin,
Melphalan,
Rupatadin,
Tamoxifen,

Taxotere

Social media
Twitter.com:
2,102,176,189

tweets
Unknown Unknown Unknown Unknown 2009,

2010 1 year Apache
Lucene

MetaMap,
Support Vector

Machines (SVM)

Reported
ADRs for

cancer
Neutral

Classification
models had

limited
performance.

Adverse
events related

to cancer
drugs can

potentially be
extracted

from tweets.

Medium Medium

[33] Unknown Unknown Social media Twitter.com:
6528 tweets Unknown Unknown Unknown Unknown Unknown Unknown

GENIA
tagger,

Hunspell,
Snowball
stemmer,
Stanford

Topic
Modelling
Toolbox,

Twokenizer

Backward/forward
sequential feature

selection
(BSFS/FSFS)

algorithm,
k-Means Clustering,
Sentiment Analysis,

Support Vector
Machines (SVM)

Reported
ADRs Positive

ADRs were
identified
reasonably

well.

Medium Medium
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Table A2. Cont.

Authors Type of
Drugs

Drugs
Studied Data Source Sample Size Users Unique

Users
Origin of

Users

Average
Number of
Followers

Years of Data
Collection

Horizon of
Data

Collection

Software
Used

Techniques and
Classifiers Used Outcome Result Description

of Result Reliability Validity

[34] Unknown Unknown Social media Twitter.com:
32,670 tweets Unknown Unknown Unknown Unknown Unknown Unknown

Hunspell,
Twitter

tokenizer

- Term
Frequency-Inverse

Document
Frequency (TF-IDF)

Reported
ADRs Neutral

ADRs were
not very well

identified.
Medium Medium

[67] Unknown 65 drugs Social media Twitter.com:
10,822 tweets Unknown Unknown Unknown Unknown Unknown Unknown Unknown

Naive Bayes (NB),
Natural Language
Processing (NLP),

Support Vector
Machines (SVM)

Reported
ADRs Positive

ADRs were
identified

good.
Medium Medium

[35] Unknown Unknown Drug reviews

Drugs.com,
Drugslib.com:

218,614
reviews

Unknown Unknown Unknown Unknown Unknown Unknown BeautifulSoup Logistic Regression,
Sentiment Analysis

Patient
satisfaction
with drugs,
Reported

ADRs,
Reported

effectiveness
of drugs

Positive
Classification
results were
very good.

Medium Medium

[36] Unknown 103 drugs Social media
Twitter.com:

172,800
tweets

Unknown 864 Unknown Unknown 2014,
2015 1 year Twitter4J

Decision Trees,
Medical Profile

Graph,
Natural Language
Processing (NLP)

Reported
ADRs Positive

Building a
medical

profile of
users enables
the accurate
detection of

adverse drug
events.

Medium Medium

[37] Unknown Unknown Social media Twitter.com
1245 tweets Unknown Unknown Unknown Unknown Unknown Unknown

CRF++
Toolkit,
GENIA
tagger,

Hunspell,
Twitter REST

API,
Twokenizer

Natural Language
Processing (NLP)

Reported
ADRs Positive

ADRs were
identified
reasonably

well.

Medium Medium

[38] Cancer 146 drugs Drug reviews WebMD.com:
Unknown Unknown Unknown Unknown Unknown Unknown Unknown SentiWordNet,

WordNet

Sentiment Analysis,
Support Vector

Machines (SVM),
Term document
Matrix (TDM)

User
sentiment on
cancer drugs

Positive

Sentiment on
ADRs was
identified
reasonably

well.

Medium Medium

[39] Unknown 81 drugs Drug reviews,
Social media

DailyStrength.org:
6279 reviews,
Twitter.com:
1784 tweets

Unknown Unknown Unknown Unknown Unknown Unknown Unknown

ARDMine,
Lexicon-based,

MetaMap,
Support Vector

Machines (SVM)

Reported
ADRs Positive

ADRs were
identified
very well.

Medium Medium
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Table A2. Cont.

Authors Type of
Drugs

Drugs
Studied Data Source Sample Size Users Unique

Users
Origin of

Users

Average
Number of
Followers

Years of Data
Collection

Horizon of
Data

Collection

Software
Used

Techniques and
Classifiers Used Outcome Result Description

of Result Reliability Validity

[40]

Asthma,
Cystic

fibrosis,
Rheumatoid

arthritis,
Type 2

diabetes

Albuterol,
Azithromycin,

Bromocrip-
tine,

Insulin,
Ipratropium,

Ivacaftor,
Meloxicam,
Metformin,
Prednisone,

Sulfasalazine

Drug reviews,
Social media

PatientsLikeMe.com:
796 reviews,

Twitter.com: 39,127
tweets,

WebMD.com: 2567
reviews,

YouTube.com:
42,544 comments

Unknown Unknown Unknown Unknown 2014 Not
applicable

Deeply
Moving Unknown

Patient-
reported

medication
outcomes

Positive

Social media
serves as a
new data
source to

extract
patient-

reported
medication
outcomes.

Medium Medium

[68] Unknown

Medications.com:
168 drugs,

Steady-
Health.com:
316 drugs

Forums

Medications.com:
8065 posts,

SteadyHealth.com:
11,878

Unknown Unknown Unknown Unknown 2012 Not
applicable

Java Hidden
Markov

Model library,
jsoup

Hidden Markov
Model (HMM),

Natural Language
Processing (NLP)

Reported
ADRs Positive

Reported
adverse

effects are
consistent
with well-
recognized
side-effects.

Medium Medium

[69] Unknown

ACE
inhibitors,
Bupropion,
Ibuprofen,
Morphine,
Paroxetine,

Rosiglitazone,
Warfarin

Electronic
Health

Record (EHR)

25,074 discharge
summaries Unknown Unknown Unknown Unknown 2004 Not

applicable MedLEE Unknown Reported
ADRs Positive

Reported
adverse

effects are
consistent
with well-
recognized
toxicities

(recall: 75%;
precision:

31%).

Medium Medium

[41] Unknown

Baclofen,
Duloxetine,
Gabapentin,
Glatiramer,
Pregabalin

Social media Twitter.com:
3251 tweets Unknown Unknown Unknown Unknown 2015 Not

applicable

AFINN,
Bing Liu

sentiment
words,
Multi-

Perspective
Question

Answering
(MPQA),

SentiWord-
Net,

TextBlob,
Tweepy,
WEKA

MetaMap,
Naive Bayes (NB),
Natural Language
Processing (NLP),

Sentiment Analysis,
Support Vector

Machines (SVM)

Reported
ADRs Positive

Several
well-known
ADRs were
identified.

Medium Medium

[70] Unknown

Adenosine,
Biaxin,
Cialis,
Elidel,

Lansoprazole,
Lantus,
Luvox,
Prozac,

Tacrolimus,
Vyvanse

Forums
MedHelp.com:
6244 discussion

threads
Unknown Unknown Unknown Unknown Unknown Unknown Unknown Association Mining Reported

ADRs Positive ADRs were
identified. Medium Medium
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43. Tekin, M.; Etlioğlu, M.; Koyuncuoğlu, Ö.; Tekin, E. Data Mining in Digital Marketing. In Proceedings of the 2018 International
Symposium for Production Research, , Vienna, Austria, 28–31 August 2018; ; Durakbasa, N.M., Gencyilmaz, M.G., Eds.; Springer
International Publishing: Cham, Switzerland, 2018; pp. 44–61.

44. Wall, J.; Krummel, T. The digital surgeon: How big data, automation, and artificial intelligence will change surgical practice. J.
Pediatr. Surg. 2020, 55, 47–50. [CrossRef]

45. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag. 2015, 35, 137–144.
[CrossRef]

46. Zeng, Z.; Shi, H.; Wu, Y.; Hong, Z. Survey on Natural Language Processing Techniques in Bioinformatics. Comput. Math. Methods
Med. 2015, 2015, 674296. [CrossRef]

47. Iglesias, J.A.; Tiemblo, A.; Ledezma, A.; Sanchis, A. Web news mining in an evolving framework. Inf. Fusion 2016, 28, 90–98.
[CrossRef]

48. Kennedy, H.; Elgesem, D.; Miguel, C. On fairness: User perspectives on social media data mining. Converg. Int. J. Res. New Media
Technol. 2015, 23, 270–288. [CrossRef]

49. Szpakowicz, S.; Feldman, A.; Kazantseva, A. Editorial: Computational Linguistics and Literature. Front. Digit. Humanit. 2018, 5, 1–2.
[CrossRef]

50. Jurafsky, D.; Martin, J.J. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, 3rd ed.; Stanford University: Stanford, CA, USA, 2019.

51. Rizk, A.; Elragal, A. Data science: Developing theoretical contributions in information systems via text analytics. J. Big Data 2020,
7, 7. [CrossRef]

52. Liao, S.H.; Chu, P.H.; Hsiao, P.Y. Data mining techniques and applications—A decade review from 2000 to 2011. Expert Syst. Appl.
2012, 39, 11303–11311. [CrossRef]

53. Sunikka, A.; Bragge, J. Applying text-mining to personalization and customization research literature—Who, what and where?
Expert Syst. Appl. 2012, 39, 10049–10058. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0223318
http://dx.doi.org/10.1109/BIBM.2017.8217966
http://dx.doi.org/10.2196/publichealth.4488
http://www.ncbi.nlm.nih.gov/pubmed/27227141
http://dx.doi.org/10.1109/JBHI.2016.2539972
http://www.ncbi.nlm.nih.gov/pubmed/27164611
http://dx.doi.org/10.3390/info7020027
http://dx.doi.org/10.1016/j.ijmedinf.2019.05.017
http://www.ncbi.nlm.nih.gov/pubmed/31445246
http://dx.doi.org/10.1145/3194658.3194677
http://dx.doi.org/10.1109/BIBM.2015.7359767
http://dx.doi.org/10.1109/TAAI.2015.7407070
http://dx.doi.org/10.1109/ICDMW.2015.230
http://dx.doi.org/10.1093/jamia/ocu041
http://dx.doi.org/10.1109/icdmw.2015.150
http://dx.doi.org/10.1109/BigData.2015.7363922
http://dx.doi.org/10.1016/j.im.2019.103237
http://dx.doi.org/10.1016/j.jpedsurg.2019.09.008
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1155/2015/674296
http://dx.doi.org/10.1016/j.inffus.2015.07.004
http://dx.doi.org/10.1177/1354856515592507
http://dx.doi.org/10.3389/fdigh.2018.00024
http://dx.doi.org/10.1186/s40537-019-0280-6
http://dx.doi.org/10.1016/j.eswa.2012.02.063
http://dx.doi.org/10.1016/j.eswa.2012.02.042


Pharmaceutics 2022, 14, 266 25 of 25

54. Aggarwal, C.C.; Zhai, C., A Survey of Text Clustering Algorithms. In Mining Text Data; Springer: New York, NY, USA, 2012; pp.
77–128.

55. Lu, Y.; Zhang, P.; Liu, J.; Li, J.; Deng, S. Health-Related Hot Topic Detection in Online Communities Using Text Clustering. PLoS
ONE 2013, 8, e56221. [CrossRef] [PubMed]

56. Sadiq, A.T.; Abdullah, S.M. Hybrid Intelligent Techniques for Text Categorization. Int. J. Adv. Comput. Sci. Appl. 2014, 2, 23–40.
57. Tan, A. Text Mining: The State of the Art and the Challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge

Discovery from Advanced Databases, Beijing, China, 26–28 April 1999; pp. 65–70.
58. Nassirtoussi, A.K.; Aghabozorgi, S.; Wah, T.Y.; Ngo, D.C.L. Text mining for market prediction: A systematic review. Expert Syst.

Appl. 2014, 41, 7653–7670. [CrossRef]
59. Oberreuter, G.; Velsquez, J.D. Text mining applied to plagiarism detection: The use of words for detecting deviations in the

writing style. Expert Syst. Appl. 2013, 40, 3756–3763. [CrossRef]
60. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.;

Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare
interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [CrossRef]

61. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses:
The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [CrossRef] [PubMed]

62. Giustini, D.; Boulos, M.N.K. Google Scholar is not enough to be used alone for systematic reviews. Online J. Public Health Inform.
2013, 5, 214. [CrossRef] [PubMed]

63. Bramer, W.M.; Giustini, D.; de Jonge, G.B.; Holland, L.; Bekhuis, T. De-duplication of database search results for systematic
reviews in EndNote. J. Med. Libr. Assoc. JMLA 2016, 104, 240–243. [CrossRef] [PubMed]

64. Kampmeijer, R.; Pavlova, M.; Tambor, M.; Golinowska, S.; Groot, W. The use of e-health and m-health tools in health promotion
and primary prevention among older adults: A systematic literature review. BMC Health Serv. Res. 2016, 16, 290. [CrossRef]
[PubMed]

65. Hsieh, H.F.; Shannon, S.E. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [CrossRef]
[PubMed]

66. Bian, J.; Topaloglu, U.; Yu, F. Towards Large-Scale Twitter Mining for Drug-Related Adverse Events. In Proceedings of the 2012
International Workshop on Smart Health and Wellbeing, SHB ’12, Maui, HI, USA, 29 October 2012; Association for Computing
Machinery: New York, NY, USA, 2012; pp. 25–32. [CrossRef]

67. Ginn, R.; Pimpalkhute, P.; Nikfarjam, A.; Patki, A.; O’Connor, K.; Sarker, A.; Smith, K.; Gonzalez, G. Mining Twitter for adverse
drug reaction mentions: A corpus and classification benchmark. In Proceedings of the Fourth Workshop on Building and
Evaluating Resources for Health and Biomedical Text Processing, Reykjavik, Iceland, 31 May 2014; pp. 1–8.

68. Sampathkumar, H.; Chen, X.W.; Luo, B. Mining Adverse Drug Reactions from online healthcare forums using Hidden Markov
Model. BMC Med. Inform. Decis. Mak. 2014, 14, 91. [CrossRef]

69. Wang, X.; Hripcsak, G.; Markatou, M.; Friedman, C. Active Computerized Pharmacovigilance Using Natural Language Processing,
Statistics, and Electronic Health Records: A Feasibility Study. J. Am. Med. Inform. Assoc. 2009, 16, 328–337. [CrossRef]

70. Yang, C.C.; Yang, H.; Jiang, L.; Zhang, M. Social Media Mining for Drug Safety Signal Detection. In Proceedings of the 2012
International Workshop on Smart Health and Wellbeing, SHB ’12, Maui, HI, USA, 29 October 2012; Association for Computing
Machinery: New York, NY, USA, 2012; pp. 33–40. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0056221
http://www.ncbi.nlm.nih.gov/pubmed/23457530
http://dx.doi.org/10.1016/j.eswa.2014.06.009
http://dx.doi.org/10.1016/j.eswa.2012.12.082
http://dx.doi.org/10.1136/bmj.b2700
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
http://dx.doi.org/10.5210/ojphi.v5i2.4623
http://www.ncbi.nlm.nih.gov/pubmed/23923099
http://dx.doi.org/10.3163/1536-5050.104.3.014
http://www.ncbi.nlm.nih.gov/pubmed/27366130
http://dx.doi.org/10.1186/s12913-016-1522-3
http://www.ncbi.nlm.nih.gov/pubmed/27608677
http://dx.doi.org/10.1177/1049732305276687
http://www.ncbi.nlm.nih.gov/pubmed/16204405
http://dx.doi.org/10.1145/2389707.2389713
http://dx.doi.org/10.1186/1472-6947-14-91
http://dx.doi.org/10.1197/jamia.M3028
http://dx.doi.org/10.1145/2389707.2389714

	Introduction
	Background
	Traditional Approaches
	Improving Pharmacovigilance Using Natural Language Processing

	Materials and Methods
	Search Strategy
	Study Selection
	Inclusion and Exclusion Criteria
	Reliability and Validity
	Data Analysis

	Results
	General Characteristics
	Input Sources
	Employed Methods
	Study Effectiveness

	Discussion
	Limitations
	Conclusions and Future Outlook
	PRISMA 2020 Checklist 
	Search Strategies
	Search Strategy for PubMed
	Search Strategy for Web of Science
	Search Strategy for IEEE Xplore
	Search Strategy for ACM Digital Library

	Characteristics of Publications
	References

