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Abstract

Background: Hepatocellular carcinoma (HCC) is among the deadliest forms of cancer. While RNA-binding proteins
(RBPs) have been shown to be key regulators of oncogenesis and tumor progression, their dysregulation in the
context of HCC remains to be fully characterized.

Methods: Data from the Cancer Genome Atlas - liver HCC (TCGA-LIHC) database were downloaded and analyzed
in order to identify RBPs that were differentially expressed in HCC tumors relative to healthy normal tissues.
Functional enrichment analyses of these RBPs were then conducted using the GO and KEGG databases to
understand their mechanistic roles. Central hub RBPs associated with HCC patient prognosis were then detected
through Cox regression analyses, and were incorporated into a prognostic model. The prognostic value of this
model was then assessed through the use of Kaplan-Meier curves, time-related ROC analyses, univariate and
multivariate Cox regression analyses, and nomograms. Lastly, the relationship between individual hub RBPs and
HCC patient overall survival (OS) was evaluated using Kaplan-Meier curves. Finally, find protein-coding genes (PCGs)
related to hub RBPs were used to construct a hub RBP-PCG co-expression network.

Results: In total, we identified 81 RBPs that were differentially expressed in HCC tumors relative to healthy tissues
(54 upregulated, 27 downregulated). Seven prognostically-relevant hub RBPs (SMG5, BOP1, LIN28B, RNF17, ANG,
LARP1B, and NR0B1) were then used to generate a prognostic model, after which HCC patients were separated into
high- and low-risk groups based upon resultant risk score values. In both the training and test datasets, we found
that high-risk HCC patients exhibited decreased OS relative to low-risk patients, with time-dependent area under
the ROC curve values of 0.801 and 0.676, respectively. This model thus exhibited good prognostic performance. We
additionally generated a prognostic nomogram based upon these seven hub RBPs and found that four other genes
were significantly correlated with OS.

Conclusion: We herein identified a seven RBP signature that can reliably be used to predict HCC patient OS,
underscoring the prognostic relevance of these genes.
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Background
Liver cancer is among the most common forms of can-
cer, and owing to its highly invasive nature it is the
fourth leading cancer-related cause of death globally [1].
Hepatocellular carcinoma (HCC) accounts for approxi-
mately 80% of all liver cancer cases [2], and it can be dif-
ficult to reliably diagnose and treat in its early stages, as
its detection is largely dependent upon imaging evalua-
tions and biopsy. HCC treatments generally include hep-
atectomy, liver transplantation, radiofrequency ablation
(RFA), and transcatheter arterial chemoembolization
(TACE). As his disease is generally only detected when
it is in an advanced stage, HCC patients generally have a
poor overall prognosis [3, 4]. The identification of novel
diagnostic and prognostic biomarkers associated with
HCC is thus very important.
RNA binding proteins (RBPs) are a broad class of

highly-conserved RNA-interacting proteins, of which
roughly 60% are expressed in a tissue-specific manner
[5]. Genome-wide screening analyses have detected over
1500 RBPs in the human genome. These proteins are
capable of binding to diverse RNA types (including
rRNAs, ncRNAs, snRNAs, miRNAs, mRNAs, tRNAs,
and snoRNAs), and can serve as key post-transcriptional
regulators of gene expression to maintain intracellular
homeostasis [6, 7]. RBP dysregulation has been shown to
be associated with oncogenesis in multiple studies [8].
For example, Lin28 is an oncogenic RBP that has been
found to promote the metastatic progression of diverse
human cancers [9]. The RBP Musashi1 (Msi1) has been
shown to promote glioma progression when its normal
interactions with miR-137 are disrupted [10]. PUM2 is
an RBP that is overexpressed in breast cancer and to be
negatively correlated with OS and a lack of tumor recur-
rence in these patients [11]. The RBP insulin-like growth
factor 2 mRNA-binding protein 3 (IGF2BP3) has simi-
larly been found to be overexpressed in mixed-lineage
leukemia–rearranged (MLL rearranged) B-acute
lymphoblastic leukemia (B-ALL) and to be associated
with poorer outcomes and higher recurrence risks in
these patients [12]. There is also specific evidence link-
ing certain RBPs to liver cancer. For example, Sorbin
and SH3 domain containing 2 (RBPSORBS2) expression
is reduced in HCC patients and associated with a poor
prognosis. This RBP is believed to function via regulat-
ing RORA expression to control liver cancer onset and
metastasis [13]. RBM3 is an RBP capable of promoting
HCC cell proliferation owing to its ability to regulate
SCD-CircRNA2 production, with RBM3 overexpression
being linked to reduced OS and decreased recurrence-
free survival (RFS) in HCC patients [14]. While these
findings are informative, few studies to date have sys-
tematically evaluated RBP expression patterns in liver
cancer.

In the present study, we downloaded HCC patient
gene expression and clinical data from The Cancer Gen-
ome Atlas (TCGA) database, after which we used these
data to identify RBPs that were differentially expressed
in HCC tumor tissues relative to healthy normal tissues.
We further explored the functional roles of these RBPs
through protein-protein interaction (PPI) network, gene
ontology (GO) enrichment analyses, and Kyoto gene and
genome encyclopedia (KEGG) pathway analyses. We also
constructed a prognostic model based upon seven key
hub RBPs, identifying them as potentially viable diagnos-
tic and prognostic biomarkers of HCC.

Methods
Data collection
We downloaded level 3 mRNA expression and clinical
data from 374 HCC and 50 normal control samples
from the TCGA – liver HCC dataset (TCGA-
LIHC)(https://portal.gdc.cancer.gov/).

Differentially expressed RBP identification
Appropriate R packages were used to standardize data
by excluding genes with an average count < 1. Differen-
tially expressed RBPs were then identified using R
(v3.6.0) with the following criteria: | log2FC | ≥ 1 and
FDR < 0.05.

Functional enrichment analyses
In order to explore the functional roles of these differen-
tially expressed RBPs, they were next separated into
those that were upregulated and downregulated in HCC.
The clusterProfiler R package [15] was then used to con-
duct GO and KEGG pathway enrichment [16] analyses
on these two groups of RBPs, with P < 0.05 and FDR <
0.05 being used as significance thresholds.

PPI network construction and analysis
The STRING database (http://www.string-db.org/)
[17] was used to assess interactions between proteins
related to these differentially expressed RBPs, with
Cytoscape v3.7.1 being used to construct a PPI net-
work. The MCODE plugin was then used to identify
key modules and hub genes within this network based
on the following criteria: degree cutoff = 5, node score
cutoff = 0.2, k-core = 5, max.depth = 100 truncation
standard, and P < 0.05 was the significance threshold.

Evaluation of hub gene prognostic relevance
Follow-up analyses incorporated all HCC patients sur-
viving for at least 30 days. Hub RBPs associated with pa-
tient prognosis were identified through univariate Cox
regression analyses, with patients being randomly sepa-
rated into training and test cohorts. RBPs identified in
these initial analyses were then assessed via a
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multivariate stepwise Cox regression approach to iden-
tify hub RBPs individually associated with HCC patient
OS.

Prognostic risk score model construction and analysis
A prognostic risk score model was constructed using pa-
tients in the training cohort (n = 172) based upon multi-
variate stepwise Cox regression model coefficient (β)
values for selected hub RBPs. Risk scores for n hub
genes were computed as follows: risk score = (β-mRNA1
* expression mRNA1) + (β-mRNA2 * expression
mRNA2) + (β-mRNA3 * expressionmRNA3) + (β-
mRNAn * expression mRNAn). The R survival and Surv-
miner packages were used to select the optimal risk
score cutoff values [18]. HCC patients were then sepa-
rated into low- and high-risk groups based upon median
risk score values. The OS of patients in these two risk
groups was then compared using Kaplan-Meier survival
curves and log-rank sum tests with the R survival pack-
age. The Survival ROC package was additionally utilized
for time-related ROC analyses assessing the value of in-
dividual hub RBPs as predictors of patient OS. These
analyses were then repeated in the test group of patients.

Nomogram construction
Nomograms have been used to predict outcomes in pa-
tients with a range of cancer types [19]. In order to con-
struct a nomogram in the present study, the multivariate
Cox analysis results pertaining to hub RBPs were used
to construct line diagrams. Total nomogram scores were
then used to predict 1-, 3-, and 5-year OS in HCC pa-
tients in both the training and test cohorts.

Assessment of the correlation between risk scores and
clinical characteristics
Logistic regression analyses of the entire TCGA-LIHC
cohort were used to analyze the relationship between
risk scores and HCC clinical characteristics. These clin-
ical parameters included age, fender, AFP, Hepatitis B or
C status, and alcohol consumption. P < 0.05 was the sig-
nificance threshold.

Assessment of the independent prognostic relevance of
risk scores
The independent prognostic relevance of hub RBP risk
scores, age, sex, tumor grade, tumor stage, and TNM
stage was analyzed through univariate and multivariate
Cox regression analysis. TCGA entries with incomplete
data were omitted from these analyses. P < 0.05 was the
significance threshold.

Prognostic RBP validation
To analyze the prognostic relevance of identified hub
RBPs in HCC patients, we utilized Kaplan-Meier curves.

The survival R package was used to compute P-values
corresponding to these curves via the log-rank test, with
P < 0.05 as the significance threshold.

Hub RBP-PCG co-expression network construction
A co-expression network of hub RBPs and protein-
coding genes (PCGs) was additionally constructed in
order to further explore the potential mechanisms
whereby hub RBPs influence tumor development. Pear-
son correlation coefficients between RBP and PCG ex-
pression levels were calculated, and when these
coefficients were > 0.5 or < − 0.5 with a p-value < 0.01,
this was indicative of a significant correlation. An RBP-
PCG co-expression network was constructed using these
values, and GO and KEGG enrichment analyses of PCGs
were performed.

Results
Differentially expressed RBP identification
In total, we evaluated the expression of 1542 different
RBPs in 374 HCC tumors and 50 normal tissue samples
[6]. Of these, we identified 81 differentially expressed
RBPs, including 54 and 27 that were upregulated and
downregulated, respectively (|log2FC| > 1.0 and P < 0.05)
(Fig. 1).

Functional enrichment analyses
GO and KEGG analyses were next used to assess the po-
tential functional roles of up- and down-regulated RBPs
in HCC patients. GO analyses revealed upregulated
RBPs to be enriched for roles in mRNA metabolic pro-
cesses, RNA catabolic processes, DNA methylation or
demethylation, DNA modification, and mRNA catabolic
processes (Fig. 2a). In contrast, downregulated RBPs
were enriched for roles in RNA catabolic processes,
intracellular mRNA localization, translational regulation,
3′ −UTR −mediated mRNA destabilization, and RNA
phosphodiester bond hydrolysis (Fig. 2b). With respect
to molecular functions, upregulated RBPs were enriched
in mRNA 3′ −UTR binding, catalytic activity, acting on
RNA, translation regulator activity, poly(U) RNA bind-
ing, and poly−pyrimidine tract binding (Fig. 2a), whereas
downregulated RBPs were enriched in mRNA 3′ −UTR
AU − rich region binding, AU − rich element binding,
mRNA 3′ −UTR binding, ribonuclease activity and
double−stranded RNA binding (Fig. 2b). Upregulated
RBPs were additionally enriched in the cytoplasmic ribo-
nucleoprotein granule, ribonucleoprotein granule, cyto-
plasmic stress granule, telomerase holoenzyme complex,
and cytosolic large ribosomal subunit compartments
(Fig. 2a), while downregulated RBPs were primarily
enriched in mRNA cap-binding complex, RNA cap-
binding complex, endolysosome membrane, and apical
dendrite compartments (Fig. 2b). Upregulated RBPs
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were additionally enriched in the mRNA surveillance
pathway, microRNAs in cancer, RNA transport, RNA
degradation, DNA replication, and cysteine and methio-
nine metabolism KEGG pathways (Table 1), whereas
downregulated RBPs were enriched in the influenza A,
mRNA surveillance, and Hepatitis C pathways (Table 1).

PPI network construction and analysis
We next utilized Cytoscape (3.7.1) to construct a PPI
network based on the STRING database. The resultant
network incorporated 66 nodes and 127 edges (Fig. 3a).
Key co-expressed modules within this network were

then identified using the MCODE plugin (Fig. 3b). Func-
tional enrichment analyses revealed that hub RBPs
within this network were enriched in mRNA catabolic
processes, RNA catabolic processes, mRNA surveillance
pathways, and ribosome pathways.

Identification of hub RBPs associated with HCC patient
prognosis
We next randomly separated 343 total HCC patients in
the TCGA-LIHC dataset that had survived for a mini-
mum of 30 days into a training cohort (n = 172) and a
test cohort (n = 171). These two patient cohorts were

Fig. 1 Volcano plots and Heat maps of differentially expressed RBPs. a Heat map; b Volcano plot

Fig. 2 The top 5 significantly enriched GO annotations associated with differentially expressed RBPs. a Up-regulated RBPs; b down-regulated
RBPs. Where CC stands for cellular component, BP for the biological process, and MF for molecular function
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then used to conduct survival analyses, leading us to
identify 22 hub RBPs that were associated with patient
OS (Fig. 4a). A further multivariate Cox regression ana-
lysis determined that seven of these hub RBPs (SMG5,
BOP1, LIN28B, RNF17, ANG, LARP1B, NR0B1) were
independently associated with HCC patient OS (Fig. 4b).

Construction and validation of a hub RBP-based
prognostic model
We next utilized these seven independent prognostic
hub RBPs to construct a prognostic risk score model as
follows: risk score = 0.7291*ExpressionSMG5 +
0.4424*ExpressionBOP1 + 0.0610*ExpressionLIN28B +
0.0936*ExpressionRNF17 + (0.2779)*ExpressionANG+
0.6005*ExpressionLARP1B + 0.0731*ExpressionNR0B1.
Risk scores for each patient in the training set were then
calculated, and the Survminer R package was used to
calculate the median risk score in this patient cohort.
This median value was used to stratify patients into low-
and high-risk groups, and survival outcomes between
these groups were then compared via Kaplan-Meier

Table 1 Analysis of KEGG pathway of aberrantly expressed RBPs

Term Count p-value

Up-regulated RBPs

mRNA surveillance pathway 5 1.71E-06

MicroRNAs in cancer 5 0.00061399

RNA transport 4 0.00072374

RNA degradation 3 0.000789978

DNA replication 2 0.00317763

Cysteine and methionine metabolism 2 0.005824133

Down-regulated RBPs

Influenza A 4 0.000219498

mRNA surveillance pathway 3 0.000578381

Hepatitis C 3 0.002696851

Fig. 3 Analysis of modules and network of protein-protein interaction. a The network of protein-protein interaction of differentially expressed
RBPs; b A critical module from the network of PPI. Red circles: > 2-fold up-regulation Green circles: > 2-fold down-regulation

Wang et al. BMC Cancer         (2020) 20:1136 Page 5 of 14



survival and time-dependent ROC analyses. This analysis
confirmed that the OS of HCC patients in the high-risk
group was significantly reduced relative to that of pa-
tients in the low-risk group (Fig. 5a), with an area under
the ROC curve value of 0.801 for this seven RBP risk
score model (Fig. 5b), consistent with its moderate diag-
nostic performance. In Fig. 5c, mRNA expression levels,
survival status, and risk score values for patients in the
low- and high-risk groups are shown. We then utilized
this same risk score formula to analyze patients in the
test cohort (n = 171) (Fig. 6a-c). Consistent with the
above results, HCC patients in the low-risk group

exhibited an OS that was significantly longer than that
of patients in the high-risk group, with an area under
the ROC curve of 0.676. This thus indicates that our
prognostic model was able to successfully predict HCC
patient survival outcomes.

Construction of a hub RBP-based prognostic nomogram
A nomogram incorporating the results of the above
multivariate Cox regression analysis pertaining to the
seven hub RBPs was next constructed and used to pre-
dict 1-, 3-, and 5-year HCC patient OS (Fig. 7) in our
training dataset. This analysis revealed that patient 1-,

Fig. 4 Forest plot for univariate and multivariate Cox regression analyses of HCC patients. a Univariate Cox regression analysis for the hub RBPs
identification in the TCGA patient cohort; b Multivariate Cox regression analysis for the identification of hub RBPs related to patient prognosis in
the training set (n = 172)
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3-, and 5-year OS declined as risk scores increased, con-
sistent with our above results, confirming the prognostic
value of this risk nomogram.

The relationship between risk scores and clinical
parameters
Logistic regression analyses were used to assess the rela-
tionship between risk scores and HCC clinical character-
istics, revealing that high risk scores were associated
with low histological grade (G3–4 vs G1–2, OR = 2.060)
and high AFP levels (> 20 ng/mL vs < =20 ng/mL, OR =
1.986) (P < 0.05). In contrast, these scores were unrelated

to hepatitis status, vascular invasion, or alcohol intake
(Table 2).

RBP risk scores independently predict HCC patient
prognosis
We next conducted univariate Cox analyses or factors as-
sociated with prognosis in 226 patients that survived for a
minimum of 30 days and for whom complete clinical data
were available. These analyses revealed that cancer tissue
stage, T stage, and risk scores were all associated with
HCC patient OS (P < 0.001) (Fig. 8a). Subsequent multi-
variate Cox analysis confirmed that the RBP risk score

Fig. 5 Risk score analysis of a seven hub RBP-based prognostic model in the training set (n = 172). a Survival curves for high- and low-risk patient
groups; b ROC curves used to predict OS on the basis of risk score; c Expression survival status, distribution of risk score, and heat map
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was an independent predictor of HCC patient OS, with a
hazard ratio (HR) of 1.160 and a 95% confidence interval
of 1.095–1.229 (P = 4.305E-07) (Fig. 8b).

Validation of hub RBP prognostic value
Lastly, the relationship between identified hub RBPs
and HCC patient OS was evaluated using the Kaplan-
Meier plotter database. This analysis confirmed that 4/
7 hub RBPs (ANG, LIN28B, SMG5, and NR0B1) were
significantly associated with HCC patient OS, with re-
spective P-values of 0.017, 0.013, 0.002, and 0.003
(Fig. 9a-d).

SMG5-PCG co-expression network analysis
A correlation analysis of SMG5 and PCGs revealed that
there were 3756 total PCGs correlated with SMG5, of
which 7 were negatively correlated and 3749 were positively
correlated. The top five PCGs positively correlated with
SMG5 expression were ISG20L2, DENND4B, UBQLN4,
PI4KB, and SLC39A1 (Table 3), while the top five PCGs
negatively correlated with SMG5 expression were TTC36,
CLEC4M, FCN2, MFSD2, and MT1X (Table 3). GO and
KEGG analyses of these SMG5-related PCGs revealed them
to be primarily enriched in the mTOR, AMPK, VEGF, and
hepatitis B signaling pathways, indicating that they are
closely related to tumor development.

Fig. 6 Analysis of risk score of a seven hub RBP-based prognostic model in the testing set (n = 171). a Survival curves for high- and low-risk
patient groups; b ROC curves used to predict OS on the basis of risk score; c Expression survival status, distribution of risk score, and heat map
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Discussion
While available treatments for HCC have improved sig-
nificantly in recent years [20], it remains a condition as-
sociated with high rates of morbidity and mortality [21].
As such, it is essential that novel diagnostic and prog-
nostic biomarkers of HCC be identified in order to im-
prove patient outcomes.
RBP dysregulation has been shown to be a hallmark of

many tumor types [8]. In gliomas [10], breast cancer
[11], and B-ALL [12], RBPs have been found to be dir-
ectly related to tumor development and patient

prognosis. In the present study, we identified 81 RBPs
that were differentially expressed in HCC tissues relative
to healthy control tissues in the TCGA-LIHC dataset.
We analyzed the biological roles of these RBPs through
functional enrichment analyses and by constructing a
PPI network, after which we employed Cox regression
analyses, survival analyses, and time-dependent ROC
analyses of key hub RBPs within this network to con-
struct a prognostic risk model. This model was capable
of predicting HCC patient OS based upon the intratu-
moral expression of seven key RBPs. As such, our results

Fig. 7 Nomogram for the prediction of OS in LIHC patients at 1, 3, and 5 years in the training set (n = 172)

Table 2 The relationship between risk scores and HCC clinical characteristics

parameter count (N) Odds ratio in riskScore p-Value

age(>60vs < =60) 343 1.279 (0.837–1.958) 0.256

Sex (male vs female) 343 1.164 (0.740–1.836) 0.511

AFP(> 20 ng/mLvs<=20 ng/mL) 260 1.986 (1.215–3.270) 0.006

Hepatitis B or C (Yes vs No) 315 0.670 (0.428–1.046) 0.079

Alcohol consumption (Yes vs No) 315 1.161 (0.731–1.846) 0.528

Cirrhosis status (Yes vs No) 199 0.612 (0.334–1.110) 0.108

Vascular invasion (Yes vs No) 289 1.042 (0.642–1.692) 0.868

Grade (G3–4 vs G1–2) 338 2.060 (1.316–3.249) 0.002

Stage (Stage III-IV vs Stage I-II) 321 1.649 (0.997–2.751) 0.053

T (T3–4 vs T1–2) 340 1.541 (0.946–2.527) 0.084

N (N1 vs N0) 242 2.017 (0.191–43.740) 0.569

M (M1 vs M0) 248 2.016 (0.191–43.723) 0.569

Bold values indicate P < 0.05

Wang et al. BMC Cancer         (2020) 20:1136 Page 9 of 14



Fig. 8 Univariate and multivariate analyses of the correlation between risk score and OS. a Univariate Cox analyses; b multivariate Cox analysis
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highlight these RBPs as novel prognostic biomarkers of
HCC, and additionally identify these genes as potential
diagnostic or therapeutic targets. These differentially
expressed RBPs were found to be functionally enriched
in pathways relating to the regulation of mRNA metab-
olism, RNA catabolism, DNA methylation or demethyla-
tion, DNA modification, translation regulation,
mRNA3’-UTR binding, ribonuclease activity,, ribonu-
cleoprotein granule, telomerase holoenzyme complex,
and dsRNA binding. It has been reported that human
ribosomal protein S3 (RPS3) regulates the expression of

silent information regulator 1 (SIRT1) after transcription
to promote liver cancer [22]. IGF2 mRNA-binding pro-
teins (IGF2BPs) can specifically bind to the lncRNA
HULC (Highly Up-regulated in Liver Cancer) HULC,
thereby controlling its expression [23]. Polypyrimidine
tract-binding protein 1 (PTBP1) is highly expressed in
hepatocellular carcinoma and promotes the translation
of cyclin D3 (CCND3) via interacting with the 5′-un-
translated region (5′-UTR) of its mRNA, thereby playing
a role in the development of hepatocellular carcinoma
[24].RBPs are capable of specifically binding to

Fig. 9 Validation of the hub RBPs prognostic value in HCC patients in the TCGA cohort
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conserved 3′-UTR sequences in target mRNAs, thereby
modulating their stability and subsequent translation
[25, 26]. Appropriate regulation of DNA modification is
essential to ensure that chromosomes replicate correctly,
and that genes are expressed or silenced in a context-
appropriate manner [27]. Promoter or gene body hyper-
methylation can lead to the inactivation of key tumor
suppressor genes, and methylation-based epigenetic si-
lencing of specific genes is a hallmark of many forms of
cancer [28]. There are also many studies that show that
telomerase plays an important role in the development
of liver cirrhosis and liver cancer [29]. Our KEGG path-
way analyses further suggested that these dysregulated
RBPs may be linked to HCC onset and progression
owing to their ability to influence mRNA monitoring
pathway, microRNA, RNA transport, RNA degradation,
and DNA replication pathway. For example, microRNAs
have been shown to play an important role in post-
transcriptional regulation of gene expression. Indeed,
microRNA dysregulation is thought to be associated
with tumor suppressor gene inactivation and oncogene
activation in liver cancer [30]. The mRNA monitoring
pathway is essential for maintaining homeostasis such
that when this regulation is disrupted it can facilitate
tumor pathogenesis [31]. As such, these mechansims
may explain how differentially expressed RBPs are asso-
ciated with the development of liver cancer.
Through Cox regression analyses, we detected seven

key RBPs that were associated with HCC patient
prognosis, including SMG5, BOP1, LIN28B, RNF17,
ANG, and LARP1B. These seven hub RBPs exhibit
telomerase RNA binding, ribonucleoprotein complex
binding, DNA binding, ribonuclease, DNA-binding
transcription factor, and RNA polymerase II-specific
functions [32–34]. They are additionally involved in
the regulation of telomere maintenance, the cell cycle,
RNA 3′-end processing, cell migration, and in the
negative regulation of transcription [33, 35–38]. These

genes are closely linked to tumor development. In
prior studies, BOP1 has been shown to promote liver
cancer development via driving epithelial to mesen-
chymal transition [39]. Lin28b is a miR-125a target
gene that, when downregulated, can inhibit liver can-
cer cell proliferation [40], NR0B1 (also called DAX-1)
can inhibit the proliferation of liver cancer cells by
suppressing the transcriptional activity of β-catenin
[41]. In HCC patients, plasma samples contain high
levels of angiopoietin-1 (Ang-1), and patients with
low angiopoietin-2 (Ang-2) levels exhibit better OS
[42]. We then employed a multivariate stepwise Cox
regression analysis to establish a risk model incorpor-
ating these seven hub RBPs that can be used to pre-
dict HCC patient prognosis. Time-dependent ROC
curve analyses revealed that these seven genes offered
good diagnostic ability, and that our risk model could
be readily used to identify HCC patients with a poor
prognosis. However, few studies to date have explored
the molecular mechanisms whereby these hub RBPs
influence HCC pathogenesis, and as such, further re-
search is essential. We additionally constructed a
nomogram capable of predicting the 1-, 3-, and 5-
year HCC patient OS. In addition, we utilized
Kaplan-Meier curves to assess the prognostic value of
these seven hub RBPs, with four of them being found
to be associated with patient outcomes. We also con-
structed a co-expression network of SMG5 and corre-
lated PCGs in order to discover its potential
downstream target genes and to explore the possible
regulation of RBPs involved in the development of
liver cancer. We found that PCGs associated with
SMG5 were related to tumorigenesis. Closely-related
genes such as UBQLN4 are upregulated in aggressive
tumors and promote non-homologous end binding
(NHEJ) during DSB repair, resulting in DNA mis-
matches [43]. HCC patients exhibiting CLEC4M over-
expression have a better OS, and CLEC4M
overexpression inhibits the proliferation of liver can-
cer cells and promotes their apoptotic death [44].
KEGG pathway enrichment analyses revealed that
these PCGs were enriched in the mTOR, AMPK, and
VEGF signaling pathways, all of which are closely
linked to cancer development and progression [45–
47]. These pathways may thus be one mechanism
whereby these RBPs participate in the occurrence and
development of liver cancer and other malignancies.
As such, these differentially expressed hub RBPs offer
clear value in the assessment of HCC patients and
may represent viable therapeutic targets. Despite the
lack of effective adjuvant therapy for liver cancer, the
application of targeted drugs provides a promising op-
portunity for imporiving the prognosis of those af-
fected by this disease [48].

Table 3 The top 10 PCGs correlated with SMG5 expression

Correlated PCG Spearman’s Correlation p-value

ISG20L2 0.8 9.48E-96

DENND4B 0.8 8.02E-96

UBQLN4 0.801 4.57E-96

PI4KB 0.805 1.19E-97

SLC39A1 0.808 5.05E-99

TTC36 −0.563 7.86E-37

CLEC4M −0.534 1.07E-32

FCN2 −0.514 5.75E-30

MFSD2A −0.511 1.53E-29

MT1X −0.508 3.48E-29
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Conclusions
In summary, in the present study we developed a pre-
dictive model of HCC patient survival based upon the
expression of seven key RBPs within tumor tissues.
While this model exhibited significant prognostic value,
this study is limited by the fact that it is solely based
upon data within the TCGA database and lacks any ex-
ternal validation. In addition, we have not explored the
functional roles of these RBPs in the context of HCC,
and as such, future in vitro and in vivo analyses will be
necessary to confirm and expand upon our findings. In
addition, candidate RBPs may provide insight into the
regulation of HCC while offering value as prognostic
biomarkers.
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