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Sparsely-connected autoencoder (SCA) for single cell RNAseq
data mining
Luca Alessandri1, Francesca Cordero 2, Marco Beccuti2, Nicola Licheri 2, Maddalena Arigoni1, Martina Olivero3,4,
Maria Flavia Di Renzo3,4, Anna Sapino4,5 and Raffaele Calogero 1✉

Single-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest
being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of
scRNAseq data. In this manuscript, we report a tool that we developed for the functional mining of single cell clusters based on
Sparsely-Connected Autoencoder (SCA). This tool allows uncovering hidden features associated with scRNAseq data. We
implemented two new metrics, QCC (Quality Control of Cluster) and QCM (Quality Control of Model), which allow quantifying the
ability of SCA to reconstruct valuable cell clusters and to evaluate the quality of the neural network achievements, respectively. Our
data indicate that SCA encoded space, derived by different experimentally validated data (TF targets, miRNA targets, Kinase targets,
and cancer-related immune signatures), can be used to grasp single cell cluster-specific functional features. In our implementation,
SCA efficacy comes from its ability to reconstruct only specific clusters, thus indicating only those clusters where the SCA encoding
space is a key element for cells aggregation. SCA analysis is implemented as module in rCASC framework and it is supported by a
GUI to simplify it usage for biologists and medical personnel.
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INTRODUCTION
Single-cell RNA sequencing (scRNAseq) has emerged as essential
tool to investigate cellular heterogeneity. Single cell analysis is
instrumental to understand the functional differences existing
among cells within a tissue. Individual cells of the same phenotype
are commonly viewed as identical functional units of a tissue or
organ. However, single cell sequencing results1 suggest the
presence of a complex organization of heterogeneous cell states
producing together system-level functionalities. Network analysis
is a crucial tool to uncover biological and pathological mechan-
isms, and it is becoming an area of research for the single cell
bioinformatics community. Recently, Pratapa and colleagues2

benchmarked 12 gene networks tools for scRNAseq, notably
none of these tools exploits neural network approaches to
discover functional features associated with cells’ clusters. A
particular type of neural network, autoencoder, seems to be
particularly suitable for the analysis of single cell data. Auto-
encoder is an unsupervised artificial neural network, which is
designed to reduce data dimensions by learning how to ignore
the noise and anomalies in the data. It first efficiently compresses
and encode data and reconstructs the data back from the reduced
encoded representation to produce an output that is as close as
possible to the original input3. Autoencoder reduces data
dimensions by learning how to ignore the noise in the data.
Autoencoder-based approaches have been used to cluster single
cell data4, to impute single cell data5, for data denoising6, and in
batch correction7. Recently, Gold and co-worker8 have evaluated
the use of autoencoders for data interpretation, implementing
sparsely-connected autoencoder (SCA) to gene set analysis. SCA
uses a single-layer autoencoder with sparse connections (repre-
senting known biological relationships) in order to attain a value

for each gene set. SCA provides great flexibility for modeling
biological phenomena8.
Recently, we made available to the single-cell community a

framework, rCASC9, providing an integrated analysis environment
for single-cell RNAseq. rCASC provides all the tools for sub-
population discovery, which can be achieved using different
clustering techniques, based on different distance metrics9. In this
manuscript, we introduce a new rCASC module for functional
annotation of cell clusters based on SCA.

RESULTS
Sparsely-connected autoencoders (SCA) designed using as latent
space transcription factors targets, miRNA targets, kinase targets,
and cancer-related immune-signatures
SCA encoding/decoding functions consisted of a single sparse
layer (Fig. 1a, latent space), with connections based on known
biological relationships8,10. Each node represented a known
biological relationship, such as transcription factor (TF) targets,
miRNA targets, cancer-related immune-signatures (IS), kinase (Ks)
specific protein targets. SCA received inputs only from gene nodes
associated with the biological relationship. With respect to the
Gold paper 8, which used gene sets11, in our implementation the
latent space is based only on experimentally validated data,
TRRUST12, miRTarBase13, RegPhos14, and a manually curated
cancer-based immune-signature (See “Methods” section).
The decision to use curated databases to build SCA came from

the knowledge acquired over the years analyzing microarrays and
bulk RNAseq data. In microarray and bulk RNAseq applications a
prototypic data mining analysis is Gene Ontology (GO) enrich-
ment, which usually nicely recapitulates the biological information
hidden in a list of differentially expressed genes. However, the
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majority of the genes associated with GO terms were electro-
nically inferred, thus a massive literature search, after GO
enrichment analysis, is usually required to understand why a
specific gene was inserted in the GO term of interest. This time-
consuming literature search is instead nearly absent when curated
biological knowledge is used. Specifically, we used curated
databases for transcription factor targets12, kinase targets14, and
experimentally validated miRNA gene targets13 to provide
published literature information linked to the association between
TFs/Kinases/miRNAs and their targets. Experimentally based
annotation has the advantage of removing the noise due to the
uncertainty peculiar of target prediction for miRNAs15. Thus, since
we are querying scRNAseq datasets, which are intrinsically noisy,
avoiding the introduction of extra noise due to imprecise
annotation is useful to extract biological knowledge. Still, SCA
can be also generated using custom defined biological knowl-
edge, which can be based on any kind of information linked to
genes, e.g., electronically inferred data like GO terms or user
defined gene signatures. Independently from the data used to
generate the SCA, SCA analysis must be executed multiple times
on a cell dataset, previously partitioned in clusters, using any of
the clustering tools implemented in rCASC: tSne+k-mean16,
SIMLR17, griph18, scanpy19, and SHAR20. Here, we use the Cell
Stability Score (CSS, for the mathematical formal description of in
this metric see ref. 9) on SCA outputs to generate two new quality
scores metrics: QCC (Quality Control of Cluster) and QCM (Quality
Control of Model). QCC is generated comparing cell clusters
produced by rCASC clustering, from now on called reference
clusters, with the clusters generated using the latent space data
after each SCA run. This metric measures the ability of the latent
space in describing cells aggregations corresponding to at least
part of the reference clusters. Specifically, QCC measures the
frequency by which cells, belonging to a reference cluster, are
found to be part of the same cluster in multiple SCA runs. QCC
ranges from 0 to 1, where 0 indicates total lack of correspondence
between a reference cluster and the corresponding SCA cluster
over multiple runs of SCA. QCC equal to 1 indicates that cells
being part of a reference cluster are detected as part of the same
cluster in all runs of SCA analysis. We suggest as threshold for QCC
mean a value ≥0.5, which indicates that at least in 50% of SCA runs
a latent space cluster retains the structure of the cell content of

the corresponding reference cluster. Instead, QCM measures
cluster consistency between SCA runs. We designed this metric
to evaluate the reproducibility of the model defined by SCA latent
space. Specifically, if a set of biological information describing the
latent space is important for the definition of a cluster, then it is
expected that the majority of the SCA runs will converge to a
similar solution for that cluster. Thus, comparison via QCM of
random couples of clusters selected over multiple SCA runs must
show a conserved cluster(s) organization. QCM ranges from 0 to 1,
where 0 indicates that, in any pairs of SCA runs comparisons, there
is a total lack of correspondence between the cells content of a
cluster detected in a SCA run compared to the corresponding
cluster in another randomly selected SCA run. Instead, QCM equal
to 1 indicates that cells, being part of a SCA cluster, are always
detected as part of the same cluster in any pairs of SCA runs
comparisons. We suggest as threshold for QCM mean a value ≥0.5,
which indicates that at least 50% of SCA runs retain the structure
of the cell content in any pair of SCA runs comparison. Thus, a
reference cluster explainable by SCA analysis should be character-
ized by both QCC and QCM ≥0.5.
As result of multiple runs of SCA, a frequency matrix is built for

the latent space representations. This frequency matrix is used to
detect the latent space nodes (e.g., one or more TFs), which are
the most important for a cluster characterized by the mean of
both QCM and QCC ≥0.5. Clusters specific signature is then
detected using COMET21.

Validation of SCA analysis on a PBMC derived dataset (setA)
We used a data set (setA), based on FACS purified cell types22, to
investigate the SCA (Fig. 1a) performance. SetA was previously
used to estimate the strength of CSS metric9. Here, we clustered
setA using all the clustering tools actually implemented in rCASC:
tSne+k-mean16, SIMLR17, griph18, Seurat23, scanpy19, and SHARP20.
All tools but tSne+k-mean and scanpy provided very good
clusters for the different cell types (see SCAtutorial section 2).
We tested a SCA embedding a TFs-based latent space, where

each latent space node was associated with a TF and arches
connecting input and output nodes to each latent space node
represented experimentally validated TF target genes from
TRRUST database12. From this analysis, we observed that only
cluster 1 and 2 (Fig. 2a) could be reconstructed by this type of SCA,

Fig. 1 Autoencoders architecture. a Sparsely-connected autoencoders (SCA), (b) variational sparsely-connected autoencoders (vSCA),
(c) Sparse sparsely-connected autoencoders (SSCA). Gray nodes refer to genes. Gene-level expression profiles for each gene in each cell are
used as input and reconstructed as output on the basis of the latent space. The latent space is made of nodes where each node is associated
with a transcription factor, a miRNA, a kinase or a functional signature or other biological knowledge. The vertices connecting input/output
nodes to latent space are based on experimentally validated biological knowledge.
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since only these two clusters were supported by a QCC and QCM
≥0.5 (Fig. 2b, c). The matrix describing the frequency of the latent
space variables was used to extract cluster specific signatures
using COMET tool21, which is also implemented in rCASC. COMET
is a computational framework for the identification of candidate
marker panels consisting of one or more genes for the cell
populations of interest, identified with single cell RNAseq data.
The optimal maker panel definition for cluster 1 was made by four
genes PAX5, NFAT5, RFXANK, and CHD4, (Table 1, Fig. 3a).
The four genes detected by COMET for cluster 1, which was

composed mainly by B cells, recapitulated very well some of the
key elements that have been shown already to be involved in
development and differentiation of this cell type. The transcription
factor PAX5 is essential for the commitment of lymphoid
progenitors to B-lymphocyte lineage24. PAX5 fulfills a dual role
by repressing B lineage ‘inappropriate’ genes and simultaneously
activating B lineage-specific genes24. NFAT5 is important for
optimal antibody productivity25. CHD4 is critical for early B cell

development26 and RFXANK is involved in activation of MHC-II
genes, which in turn MHC-II molecules are largely restricted to
thymic epithelial cells and professional antigen-presenting cells,
including dendritic cells, macrophages, and B cells. Moreover, for
cluster 2, which was mainly composed by monocytes, the best
maker panel was made of four genes, CEBPA, KHSRP (lack of
expression), CEBPB, CREBBP (Table 1, Fig. 3b), which have been
shown already to be strongly involved in monocyte functional-
ities27. The transcription factor CCAAT/enhancer-binding protein β
(CEBPB) is highly expressed in monocytes/macrophages and is a
critical factor for Ly6C-monocyte survival28. The downregulated
expression of the KH-Type Splicing Regulatory Protein (KSRP)
during monocytopoiesis and its upregulated expression during
granulopoiesis suggested that KSRP has divergent roles during
monocytic and granulocytic differentiation29. CREB is involved in
anti-apoptotic survival signaling in monocytes and macrophages30

and CREBBP specifically binds to the active phosphorylated form
of CREB31. A SCA analysis based on a latent space made of

Fig. 2 SCA analysis using a TF-based latent space. a Five clusters were detected analyzing setA with griph18 using log10 transformed counts
table. Each cluster is made by more than 90% by one cell type. A little amount of HSC is contaminating B cells, monocytes and naïve T cells.
Latent space clustering was done with SIMLR17. b QCC violin plot. The metric is an extension of CSS9 and it measures the ability of latent space
to keep aggregated cells belonging to predefined clusters, i.e., those in panel a. c QCM violin plot, this metric is also an extension of CSS and it
measures the ability of the neural network to generate consistent data over multiple SCA runs. Dashed red line indicates the defined
threshold to consider the latent space information suitable to support cells’ clusters. Input counts table for SCA analysis is log10 transformed.

Table 1. Top ranked cluster-specific features detected by the analysis of the latent space using COMET software.

Latent space Cluster Feature 1 Feature 2 Feature 3 Feature 4 COMETsc statistics TP TN

SCA TF 1 PAX5 NFAT5 RFXANK CHD4 1.45E–49 0.589 0.997

SCA TF 2 CEBPA KHSRP negation CEBPB CREBBP 1.19E–46 0.561 0.997

SCA IS 4 NK signature – – – 5.75E–54 1.0 0.81

SCA IS 5 ASTHMA KEGG negation – – – 5.35E–84 0.970 0.972

SCA miRNA CLR 3 miR-191 – – – 1.01E–49 0.714 0.98

SCA miRNA RLE 3 miR-191 – – – 1.01E–49 0.714 0.98

SCA miRNA TMM 3 miR-132-3p – – – 1.08E–49 0.714 0.98

SCA miRNA FQ 2 miR-187-3p Rank 1 – – – 2.85E–60 0.67 0.953

SCA miRNA SUM 2 miR-187-3p Rank 4 – – – 3.45E–58 0.925 0.918

SSCA 3 miR-129-2-3P – – – 1.18E–49 0.742 0.98

SSCA 4 NK signature – – – 6.49E–103 1.0 0.99

SSCA 5 POU2F2 negation – – – 4.50E–41 0.851 0.832

vSCA TF 1 CHD4 – – – 9.35E–76 0.775 0.989

vSCA TF 2 CEBPA – – – 6.63E–62 0.829 0.977
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manually curated cancer-immune-signatures (IS, SCAtutorial, section 3)
was also performed on setA reference clusters. This SCA analysis
showed, for cluster 4 (Natural Killer cells) and cluster 5 (Naïve T cells),
QCM/QCC values greater than 0.5 for the majority of the cells (see
SCAtutorial, section 3). Analyzing the IS-based latent space frequency
table with COMET, we identified one feature of the immune-signature
derived from Nirmal’s paper32, which was characteristic of NK (Table 1,
Fig. 3c) and a KEGG immune-signature, which expression absence was
specific for Naïve T cells cluster (Table 1, Fig. 3d). SCA analysis on setA
was also done using a latent space based on kinase targets, but we
cannot find any robust association with reference clusters (see https://
figshare.com/articles/dataset/Figure_3_from_manuscript_Sparsely-
Connected_Autoencoder_SCA_for_single_cell_RNAseq_data_mining/
12866657).

Investigating the effect of normalization on SCA latent space
frequency matrix on QCC/QCM scores
SCA analysis based on validated target genes for miRNAs (Fig. 4a)
showed that clusters 2 (Monocytes) and 3 (Hematopoietic Stem
Cells) had a potentially interesting trend, although they were not
supported by a QCM and a QCC ≥ 0.5. Consequently, we
investigated the effect of various normalization procedures of
the SCA input counts table on the modeled results, to see if
normalization of SCA input data could help in improving QCM and
a QCC scores. In Fig. 4, it is shown how normalization affected
both QCM and QCC scores for clusters closed to the suggested
significant threshold (0.5), i.e., cluster 3 (Fig. 4b, c, f) cluster 2
(Fig. 4d, e). Low quality clusters, i.e., those lacking robust latent

space information, were minimally affected by normalization, i.e.,
clusters 1, 4 and 5. This observation suggested that it is important
to assess the effect of different normalization procedures on SCA
input data, specifically if SCA clusters show QCM and QCC scores
near to the significant threshold (0.5) suggested for those metrics.
Analyzing the latent space of miRNAs frequency table with COMET
we identified (Table 1) miR-191 as top marker for cluster 3 (HSC)
and ranked 1, 5, and 205 markers using CLR, RLE, and TMM
normalizations, respectively. miR-191 has been already associated
with the appearance of stem cell-like phenotype in liver epithelial
cells33. Using TMM normalization for cluster 3, rank 1 marker was
miR-132-3p, which has been linked to HSC maintenance34. miR-
187-3p was detected as rank 1 marker for cluster 2 (M) with FQ
normalization and as rank 4 marker in SUM normalization,
respectively. miR-187 has been demonstrated to play a central
role in the physiological regulation of IL-10-driven anti-
inflammatory responses in TLR4-stimulated monocytes35. It was
notable that different normalizations retained a certain amount of
consistency in the top ranked markers.

Validation of variational sparsely connected autoencoders (vSCA)
analysis on a PBMC derived dataset (setA)
A variational autoencoder (VAE) consists of an encoder, a decoder,
and a loss function. VAEs have one fundamentally unique property
that separates them from other autoencoders: their latent spaces
are, by design, continuous, allowing easy random sampling and
interpolation. We applied the concept of VAE to SCA (vSCA,
Fig. 1b). We tested vSCA based on TF-targets using setA. From the

Fig. 3 COMET analysis of latent space frequency matrix. a Set of 4 genes (PAX5, NFAT5, RFXANK and CHD4) characterizing cluster 1 (B cells).
b Set of 4 genes (CEBPA, KHSRP negation, CEBPB, CREBBP) characterizing cluster 2 (Monocytes). Dots are cells, blue and red color indicate,
respectively, false and true positives (for more information on this type of visualization of cluster specific markers see the COMET paper21.
c Rank 1 NK signature32 specifically characterizing cluster 4 (NK). d Rank 2 Asthma KEGG negation, specifically characterizing Naïve T cells
(Cluster 5).
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point of view of the QCM/QCC of clusters vSCA results were nearly
superimposable to those of a TF-based SCA (see SCAtutorial,
section 4). The analysis of COMET for cluster 1 and cluster 2
detected as the best markers, respectively, CHD4 and CEBPA,
which were part of the 4 genes SCA signature for cluster 1 and 2
(Table 1). Taken together, these observations indicated that the
vSCA, although more complex, did not provide any specific
improvement with respect to a simple SCA.

Validation of sparse sparsely connected autoencoders (SSCA)
analysis on a PBMC derived dataset (setA)
Sparse autoencoder may include more hidden units than inputs,
although only a small number of the hidden units are allowed to
be active at once. This sparsity can improve classification
performance. Usually, the sparsity is possible thanks to combina-
tions of activation functions, sampling steps and different kinds of
penalties21. In our implementation sparsity was generated
combining TF, miRNA, IS, and kinase SCA latent spaces (Fig. 1c).
The analysis of the setA using a latent space embedding
integrated biological knowledge, i.e. TF+miRNA (Fig. 5b); TF+
miRNA+ IS (Fig. 5c); TF+miRNA+ IS+ Kinase (Fig. 5d), showed a
notable improvement in the overall QCM/QCC scores with respect
to the analysis done using each specific knowledge group alone.
Furthermore, the combined latent space reduced the computing
time with respect to the time needed for the independent analysis
of each individual latent space.
The addition of miRNA targets to TF latent space repositioned

cluster 3 (HSC) in the significant area, i.e. mean of both QCM and
QCC ≥0.5, which could not be possible using only miRNA targets
as latent space (Fig. 4a). For cluster 3 the best marker was miR-
129-2-3P. Interestingly, miR-132, detected as top ranked for cluster
3 upon TMM normalization (Fig. 4f), together with miR-129 from
SSCA analysis, were distinct faces of the same coin, since miR-132
has been already shown to be linked to HSC maintenance34 and

miR-129 was found to be associated to self-renewal and lineage
differentiation of stem cells36.
The addition of the IS to TF+miRNA latent space relocated in

the significant area cluster 4 (NK cells) and 5 (naïve T cells) (Fig.
5c), as in the case of IS-based latent space alone (see SCAtutorial,
section 3). For cluster 4, the first top ranked item was NK
signature37. Instead, for cluster 5 (Naïve T cells) the best marker
was of the expression absence of transcription factor POU2F2,
which is expressed only in activated T cells38. ASTHMA KEGG
pathway lacks of expression was also detected using IS-based SCA
alone (Fig. 3d). Notably, the Kinase based latent space alone was
not able to bring any cluster in the significant area (see
SetA_Kinome dataset at https://figshare.com/projects/Sparsely-
Connected_Autoencoder_SCA_for_single_cell_RNAseq_data_min-
ing/88247). However, when Kinases are added to TF+miRNA+ IS
latent space (Fig. 5c), the QCM and QCC scores for cluster 4 and 5
improved slightly, but kinases were not present in the top ranked
genes for cluster 4 and 5.

Application of SCA analysis on spatially resolved transcriptomics of
breast cancer histological section
As example for the useful application of SCA analysis, we analyzed
a breast cancer histological section available as part of the demo
data proposed for visium, i.e., spatially resolved transcriptomics
(10XGenomics, USA)35. Spatially resolved transcriptomics provides
the sequencing of up to 5000 spots (55 µm ∅) of a histological
tissue (6.5 × 6.5 mm) section embedded in OTC. This technology
does not guarantee single cell sequencing, since in each spot, on
the basis of the cells size and density, there could be between 1
and 30 cells.
We obtained the best clustering organization of expression data

using SIMLR (Fig. 6a), which generated a partition made of 9
clusters, where 6 clusters (1, 2, 3, 6, 7, 8) showed very high CSS
(Fig. 6b), while other two clusters (5 and 8) showed an
intermediate but still significant CSS (Fig. 6b). Clusters were then

Fig. 4 QCM/QCC plots using different normalizations for the SCA input counts table. a Log10 transformed, (b) Centered log-ratio
normalization (CLR), (c) relative log-expression (RLE), (d) full-quantile normalization (FQ), (e) sum scaling normalization (SUM), (f) weighted
trimmed mean of M-values (TMM).
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localized on the histological session (Fig. 6c, d). Despite the low
magnification of histological picture (Fig. 6d) obtained from the
frozen section, the pathologists were able to assign cluster 5 to
areas predominantly corresponding to tumor stroma; cluster 9 to
ductal carcinoma in situ with micropapillary features; clusters 1
and 8 corresponded to roundish areas annotated as invasive
carcinoma, showing the same dyeability and possibly histological
similarity (micropapillae) with areas associated with cluster 9.
Clusters 6 and 7 were allocated to invasive carcinomas with
comparable features at low magnification (smaller cell clusters
infiltrating the stroma). Cluster 3 and 4 could not be classified by
the pathologists, because of the limited number of cells.
We tested the ability of SCA to associate TFs with the detected

clusters and only cluster 7 could be described by SCA analysis (Fig.
7). COMET analysis of the latent space frequency table provided
the detection of SOX5 (COMETsc statistics= 2.88E−184, TP=
0.623, and TN= 0.968) as top ranked transcription factor specific
for cluster 7 (Fig. 7d). Notably, SOX5 has been recently associated
with breast cancer proliferation and invasion39, suggesting a
peculiar aggressive phenotype for the invasive carcinoma
associated with cluster 7. We also tested miRNA, immune
signature and kinase based SCA, but we could not find any
robust association with reference clusters (see https://figshare.
com/articles/dataset/Figure_6_and_7_from_manuscript_Sparsely-
Connected_Autoencoder_SCA_for_single_cell_RNAseq_data_min-
ing/12866897). These observations suggested that the knowledge
present in SCA based on miRNA, immune signature and kinase
targets were not sufficient to describe the complexity of tumors
clusters observed in this specific dataset. At the same time the
results obtained for cluster 7, using the TF-based latent space,
highlighted the ability of SCA to grasp specific knowledge
associated with transcription control in this experimental setting.

DISCUSSION
Gold and coworkers8 proposed SCA as a promising tool for
projecting gene-level data onto gene sets. Indeed, their results
suggest that SCA can be efficiently exploited in the identification
of transcription factors with differential activity between condi-
tions or cell types. Moreover, they provided some preliminary
indications on how SCA can be exploited as a tool for cell
classification. However, Gold and coworkers8 did not release any
implementation of these methods, and they did not report a well-
defined scoring metric to evaluate the efficacy of SCA in grabbing
biological information in scRNAseq experiments. In this manu-
script, a new application for SCA was introduced. Instead of using
SCA to classify cell subpopulations8, SCA was exploited to query
cell subpopulations to discover the functional features (e.g., TFs,
miRNAs, Kinases, etc.) driving cell clusterization. To achieve this
goal, we developed a user-friendly implementation of SCA and
designed specific scoring metrics to evaluate the efficacy of SCA
analysis, i.e., QCM metric that emphasizes the robustness of
autoencoder-based methods measuring consistency among
several SCA runs and QCC metric that empowers the strength of
the autoencoder detected functional features, by measuring
consistency among cell subpopulations and SCA clusters. Speci-
fically, we investigated the ability of SCA to reproduce, completely
or partially, cell clusters organization depictable from a scRNAseq
experiment. Here, we show that different hidden layers, derived
by experimentally validated data (TF targets, miRNA targets,
Kinase targets, and cancer-related immune signatures), can be
used to grasp single cell cluster-specific functional features. Then,
when SCA encoding is able to reconstruct at least one of the
clusters, observable aggregating cells on the basis of their full
transcriptome, that means that the encoded biological knowledge
is mandatory to obtain a specific aggregation of cells.

Fig. 5 QCM/QCC plots for SSCA. a TF latent space. b TF+miRNA latent space, (c) TF+miRNA+ IS latent space, (d) TF+miRNA+ IS+ Kinase
latent space. Input counts table for SCA is log10 transformed.
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In our implementation, SCA efficacy comes from its ability to
reconstruct only specific clusters, thus indicating only those
clusters where the SCA encoding space is a key element of a
specific cell subgroup. This is clearly demonstrated looking at the
top ranked transcription factors, derived from SCA encoded space
for cluster 1 and 2 of the blood-cell based dataset (setA), which
were shown to be key elements for B cells and monocytes.
A very important element of our SCA implementation is the

availability of metrics estimating the robustness of the SCA
encoding. QCC is used to evaluate SCA coherence with respect to
predefined cell clusters and QCM provides a measure for the
overall SCA model quality. Furthermore, the effect of SCA input
count table normalization on SCA encoding can be also estimated
using QCC and QCM scores. Thus, this allows us to define the
optimal condition to retrieve biological knowledge from the SCA
encoded space.
Furthermore, integrating different biological knowledge in the

latent space of SSCA has the advantage of reducing the
computing time, since it combines different biological knowledge,
i.e., TFs, miRNAs, IS, Kinases, in a unique latent space, and at the
same time retains and refines the biological information that can
be retrieved using independent analysis on SCA based on one
biological information at a time, e.g., the SSCA signature for cluster
5 (naïve T cell) refined the definition of the cluster, since POU2F2
negation fits well with naïve T cell.
ScRNAseq although powerful has the limit of being very noisy40.

A particularly prominent aspect of noise is dropout, i.e., scRNA-seq
produces more zeros than expected and this bias is greater for
poorly expressed genes41. Transcription factors and kinases are
encoded by genes characterized by a relatively low expression in
cells, thus they can be notably affected by dropout. Furthermore,

nowadays it is not possible to quantify, at single cell level, miRNAs
together with mRNAs. Thus, important functional networks, e.g.,
TF-miRNA circuits, characterizing a cell subpopulation, cannot be
directly measured. In this manuscript, we show that SCA is able to
grasp hidden knowledge present in cell subpopulations. Thus, SCA
offers a fresh view of regulatory genes that, because of scRNAseq
noise, cannot be efficiently quantified, such as transcription factors
and kinases, or not detected at all, i.e., miRNAs. Furthermore, SCA
based on specific signature, such as immune signature, can help in
refining the annotation of cell subpopulations.
Last but not least, since SCA usage could be particularly

challenging for life science and medical personnel, lacking of
strong computation skill, our implementation of SCA within rCASC
framework9 solves the above issue, because SCA is also fully
accessible via GUI.

METHODS
Datasets
Dataset setA is based on FACS purified cell types22. It is made of 100 cells
from five cell types: B cells (B), Monocytes (M), Natural Killer (NK), Naïve T
cell (N), Hematopoietic Stem Cells (HSC). This dataset was analyzed without
any filtering. Data were log10 transformed before clustering.
Dataset HBC_BAS1 is derived from 10XGenomics spatial transcriptomics

datasets resources42. The filtered sparse matrix from 10XGenomics
repository was transformed in a dense matrix using rCASC h5tocsv
function. Dataset was annotated using ENSEMBL Homo sapiens GRCh38.99
GTF file using the rCASC scannobyGtf function. After annotation, ribosomal
and mitochondrial protein genes were removed together with all ENSEMBL
ID not belonging to protein_coding ENSEMBL biotype. Cells with less than
250 detected genes were also removed (i.e., a gene is called detected if it is
supported by at least 3 UMIs). After filtering rCASC topx function was used

Fig. 6 Analysis of human breast cancer (Block A Section 1), from 10XGenomics Visium Spatial Gene Expression 1.0.0. demonstration
samples. a SIMLR partitioning in 9 clusters. b Cell stability score plot for SIMLR clusters in A. c SIMLR clusters location in the tissue section. d
Hematoxylin and eosin image.
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to select the 10000 most dispersed genes and from them the 5000 most
expressed genes. The final matrix was made by 5000 genes and 3432 cells
out of the initial 3813 cells (HBC_BAS1). Data were log10 transformed
before clustering.

Model coding and hyperparameter selection
This work uses sparsely-connected autoencoders8 (Fig. 1) to grasp cluster-
specific hidden features. Autoencoders learning is based on an encoder
function that projects input data onto a lower dimensional space. Then, a
decoder function recovers the input data from the low-dimensional
projections minimizing the reconstruction. We implemented the models in
python (version 3.7) using TensorFlow package (version 2.0.0), Keras
(version 2.3.1), pandas (version 0.25.3), numpy (version 1.17.4), matplotlib
(version 3.1.2), sklearn (version 0.22), scipy (version 1.3.3). Optimization was
done using Adam (Adaptive moment estimation) using the following
parameters lr= 0.01, beta_1= 0.9, beta_2= 0.999, epsilon= 1e−08,
decay= 0.0, loss= ‘mean_squared_error’. RELU (rectified linear unit) was
used as activation function for dense layer.
The SCA input gene table could be made by raw or log10 transformed or

normalized counts, using one of the following tools implemented in rCASC:
(i) centered log-ratio normalization; (ii) relative log-expression; (iii) full-
quantile normalization; (iv) sum scaling normalization; (v) weighted
trimmed mean of M-values.

SCA and SSCA latent space definition
SCA latent space is generated using as input a tab delimited text file
having as first column the feature id associated with the latent space node
and a second column having the input/output gene associated to the
latent space node. Third column is compulsory and includes the reference
from which the feature/gene relation was taken.
Experimentally validated transcription factors’ target genes and the

associated transcription factor were retrieved from TRRUST v2.012.
Experimentally validated miRNA gene targets and their corresponding

miRNA were retrieved from miRTarBase v8.043. Kinases target genes were
retrieved from RegPhos v2.0 database14. Cancer immune-signature was
manually curated, retrieving genes ids from PUBMED articles related to the
keyword “cancer immune signature” and genes derived from KEGG
“Immune system” pathways44. Genes associated with KEGG pathways were
manually extracted from KEGG pathways public repository45. SSCA latent
space is made by the union of TF, miRNA, IS and Kinases data.

QCM and QCC metrics
QCM and QCC are extensions of CSS9. QCC describes the cell stability of a
reference cluster with respect to a cluster generated using SCA latent
space information. Reference clusters are those generated using any of the
clustering tools implemented in rCASC9. In QCC, reference clusters are
compared to multiple runs SCA, where clusters are constructed using
latent space information. High coherence between a reference cluster and
a SCA cluster indicates that latent space is able to properly describe
reference cluster organization using only the biological knowledge
embedded in it. The QCC threshold for an informative latent space cluster
is a value grater or equal to 0.5, i.e., in 50% of the SCA runs cells are
colocalizing as in corresponding reference cluster.
QCM is instead measuring the robustness of the SCA model. Each run of

the SCA the latent space starts from a random configuration, which is
modeled on the basis of the information provided to the SCA, i.e., gene
counts. Thus, if the SCA latent space describes properly some of the
reference clusters, then those clusters should remain similar among various
runs of SCA. QCM measures the reproducibility of each single cluster over a
large set of randomly pairs of SCA runs. The lack of reproducibility between
clusters indicates that latent space information is not relevant or not robust
enough to support conserved cluster structures. The QCM threshold
describing a robust model for a cluster is a value grater or equal to 0.5, i.e.,
in 50% of random pairs of SCA runs cells are colocalizing in the same
cluster.

Fig. 7 Information contents extracted by SCA analysis using a TF-based latent space. a QCC. b QCM. c QCM/QCC plot, where only cluster
7 shows, for the majority of the cells, both QCC and QCM greater than 0.5. d COMET analysis of SCA latent space. SOX5 was detected as first
top ranked gene specific for cluster 7, using as input for COMET the latent space frequency table. Input counts table for SCA analysis is made
by raw counts.
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COMET analysis
The cluster-specific markers detection was done using COMET21, which is
implemented in rCASC. COMET was set to extract up to 4 features
characterizing each cluster. Although COMET analyses all available clusters,
marker features are investigated only for those clusters characterized by
the mean of both QCM and QCC ≥0.5.

SCA handling functions in rCASC
A full description of the SCA handling functions, available in rCASC, are
described in SCAtutorial github (https://github.com/kendomaniac/
SCAtutorial), which includes a vignette (https://kendomaniac.github.io/
SCAtutorial/articles/SCAvignette.html) and the outputs of the exemplary
analysis (https://github.com/kendomaniac/SCAtutorial/tree/master/
vignettes/setA).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated and analyzed during this study are available in the figshare
project “Sparsely-Connected Autoencoder (SCA) for single cell RNAseq data mining”,
https://figshare.com/projects/Sparsely-Connected_Autoencoder_SCA_for_single_cell_
RNAseq_data_mining/88247.
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