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Oxaliplatin is a key drug for colorectal cancer that causes OXP-induced peripheral
neuropathy, a dose-limiting effect characterized by cold and tactile hyperesthesia. The
relationship between the sensory nervous system and modulation of the renin-angiotensin
system has been described, focusing on pain and neurodegeneration in several animal
models. We assessed the effect of the RASmodulator, ramipril, an angiotensin converting-
enzyme inhibitor in a mouse model of OXP-induced acute pain syndrome. OXP was
administered in Swiss mice at a cumulative dose of 15 mg/kg (3 x 5mg/kg/3 days, i.p.).
RAM was administered i.p. every day from 24 h before the first OXP injection until the end
of the experiments. We evaluated OIAS development and treatment effects by
sensorimotor tests, intraepidermal nerve fiber and dorsal root ganglia-neuron
immunohistochemical analyses, and sciatic nerve ultrastructural analysis. OXP-treated
mice showed tactile allodynia and cold hypersensitivity, without motor impairment and
evidence of nerve degeneration. RAM prevented cold sensitivity and improved recovery of
normal tactile sensitivity in OXP-treated mice. Our finding that RAM alleviates OXP-induced
pain is a step towards evaluating its therapeutic potential in patients receiving OXP
treatment.
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INTRODUCTION

Oxaliplatin, a platinum-based agent mostly used to treat colorectal cancer, frequently induces
peripheral neuropathy, decreasing patients’ quality of life (Selvy et al., 2020). Development of
oxaliplatin-induced peripheral neuropathy often leads to lower doses or disrupt treatment, thus
limiting treatment efficacy and decreasing survival rate (Gewandter et al., 2017). OXP induces
chronic cumulative sensory neuropathy (Pachman et al., 2015), probably caused by an accumulation
of platinum in the dorsal root ganglia (Sprowl et al., 2013). This is often preceded by a specific acute
syndrome, appearing during or within hours after each infusion (Pasetto et al., 2006), mainly
consisting of numbness, paresthesia, dysesthesia, and pain, with cold allodynia (Pachman et al.,
2015). Although not all patients with an OXP-induced acute syndrome will develop a long term
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disabling chronic sensory neuropathy, this OIAS probably
represents the first step towards long term neurodegeneration
(Park et al., 2009). Therefore, examining how different drugs
could counteract these acute symptoms might be meaningful to
develop strategies to prevent chronic OIPN. Because no
treatment can be recommended for the prevention of
chemotherapy-induced peripheral neuropathies and only
duloxetine is moderately recommended for its treatment
(Jordan et al., 2020; Loprinzi et al., 2020), preventing and
limiting its progression by an appropriate therapeutic
approach is a key priority. The renin angiotensin system is
known for its involvement in blood pressure regulation and
ion homeostasis (Rettig et al., 1986). Briefly, angiotensin-
converting enzyme converts angiotensin I to angiotensin II,
which mainly interacts with Ang II type 1 receptor and Ang II
type 2 receptor. Most of the RAS components are known to be
expressed into the sensory nervous system, tending to
demonstrate the presence of a local RAS in the peripheral
nervous system (Bessaguet et al., 2016). Various preclinical
studies have highlighted the involvement of RAS modulation
by the use of ACE inhibitors or angiotensin receptor blockers, in
neuroprotection and pain control (Gallinat et al., 1998; Lucius
et al., 1998; Patil et al., 2010; Pavel et al., 2013; Kaur et al., 2015;
Yuksel et al., 2015; Bessaguet et al., 2017; Danigo et al., 2021).
Modulation of RAS was neuroprotective in rodent models of
traumatic nerve injury like chronic constriction injury and sciatic
nerve transection, as well as in rodent models of diabetic
neuropathy or toxic neuropathy (CIPN) (Oltman et al., 2008;
Kaur et al., 2015; Yuksel et al., 2015; Bessaguet et al., 2017; Kim
et al., 2019). Previously, we and others showed that ARBs were
able to restore normal sensitivity in models of vincristine- and
paclitaxel-associated CIPN (Bessaguet et al., 2018; Kim et al.,
2019). Antitumoral activity of both paclitaxel and vincristine are
based on the disruption of microtubule dynamics, which may
probably cause an impairment of axoplasmic transport leading to
neuropathic disorders. Among the other “traditional”
chemotherapies, platinum agents, as OXP, act differentially by
forming platinum-DNA adduct, and therefore lead to a different
neurotoxicity. Neuroprotective effects of RAS modulation on
platinum compound-induced neurotoxicity have not yet been
evaluated. Although, a retrospective observational study showed
that patients with a long lasting ACEIs treatment seemed to be
less affected by OIPN symptoms (Roldan et al., 2017; Uchida
et al., 2018). Hence, we evaluated the preventive effect of ramipril
in a new mouse model of OIAS. This model is characterized by
functional changes without evidence of sensory nerve fiber
degeneration at the peripheral nerve and DRG level.

MATERIALS AND METHODS

This study was conducted in accordance with the guidelines for
the ethical care of experimental animals of the European
Community (2010/63/EU) and was submitted to the French
Ministry of Higher Education and Research and approved
(number 11280#2017091510483336). Animal experiments are
reported in compliance with ARRIVE guidelines (Percie du

Sert et al., 2020). All effort was made to limit suffering and
the number of animals used in the following experiments.

Animals
Swiss male mice (6–7 weeks old, 25–30 g) from Janvier labs
(France) were housed in plastic cages and maintained on a
12 h light/dark cycle with food and water available ad libitum
(BISCEm-animal care and facility center). Mice were randomly
assigned to OXP or its vehicle (control group: CTRL), thereafter
mice were randomly assigned to ramipril treatment or its vehicle,
defining the following four treatment groups: control-vehicle
(CTRL-VEH), oxaliplatin-vehicle (OXP-VEH), control-ramipril
(CTRL-RAM) and oxaliplatin-ramipril (OXP-RAM).

Behavioral tests were performed on day 1 (D1), D3, and D5
following the last OXP injection, except for the jump test, which
was performed on D1 and D3 only to avoid acclimation of the
mice to the test. All animals were submitted to the functional
tests, except for the jump test, the day before the start of
experiment (reference day: RD) to obtain the baseline for each
animal. Immunohistochemistry andmorphological analyses were
performed one day after the last OXP injection, the time
corresponding to the maximum of sensory impairment
(Figure 1).

Treatments
CIPN was induced by three injections of OXP (1 injection every
3 days) (5 mg/kg/3 days, intraperitoneally [i.p.]; Hospira, France).
Control mice received an equivalent volume of the OXP diluent
(purified water, i.p.). Treatments with ramipril (3 mg/kg/day, i.p.;
Sigma, France) were started one day before the first OXP injection
and administered each day for the next 10 days (Figure 1). The
dose of 3 mg/kg/i.p. of ramipril in mice is equivalent to a dose of
30 mg/day per os in human, corresponding to a high dose
(Alhusban et al., 2014). Although, high dose of ramipril had
already shown neuroprotective effect in a rodent model of
peripheral neuropathy (Kaur et al., 2015). Ramipril was
diluted in a final vehicle solution of 1% dimethyl sulfoxide
(DMSO) in saline solution (0.9% NaCl). VEH mice received
injections of an equivalent volume of the vehicle used for
ramipril. The volume of i.p injections was 100 µl/10 g of body
weight.

Behavioral Tests
Motor Coordination
Motor coordination was assessed using the rotarod test (Bioseb,
France) (Callizot et al., 2008). Three days before the start of the
experiment (RD), mice were trained to walk against the motion of
a rotating rod at a speed of 4 rpm. On the days of test, mice were
placed on the rotarod and gradual 1 rpm/s acceleration was
applied for 30 s, after which the speed was constant (4 rpm/s).
The holding time (seconds) was recorded. The cut-off time was
set on 60 s. Each test session consisted of three trials, separated by
5 min, and the mean value was calculated.

Muscle Strength
Muscle function was assessed with a grip strength meter (Bioseb,
France) (Caillaud et al., 2020). Mice were held by the tail over the
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mesh of the meter, and once the forepaws, but neither hind paw,
were both firmly grasping the grid, the mice were pulled along the
axis of the force sensor until they were unable to retain their grip.
The grip strength (grams) was recorded. Each test consisted of
three trials, separated by 5 min, and the mean value was
calculated.

Heat Hyperalgesia
Thermal nociception was assessed using the hot-plate test
(Bioseb, France) (Bessaguet et al., 2017). Mice were placed on
a 52°C hotplate for less than 30 s to avoid potential tissue damage.
The latency (s) before first withdrawal criterion was recorded.
The criteria of withdrawal included shaking, licking, or jumping
on the hot plate. Mean latency was expressed as the threshold of
an individual animal to thermal stimulation. Each test session
consisted of three records separated by 5 min.

Tactile Allodynia
Tactile allodynia was assessed using von Frey filaments (Bioseb,
France). Mice were placed in a plastic cage with a wire mesh floor
which allowed access to the paws. The plastic cage was covered with
an opacity cup to avoid visual stimulation. The area tested was the
mid-plantar left hind paw. Mechanical threshold was tested using a
modification of the simplified up-downmethod (Bonin et al., 2014). A
test round started with filament #6 (0.40 g) and progressed to higher
or lower filament value depending on the animal’s response. Each
animal went through three test rounds for each paw at each
experimental condition. Mechanical threshold is expressed as
percentage according to baseline (%).

Cold Hypersensitivity
Thermal nociception was assessed using the jump to escape test
(Descoeur et al., 2011). Noxious cold tolerance was assessed using
a dynamic cold plate (Bioseb, France). Animals were placed on
the test arena with the floor temperature progressively cooled
from 22 to 3°C at a rate of 5°C/min. This procedure allows the paw
surfaces to be cooled at the same rate as the floor arena.
Nocifensive behavior (jumps) was noted as a function of
cooling. Thus, we obtained a curve representing the number of
jumps according to temperature for each mouse. Then, the area
under the curve (AUC) was calculated for each animal and pooled
in a histogram. Statistical analyses were performed on the AUC.

Immunohistochemistry of Footpad Skin and
Dorsal Root Ganglia Neurons
To assess sensory innervation, animals (n � 6) were euthanized by
transcardiac perfusionwith phosphate buffer saline (PBS), followed by
buffered 4% paraformaldehyde (PFA) solution. Then, footpads were
removed by punch biopsy (diameter of 3mm), post-fixed overnight in
4% PFA, cryoprotected (30% sucrose) and frozen at −20°C. Sections
were cut on a cryostat set to 20mm and incubated overnight at room
temperature with primary antibody to protein gene product 9.5
(PGP9.5, 1:50, Abcam, Paris, France). Sections were then
incubated with appropriate secondary antibody AF594-conjugated
(1:500; Life Technologies, Saint-Aubin, France) during 2 h at room
temperature. Epidermal nerve fibers were blindly counted under 400×
magnification (Eclipse 50i, Nikon Instruments), according to
established guidelines for Human (Lauria et al., 2005). The length

FIGURE 1 | Schematic representation of the study design. CTRL, control; D, day; DMSO, diméthylsulfoxyde, DRG, dorsal root ganglion; IENFs, intraepidermal
nerve fibers; i.p., intraperitoneal; RD, reference day.
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of the dermo-epidermal junction was determined with NIS-Elements
BR 2.30 software (Nikon) and was defined as the epidermal length.
Epidermal nerve density was defined as the number of intact
epidermal nerves crossing the dermo-epidermal junction divided
by the epidermal length. Three slides per mouse were counted.

Two lumbar (L4 and L5) DRG per mouse were collected to assess
the DRG neuron density by counting neuron cellular bodies
visualized by PGP9.5, calcitonin gene-related peptide (CGRP), or
substance P (SP) immunohistochemistry (Table 1). Each DRG
section was systematically photographed at 200x under a
fluorescence microscope (Eclipse 50i; Nikon Instruments, France).
Immunoreactive DRG neurons were counted and the area containing
neuronsmeasured usingNIS-Elements BR2.30 software (Nikon). The
density of neurons positive for PGP9.5 is expressed as neurons/mm2.
The density of peptidergic neurons was expressed as CGRP+ or SP+

neurons/PGP 9.5+ neurons. Three sections per DRG were counted.

Morphological Analysis of Sciatic Nerves
To assess the presence and morphology of unmyelinated nerve
fibers, sciatic nerves were dissected after transcardiac perfusion
with 2.5% glutaraldehyde diluted in Sorensen buffer, dehydrated,
and embedded in Epon 812 resin (Euromedex, France). Semi-thin
sections were stained with toluidine blue. Ultrathin sections were
stained with uranyl acetate and lead citrate and observed under an
electron microscope (Jeol 1011, Jeol, United States). Four images
per animal (n � 3/group) were captured at 3000x magnification
and the number of myelinated fibers per mm2 counted to
calculate the density.

Data Analysis
Data were analyzed using GraphPad Prism 8 and expressed as the
mean± standard error of themean (SEM).When statistical significance
was identified by mixed-effects model statistical methods, individual
comparisons were subsequently tested by Tukey’s multiple comparison
test. Degree of significance was represented as follow: *p-value < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.

RESULTS

Characterization of Oxaliplatin-Induced
Acute Pain Syndrome
Short Course of Oxaliplatin Does Not Affect Motor
Performance or Heat Sensitivity
The motor coordination of CTRL-VEH and OXP-VEH mice was
evaluated using the rotarod test. There was no difference in the
holding-time between OXP-VEH and CTRL-VEH mice on D1, D3,

or D5 (Table 1). Muscular strength was assessed using the grip test.
There was also no difference in the grip strength between OXP-VEH
and CTRL-VEH mice on D1, D3, or D5 (Table 1). Thermal
nociception, evaluated with the 52°C hotplate test, was not affected
by OXP treatment on D1, D3, or D5 (Table 1).

Short Course of Oxaliplatin Does Not Affect the
Morphology of Sensory Nerve Fibers
We quantified and examined morphological aspect of sensory
nerve fibers at the cell body (DRG) and the terminal level (IENF).
There was no significant difference in the densities of IENF
(p � 0.5111, Figure 2A) and DRG neurons (p � 0.9787,
Figure 3A) between OXP-VEH and CTRL-VEH mice. There
was no visible morphological effect of OXP on DRG neurons
under our conditions. Moreover, we quantified the SP+ and
CGRP+ DRG neurons to explore the effect of OXP on
neuropeptide depletion. There was no visible effect of OXP on
peptidergic neuron population under our conditions (Figure 3B).

Short Course of Oxaliplatin Does Not Affect the
Morphology of Sciatic Nerve Fibers
OXP did not affect the morphology nor density of myelinated
nerve fibers in sciatic nerves (Figures 2B,C). There were also no
noticeable changes in unmyelinated fiber morphology in OXP-
VEH mice relative to CTRL-VEH mice (Figure 2C).

Short Course of Oxaliplatin Induces Significant Tactile
and Cold Allodynia
There was no difference in tactile sensitivity between any groups on
the reference day. OXP-VEHmice showed significant tactile allodynia
compared to CTRL-VEH mice from D1 to D5 (D1: p � 0.0003, D3:
p � 0.0004, D5: p � 0.0275, OXP-VEH vs. CTRL-VEH). Mechanical
threshold returned to baseline 7 days after the last OXP injection
(OXP-VEH vs. CTRL-VEH, p � 0.4980) (Figure 4).

OXP-treated mice showed cold induced allodynia on D1
(OXP-VEH vs. CTRL-VEH, p < 0.0001) and D3 (OXP-VEH
vs. CTRL-VEH, p � 0.0134), as the AUC (representing the
number of jumps according to temperature) of CTRL-OXP-
VEH mice was higher than that of CTRL-VEH mice (Figure 5).

Effect of Ramipril On Oxaliplatin-Induced
Pain
Ramipril Alleviates Oxaliplatin-Induced Tactile
Allodynia
Ramipril had no effect on mechanical responses of the control
groups on D1 (CTRL-RAM vs. CTRL-VEH, p � 0.1527), D3

TABLE 1 | Effects of OXP on motor performance and the heat nociceptive response.

Group CTRL-VEH OXP-VEH

Days RD D1 D3 D5 RD D1 D3 D5

Rotarod test (holding time (s)) 15.42 ± 2.1 18.33 ± 5.8 19.50 ± 6.5 22.59 ± 6.8 15.28 ± 1.7 20.63 ± 4.7 20.14 ± 4.1 20.84 ± 4.8
Grip strength (g) 183.9 ± 8.51 174.9 ± 5.33 179.0 ± 4.8 200.1 ± 5.7 195.2 ± 10 162.6 ± 6.4 189.6 ± 8.5 196.3 ± 6.8
Hot plate test (withdrawal latency (s)) 14.35 ± 1.1 15.47 ± 1.21 19.86 ± 1.41 17.57 ± 1.1 14.56 ± 1.3 17.57 ± 0.9 17.46 ± 1.6 18.88 ± 0.6

OXP-treated mice received OXP at a cumulative dose of 15 mg/kg (5 mg/kg/3 days, intraperitoneal). n � 10 mice per group. g, grams; RD, reference day; OXP, oxaliplatin; s, seconds;
VEH, vehicle.
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(CTRL-RAM vs. CTRL-VEH, p � 0.9318), or D5 (CTRL-RAM vs.
CTRL-VEH, p � 0.6117) (Figure 3). Ramipril tended to improve
tactile sensitivity in OXP-treated mice at D3 (OXP-RAM vs.

OXP-VEH, p � 0.0396) and significantly restored normal tactile
sensitivity at D5 (OXP-RAM vs. OXP-VEH, p � 0.0055 and vs.
CTRL-VEH, p � 0.6610) (Figure 4).

FIGURE 2 | Effect of OXP on peripheral nerve fiber morphology. Footpad skin of CTRL-VEH and OXP-VEH mice were immunostained with PGP9.5 (A)
Quantification of IENF positive for PGP9.5. Sciatic nerve fibers were examined by electron microscopy. (B) Quantification of myelinated fiber density. Analysis of three
nerves per group and four fields of view per nerve (C) Visualization of myelinated and unmyelinated nerve fibers in the sciatic nerve. Scale bar � 2 µm n � 6mice per group.
OXP-treated mice received OXP at a cumulative dose of 15 mg/kg (5 mg/kg/3 days, intraperitoneal). CTRL: control, DRG: dorsal root ganglion, IENF:
intraepidermal nerve fiber, PGP9.5: protein gene product 9.5, OXP: oxaliplatin, VEH: vehicle.

FIGURE 3 | Effect of OXP on dorsal root ganglion neurons. DRG of CTRL-VEH and OXP-VEH mice were immunostained with PGP9.5 and substance P (SP) or
calcitonin-gene related peptide (CGRP). (A)Quantification of PGP9.5+ total DRG neuron density. (B) The density of peptidergic neurons is expressed as SP+ or CGRP+

neurons/PGP9.5+ neurons. OXP-treated mice received OXP at a cumulative dose of 15 mg/kg (5 mg/kg/3 days, intraperitoneal). CTRL: control, DRG: dorsal root
ganglion, PGP9.5: protein gene product 9.5, OXP: oxaliplatin, VEH: vehicle.
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Ramipril Restores Cold Sensitivity
Ramipril did not influence cold responses in the control group on
D1 (CTRL-RAM vs. CTRL-VEH, p � 0.5265) and D3 (CTRL-
RAM vs. CTRL-VEH, p � 0.9908) (Figure 4). Ramipril
significantly improved cold sensitivity on D1 in OXP mice
(OXP-RAM vs. OXP-VEH, p � 0.0014) and restored normal
cold sensitivity on D3 (OXP-RAM vs. CTRL-VEH, p � 0.9953)
(Figure 5).

DISCUSSION

Our main findings were: 1) the development and characterization
of a mouse OIAS model, without evidence of nerve degeneration,
and 2) ramipril alleviates cold allodynia and improves mechanical
sensitivity in OXP-treated mice.

Mice treated with short course of OXP did not develop
abnormal motor coordination or muscular strength behaviors,
suggesting that proprioceptive and motor Aα-fibers were not
altered by OXP injections. This was confirmed by electron
microscopy. The absence of motor deficit is consistent with
observations made in other mouse strains; C57BL6J and BALB/
c adult male mice (Ta et al., 2009; Andoh et al., 2011; Descoeur
et al., 2011; Nassini et al., 2011; Renn et al., 2011; Zhao et al.,
2012; Azevedo et al., 2013; Toyama et al., 2014; Zhao et al.,
2014). The hot plate test showed no alteration of heat
sensitivity, as previously shown in mouse models (Ta et al.,
2009; Renn et al., 2011; Toyama et al., 2014).
Immunohistochemistry analysis and sciatic nerve electron
microscopic examination showed no axonal degeneration in
the DRG, neuropeptide depletion, loss of IENFs, or nerve
degeneration, meaning our model mimics acute
neurotoxicity, without leading to long term degeneration.
Previous studies on various experimental models showed

that cisplatin or OXP do not induce axonal degeneration,
consistent with our findings (Barajon et al., 1996; Jamieson
et al., 2005). However, IENF loss has been previously described
with different experimental conditions (Boyette-Davis and
Dougherty, 2011; Xiao et al., 2012; Toyama et al., 2014).
Nevertheless, in these studies, OXP was administered for
several weeks, inducing neuropathic symptoms for a longer
period than in our study. Moreover, loss of IENFs cannot
explain pain in all cases, suggesting that different mechanism
underpin the genesis of pain during anticancer therapy
(Koskinen et al., 2011).

The relevance of our OIASmodel resides in its being transient.
Indeed, mice developed transient cold hypersensitivity, which
consistently reproduced OXP-induced acute symptoms in
humans, typically appearing with the second or third cycle of
treatment during the infusion or within one or two days of OXP
administration and disappearing within a few days (Staff et al.,
2017). Clinically, cold-induced symptoms are the most
prominent and disabling manifestations of OXP in the short
term (Argyriou et al., 2008). Our OXPmice also develop transient
tactile allodynia, highlighted by the von Frey test. Tactile
allodynia has been previously described in patients as a
symptom of OXP neurotoxicity (Binder et al., 2007) and
widely described in rodent models (Hopkins et al., 2016).

Molecular basis of OIAS was not fully elucidated, although
several interesting tracks have been explored in the literature.
Among them, studies suggested that OXP induces a
hyperexcitability of primary sensory neurons related to a
dysregulation or variation of the expression of ion channels
involved in mechanical and cold sensitivity (Grolleau et al.,
2001; Park et al., 2009; Park et al., 2011; Kawashiri et al.,
2012). More particularly, others recently reported that OIAS

FIGURE 4 | Effects of ramipril on OXP-induced mechanical allodynia.
Results are compared using mixed-effects model test followed by Tukey’s
multiple comparisons test (Factor treatment: F3.044, 102 � 17.79, p < 0.0001,
time: F3, 36 � 15.73, p < 0.0001 and interaction: F12, 134 � 4.653,
p < 0.0001). Each group represents the mean of 8–10 animals, and the error
bar indicates the SEM. ***p < 0.001, *p < 0.05 OXP-VEH vs. CTRL-VEH
groups. ##p < 0.01, #p < 0.05 OXP-VEH vs. OXP-RAM groups. n � 10 per
group. OXP-treated mice received OXP at a cumulative dose of 15 mg/kg
(5 mg/kg/3 days, intraperitoneal). RAM-treatedmice received daily injection of
ramipril at the dose of 3 mg/kg (intraperitoneal). OXP: oxaliplatin, RAM:
ramipril, RD: reference day, VEH: vehicle.

FIGURE 5 | Effects of ramipril on OXP-induced cold hypersensitivity.
Results are compared using mixed-effects model test followed by Tukey’s
multiple comparisons test (Factor treatment: F5, 47 � 15.57, p < 0.0001, time:
F1, 45 � 38.68, p < 0.0001 and interaction: F5, 45 � 4.621, p � 0.0017).
Each group represents the mean of 8–10 animals, and the error bar indicates
the SEM. ****p < 0.001, **p < 0.01 OXP-VEH vs. CTRL-VEH groups.
##p < 0.01 OXP-VEH vs. OXP-RAM. n � 10 per group. OXP-treated mice
received OXP at a cumulative dose of 15 mg/kg (5 mg/kg/3 days,
intraperitoneal). RAM-treated mice received daily injection of ramipril at the
dose of 3 mg/kg (intraperitoneal). AUC: area under the curve, OXP: oxaliplatin,
RAM: ramipril, VEH: vehicle.
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was associated with a downregulation of K+ channels in the DRG,
following a single dose of OXP (Pereira et al., 2021). Another
mechanism of OIAS is the generation of oxidative stress at the
spinal level. The resulting reactive oxygen species (ROS) would
induce a neuroinflammation, at the origin of hypersensitization
of primary sensory neurons (Di Cesare Mannelli et al., 2012;
Zhang et al., 2020; Agnes et al., 2021).

In summary, under our experimental conditions, three injections
of OXP at 5 mg/kg in Swiss mice induced OIAS, characterized by
transient tactile allodynia and cold hypersensitivity, associated with
no impairment in motor performance or heat nociception, without
overt nerve degeneration.

Ramipril, an ACE inhibitor, decreases Ang II synthesis and so
AT1R/AT2R stimulation (Weber, 1999). Here we showed that
ramipril improves tactile sensitivity and prevents cold sensitivity.
The effect of ramipril could be mediated by the increase activity of
ACE2 which converts angiotensinogen to Ang (1–7) producing
antinociceptive action via Mas receptor (Forte et al., 2016; Ogata
et al., 2019). Moreover, it was demonstrated that antinociceptive effect
of Ang (1–7) involved K+ channels (Costa et al., 2014). Ramipril was
previously shown to improve neuropathic pain in a chronic
constriction-injury mouse model due to its antioxidant properties,
following the decrease in Ang II levels (Kaur et al., 2015). In these
study, ramipril treatment improves effects of nerve injury-induced
increase in thiobarbituric acid substances (TBARS) and decrease in
glutathione levels. Moreover, blockade of ACE prevents the formation
of Ang II but also avoid the degradation of kinins and downregulates
the bradykinin B1 receptor (Estrela et al., 2020). B1 receptor is
upregulated during neuroinflammation and is involved in
neuropathic pain (Ferreira et al., 2005; Cernit et al., 2020). Thus,
downregulation of B1 receptor could be involved in the beneficial
effect of ramipril. As oxidative stress and neuroinflammation have
been shown to contribute to OIPN, they could contribute to the
antinociceptive effect of ramipril.

In our study, beneficial effect of ramipril seemed to be unequal
between cold and tactile pain. Tactile and cold sensitivity are
transmitted by various types of fibers. As Aβ fibers participate in
touch i.e. a non-painful stimulus, they are involved in the
development of tactile allodynia, a non-nociceptive sensation.
C and Aδ fibers are responsible for noxious and non-noxious
perception of cold. Thus, the simplest explanation for such a
difference in the effect of ramipril between tactile and cold
allodynia is that these manifestations are linked to different
fiber/DRG neuron subpopulations.

To conclude, we have shown that high dose of ramipril
improves the recovery of cold sensitivity and alleviates OXP-
induced tactile allodynia. Further investigation using a dose-
response protocol to demonstrate whether a decrease in the
dose of ramipril correlates with a decrease or not in the anti-
allodynic effect in this model would be needed. As ramipril is a
relatively inexpensive drug which has been demonstrated to be safe
and well tolerated, our results favor clinical evaluation of the
preventive therapeutic potential of ramipril in OXP-treated
patients. Retrospective observational studies showed that ACEI
administration in cancer patients under anticancer therapy is well

tolerated (Roldan et al., 2017; Uchida et al., 2018). Moreover, the
same studies showed that long lasting treatment with ACEI/ARB
seems to protect sensory myelinated nerve fiber function from
chemotherapy-induced neurotoxicity (Roldan et al., 2017). Thus,
demonstrating the preventive effect of this drug on the
development of chronic CIPN, would be the next step towards
evaluation of the preventive therapeutic potential of ramipril in
patients receiving OXP-based chemotherapy.
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