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Abstract

The oomycete class includes pathogens of animals and plants which are responsible for

some of the most significant global losses in agriculture and aquaculture. There is a need to

replace traditional chemical means of controlling oomycete growth with more targeted

approaches, and the inhibition of sterol synthesis is one promising area. To better direct

these efforts, we have studied sterol acquisition in two model organisms: the sterol-autotro-

phic Saprolegnia parasitica, and the sterol-heterotrophic Phytophthora infestans. We first

present a comprehensive reconstruction of a likely sterol synthesis pathway for S. parasi-

tica, causative agent of the disease saprolegniasis in fish. This pathway shows multiple

potential routes of sterol synthesis, and draws on several avenues of new evidence: bioin-

formatic mining for genes with sterol-related functions, expression analysis of these genes,

and analysis of the sterol profiles in mycelium grown in different media. Additionally, we

explore the extent to which P. infestans, which causes the late blight in potato, can modify

exogenously provided sterols. We consider whether the two very different approaches to

sterol acquisition taken by these pathogens represent any specific survival advantages or

potential drug targets.

Introduction

The sterols are a highly diverse group of isoprenoid-derived amphipathic biomolecules which

play important structural and physical roles in all eukaryotic cells [1–6]. The precursors to ste-

rol synthesis are isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP),

which arise via the mevalonate (MVA) pathway, or alternatively via the methylerythritol phos-

phate (MEP) pathway in green algae and some red algae [7, 8].

Committed sterol biosynthesis begins with the production and subsequent epoxidation of

squalene by respectively a squalene synthase (SQS) and a squalene epoxidase (SqE) (Fig 1)

[6, 9]. The resulting 2,3-oxidosqualene is then cyclised by an oxidosqualene cyclase (OSC).
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Fig 1. Generalised sterol biosynthesis pathway. Dashed arrows indicate that multiple enzymatic steps are

occurring. The end sterols β-sitosterol, stigmasterol, campesterol, fucosterol and cholesterol have a common

sterol nucleus structure (R1, shown in the box) differing only at the side chain, while the core of ergosterol (R2,

shown in the box) has an additional point of desaturation in the sterol core.

doi:10.1371/journal.pone.0170873.g001
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Depending on the organism this reaction will produce either lanosterol or cycloartenol (Fig 1).

These are then modified in a series of enzymatic steps (Fig 1). Oxidosqualene cyclisation is the

last step in the pathway which is conserved in all sterol synthesising organisms (Fig 1) [10].

This divergence in the main pathway, and all the potential subsequent modifications, means

that the final profile of sterols differs significantly between organisms (Fig 1).

The oomycetes are a diverse group of filamentous eukaryotic microorganisms, which

includes important animal and plant pathogens. The oomycetes share many characteristic fea-

tures with fungi, but are phylogenetically distinct from them and are grouped within the Stra-

menopiles (Heterokonta) phylum. Oomycete species differ greatly in their requirements for

sterol provision [11–17]. Species of the Saprolegniales order are able to grow on sterol-free

media, and possess genes with predicted roles in sterol biosynthesis [12, 14, 16–19]. Con-

versely, members of the Peronosporales order such as Phytophthora species are unable to

synthesise sterols de novo due to an inability to produce oxidosqualene (Fig 1) [16, 17], as they

lack conventional SqE genes [20].

Insects and nematodes also lack the capacity to synthesise oxidosqualene [21–25], but some

are able to modify exogenous sterols [25, 26]. Intriguingly, a gene encoding a putative Δ7 sterol

reductase has been reported in a Phytophthora species [12], suggesting a similar potential for

sterol modification. Indeed, limited modification of sterols has been observed in Phytophthora
species [27, 28]. Nonetheless, the profile of host sterols is important in determining the success

of Peronosporales oomycetes, highlighted by the impaired growth of Plasmopara viticola on

grapevine with inhibited sterol synthesis [29].

The extent and importance of sterol synthesis in the oomycetes is a matter of ongoing

debate [14–16, 28, 30, 31], and the potential for sterol modification in Peronosporales species

[12] adds further uncertainty. A clear understanding of the requirements and tolerance of

pathogenic oomycetes for sterols is important for the development of effective pest manage-

ment strategies. Here we present our assessment of the sterol requirements for growth in S.

parasitica and P. infestans. We focus particularly on the ability of P. infestans to take up and

modify exogenously provided sterols, and of S. parasitica to modulate its sterol profile in dif-

ferent growth media. In addition to a comparative sterol profile analysis of the two species, we

have analysed the expression of multiple genes with predicted functions in sterol biosynthesis,

including two P. infestans genes putatively encoding sterol modifying enzymes. From these

data, we are able to reconstruct an entire S. parasitica sterol synthesis pathway, identifying

multiple potential routes of biosynthesis and an additional gene which was not apparent in

previous investigations [18, 19]. This builds on our recent biochemical demonstration that S.

parasitica sterol biosynthesis begins with lanosterol production [32]. We could find no evi-

dence that P. infestans is capable of sterol modification, and discuss how this compares with

the approach taken by S. parasitica.

Materials and methods

Chemicals and reagents

Squalene, cholesterol, β-sitosterol, lanosterol, cycloartenol, campesterol, lathosterol, desmos-

terol, fucosterol, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, phos-

phatidylserine, phosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylcholine

and ceramide phosphorylethanolamine were purchased from Sigma Aldrich (St Louis, MO,

USA). Zymosterol was purchased from Avanti Polar Lipids (Alabaster, AL, USA) and ergos-

terol was purchased from Supelco (Sigma-Aldrich Sweden AB, Stockholm, Sweden). All other

growth media components were purchased from Sigma Aldrich (St Louis, MO, USA) and

were of microbiological grade.

Sterol metabolism in two model oomycetes
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Culturing of Saprolegnia parasitica and Phytophthora infestans

Strains of P. infestans (Mont.) de Bary 1876 (CBS 120920; GenBank JX418021) and S. parasi-
tica Coker 1923 (CBS 223.65; GenBank JX418013) were obtained from the Centraal Bureau

voor Schimmel Culture (CBS, Baarn, The Netherlands). Cultivars were separately maintained

in artificial media. S. parasitica was maintained on defined Machlis medium [33] supple-

mented with 2% plant agar (Duchefa Biochemie) at 20˚C. P. infestans was maintained on

defined L-asparagine medium supplemented with 2% agar [34]. For sterol analysis of S. parasi-
tica, an agar plug of 8 mm diameter with S. parasitica mycelium was excised with a cork borer

and used to inoculate yeast mold (YM) liquid medium, Peptone liquid medium, or Machlis

liquid medium [33]. The YM medium was prepared after Warrilow et al. [19]. The Peptone

media was prepared with 6% glucose and 3% peptone in tap water. P. infestans mycelium for

sterol analysis was cultured in defined L-asparagine medium [34] and inoculated by excising

an 8 mm agar plug from the stock culture.

Sterol analysis by GC-MS

Extraction of sterols from oomycete mycelium. Lipid fractions were extracted from

mycelium using the method of Bligh and Dyer [35]. Mycelium was homogenised under liquid

nitrogen to a fine powder. 3.75 volumes of chloroform:methanol (1:2) were added to 1 volume

of sample. The mixture was incubated for 20 min at 60˚C and centrifuged at 450 g for 10 min,

at 17˚C. The supernatant fluid was retained and the pellet resuspended in 3.75 volumes of

chloroform:methanol (1:2). The mixture was again incubated for 20 min at 60˚C and centri-

fuged at 450 g for 10 min, at 17˚C. The supernatant fluid was washed by adding 2.5 volumes of

water and 2.5 volumes of chloroform, followed by homogenisation by vortexing. The mixture

was subsequently centrifuged at 17˚C at 450 g for 10 min. The chloroform phase, containing

the lipid extract, was recovered and dried under nitrogen gas. Nitrogen-dried lipid samples

were resuspended in 3 mL hexane. Free sterols were separated from esterified sterols and other

lipids on an SPE column (# 4600050c, ISOLUTE1 Si, 500MG/6ML) as described previously

[36]. Esterified sterols were dried under nitrogen gas and saponified by adding 1 mL 2M KOH

(in 95% ethanol) and kept for 45 min at 60˚C. The alkaline hydrolysis was stopped by cooling

down the tubes in cold water and adding 1 mL of H2O, 2 mL hexane, and 0.1 mL ethanol, and

shaking vigorously. After centrifugation at 450 g for 10 min at 17˚C, the upper hexane phase

was transferred into small glass tubes and the remaining unsaponifiable compounds were

dried under nitrogen gas for derivatisation.

Extraction of sterols from Machlis medium, YM medium, Peptone medium, and sepa-

rate medium components. Aliquots of growth medium were taken and 3.75 volumes of

chloroform:methanol (1:2) added prior to incubation at 60˚C for 20 min. Five volumes of chlo-

roform were then added and the sample was sonicated for 20 min in a water bath at 20˚C. The

mixture was centrifuged at 17˚C at 450 g for 10 min and the supernatant fluid with the lipid

fraction was saved. Nitrogen-dried lipid samples were resuspended in 3 mL hexane and pro-

cessed as described above. The sterol extraction method for the media components yeast mold

and peptone was performed as described for homogenised mycelia.

GC-MS analysis. Free sterols and unsaponifiable sterols were derivatised by adding bis

(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS), 99:1 (#33155

Supelco, Sigma-Aldrich Sweden AB, Stockholm, Sweden), with pyridine (1/1 v/v) and incubat-

ing at 60˚C for 1 hr. Silylated products were dried under nitrogen gas and diluted in hexane

before analysis. The resulting sterol-trimethylsilyl ethers were analysed using a Gas Chromato-

graph (GC) (Hewlett Packard/Agilent, Model 6890) coupled to a quadrupole mass spectrome-

ter (Hewlett Packard 5973 mass selective detector). The GC was fitted with a CP-Sil 5 CB

Sterol metabolism in two model oomycetes
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column (30m by 0.25mm; #CP8741 Agilent Technologies) set at 245˚C and raised in 3.5˚C/

min steps to 265˚C followed by 0.5˚C/min steps to 310˚C post injection. The injector with the

transfer liner was set to 325˚C, the interface to 300˚C, and the ion source was maintained at

280˚C. Helium with a flow rate of 1 mL/min was used as carrier gas. The full electron ionisa-

tion spectra were scanned in the range of 40 to 800 m/z. Published mass fragmentation pat-

terns of sterol standards were used to confirm the identity of different sterols. The full protocol

from derivatisation to analysis was also applied to the commercial standards to verify the accu-

racy of our technique. Our fragmentation patterns closely matched those in previous publica-

tions. The total peak area from the gas chromatogram was used to quantify sterol composition.

Baseline analysis of the ingredients of the YM and Peptone media confirmed the absence of

any sterols (Figure A in S1 File).

Bioinformatic analysis and annotation of selected genes

The MetaCyc pathway pages (http://www.metacyc.org/) [37] were used to select sterol pathway

genes from Homo sapiens, Arabidopsis thaliana, Aphanomyces euteiches, various fungi and

other metazoans to search known enzymes against the S. parasitica and P. infestans genomes

in the NCBI and Joint Genome Initiative (JGI) databases (Blast searches). Putative homolo-

gous genes were identified by having an E value greater than 1e-5, and compared with previ-

ously published S. parasitica sterol metabolic pathways for reference [18, 19]. For further

confirmation of selected genes, the conserved domain(s) of each gene was investigated by

NCBI Conserved Domain Search [38].

To predict activities for the enzymes encoded by the selected genes we first used the bioin-

formatics tool Blast2GO (B2G, https://www.blast2go.com/) [39]. B2G uses Blast [40] to iden-

tify sequences homologous to the input query sequence and assign a tentative Gene Ontology

(GO) [41]. For the final analysis, selected gene features were additionally verified using NCBI

Conserved Domain Search [38] and used for a new round of manual Blast searches to improve

prediction of protein function. B2G and ExPASy-ENZYME (http://enzyme.expasy.org [42])

were used to identify the Enzyme Commission numbers, which were verified in the BRENDA

enzyme database (http://www.brenda-enzymes.org [43]).

RT-qPCR

Total RNA for qPCR analysis was isolated from mycelium using the RNeasy Plant Mini Kit

(#74904 QIAGEN) and treated with RNase-free DNase for 20 min at 37˚C (Ambion, TURBO

DNA-free Kit). Extracted RNA was qualitatively visualised by agarose gel electrophoresis, and

a NanoDrop 1000 spectrophotometer (Thermo Scientific) was used to quantify the total

amount of RNA. Two μg template RNA was used for cDNA synthesis with the Maxima First

Strand cDNA Synthesis Kit for RT-qPCR (#K1641 Thermo Fisher Scientific, Stockholm,

Sweden).

QPCR primers for the genes under analysis were designed using Primer 3Plus (http://www.

bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/) [44]. Primers were designed to

achieve an amplification range between 100 and 120 bp, a GC content ranging between 50–

60% and a length of 18 to 24 nucleotides. The primer melting temperatures were 60 ± 1˚C and

each primer pair was tested separately.

Gene expression levels were evaluated using the CFX96 Real-Time PCR detection system

(BioRad). The reactions were performed using 5 μL of 2X iQ SYBR Green Supermix (Bio-

Rad), 0.5 μM of each primer, 10ng cDNA, and nuclease-free water to a final volume of 10 μl in

two technical replicates for each of three independent biological experiments.

Sterol metabolism in two model oomycetes
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RNA and no template control samples were also used as negative control for each primer

pair. Cycle steps for qPCR analysis were 95˚C for 3 min, followed by 44 cycles of 95˚C for 10s

denaturation, annealing at 60˚C for 10s and extension at 72˚C for 15s. The raw data were ana-

lysed using the CFX manager™ software (version 3.0; Bio-rad) which includes the algorithms

to perform relative gene expression with normalization to multiple reference genes over multi-

ple plates. Relative expression levels were calculated by normalizing the data to the geometric

mean of three reference genes, which were selected from an expression stability analysis of

eight reference genes (CFX manager™, version 3.0; Bio-rad). The reference genes used for P.

infestans were ubiquitin-conjugating enzyme E2 (PITG_00505), 40S ribosomal protein

(PITG_11766), and beta-tubulin (PITG_00156). The reference genes used for S. parasitica
were ubiquitin-conjugating enzyme (UBC; SPRG_03371), glyceraldehyde-3-phosphate dehy-

drogenase (GADPH; SPRG_00090) and Elongation factor (Ef; SPRG_10439). The PCR effi-

ciency for each gene was calculated using Real-time PCR Miner [45], and found to range from

85% to 99%.

Phytophthora infestans sterol feeding study and growth assay

P. infestans strain T30-4 maintained on defined media supplemented with β-sitosterol and

solidified with 2% plant agar was used for assessment of mycelial growth on sterol-supple-

mented media. Six- well plates (Sarstedt, Nümbrecht, NRW, Germany) were prepared with 2

mL of sterol free media as described above and supplemented with 50 mM of either β-sitos-

terol, lanosterol, cycloartenol, zymosterol, lathosterol, brassicasterol, desmosterol, stigmas-

terol, cholesterol, fucosterol, or ergosterol. An agar plug of 5 mm diameter covered by P.

infestans mycelium was excised and used to inoculate each well after removing most of the

agar without disrupting the mycelial surface. Plates were incubated at 25˚C in the dark.

Growth was followed by daily measurements of colony diameter in mm. Fourteen days after

inoculation, the mycelia was harvested, washed 3 times with autoclaved and micro-filtered

water, dried and snap frozen in liquid nitrogen prior to storage at -80˚C. Sterols and RNA

were then extracted as described above.

Results

Sterol biosynthesis in Saprolegnia parasitica

Sterol composition in Saprolegnia parasitica. S. parasitica mycelium was harvested after

3 days growth in defined Machlis medium, and an initial sterol profile analysis was performed

by GC-MS. Lanosterol, desmosterol, cholesterol, 24-methylene cholesterol, and another

unidentifiable sterol-like compound were detected (Fig 2). The sterol composition correlated

quite well with the findings of Warrilow et al. [19], with the exception of fucosterol, which was

not apparent in these initial investigations. The oomycete was subsequently grown in YM and

Peptone media, and again harvested after 3 days growth. The sterol composition of these sam-

ples was markedly more similar to that previously reported for S. parasitica grown in YM

medium [19], as fucosterol could be readily detected (Fig 2). The mycelial sterol profile was

dominated by desmosterol in Machlis medium, and was also enriched in 24-methylene choles-

terol in Peptone and YM media (Fig 2).

Bioinformatic mining for sterol related genes in S. parasitica. Sterol biosynthesis genes

from Homo sapiens, plants and fungi were used to mine the S. parasitica genome for potential

homologues. The functions of the identified genes were predicted using Blast2GO, and by

manual nBLAST searching the sequence against the NCBI database for characterised genes

(Table 1). Predictions were confirmed by analysing the conserved domains of protein

sequences. In all, 24 genes could be identified which form complete MVA and sterol synthesis

Sterol metabolism in two model oomycetes
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Fig 2. GC-MS analysis of S. parasitica sterol composition. Samples analysed were grown for 3 days in Machlis, YM, or Peptone

media. GC-MS analyses were performed in triplicate. The dominant sterol was desmosterol for mycelia grown in Machlis (red trace in

the GC chromatogram) and YM media (black trace), while 24-methylenecholesterol dominates in the mycelium grown in Peptone

medium (blue trace). RT: Retention time.

doi:10.1371/journal.pone.0170873.g002
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pathways (Fig 1), up to and including the fine modifications required to produce the end ste-

rols (Fig 2). We also identified orthologous genes in Aphanomyces invadans, Aphanomyces
astaci, and Saprolegnia diclina (Table 1), indicating a common sterol synthesis pathway in the

Saprolegniales order.

The S. parasitica genome includes two near-identical OSC genes involved in the cyclisation of

2,3-oxidosqualene (Fig 1) [32]. We recently confirmed by recombinant protein production and

biochemical characterisation that the protein encoded by SPRG_11783 (SpLASA) is a lanosterol

synthase [32]. On this basis, we propose that sterol synthesis in S. parasitica proceeds via the for-

mation of lanosterol, not cycloartenol. The product of the OSC reaction will pass to a sterol 14α
demethylase (CYP51) encoded by SPRG_09493. Previous work by Warrilow et al showed that

this enzyme likely acts on lanosterol [19], supporting our proposed lanosterol pathway.

For the subsequent enzymatic steps which convert 14-demethyllanosterol to a series of

intermediate structures, we identified the same candidate genes as were presented in other

recent papers describing lanosterol synthesis pathways [18, 19]. An activity not identified in

previous reconstructions is the Δ3 sterol keto reductase required to produce some intermediate

species. We tentatively predict this to be encoded by SPRG_16338, which has some homology

to a human enzyme (29% sequence identity). These enzymes are poorly conserved between

different classes of organisms, but domain analysis of SPRG_16338 does suggest oxidoreduc-

tase activity and NADP+ binding. For all subsequent enzymatic steps leading to the end sterols,

we were able to identify candidate genes consistent with the findings of previous S. parasitica
pathway reconstructions (Table 1) [18, 19].

Expression analysis of candidate S. parasitica sterol related genes. qPCR analysis con-

firmed the expression of all identified genes during growth in all conditions. Expression levels

in YM and Peptone media were normalised against levels in defined synthetic Machlis

medium, and against a panel of housekeeping genes (Fig 3). Additionally, Figure B in S1 File

shows gene expression levels of some MVA pathway genes, indicating that this pathway is

Fig 3. Gene expression analysis by qPCR of putative S.parasitica sterol related genes. Expression

levels of each gene were standardised by comparison with the levels of expression of 3 housekeeping genes,

and normalised to expression levels during growth on the defined Machlis medium. Genes are identified by

their Gene ID. SPRG_11783: oxidosqualene cyclase (lanosterol synthase). SPRG_09493: CYP51 sterol 14α-

demethylase. SPRG_00418: Δ14 sterol reductase. SPRG_01623: Δ4 methyl sterol oxidase. SPRG_05001: Δ
24 sterol methyltransferase. SPRG_13330: Δ8 sterol isomerase. SPRG_18544: Δ5 sterol desaturase.

SPRG_01085: Δ7 sterol reductase. SPRG_04988: Δ24 sterol reductase. Three replicate samples were

analysed in each case. Error bars represent one standard deviation from the mean.

doi:10.1371/journal.pone.0170873.g003
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utilised in S. parasitica. The level of expression of all genes tested varied depending upon the

growth medium. We observed an increased transcriptional abundance of at least 1.5 fold for

the lanosterol synthase gene SPRG_11783, the Δ24 sterol methyltransferase gene SPRG_05001,

and the Δ3 sterol keto reductase gene SPRG_16338 during growth in YM and Peptone media,

compared to Machlis samples (Fig 3). The Δ24 sterol reductase SPRG_04988 was upregulated

more than 1.5 fold in YM samples compared to Peptone or Machlis samples (Fig 3). The great-

est increase in expression compared to Machlis medium was seen for SPRG_05001 (1.75 fold

in Peptone medium and 2.2 fold in YM medium).

Assessing the potential for sterol conversion in P. infestans

P. infestans sterol feeding studies. Feeding studies confirmed the importance of exoge-

nously provided sterols as a nutritional requirement for P. infestans [46]. Growth on sterol-

free media was slow within the first days, and stopped completely within 7 to 10 days

(Figure C in S1 File). Growth on various sterols was strong, while growth on the sterol precur-

sor squalene was very poor, suggesting that this cannot compensate for sterols (Figure C in S1

File. GC-MS analysis of sterols extracted from P. infestans (Figure D in S1 File), showed an

uptake of all sterols but no further conversion to other sterols. The β-sitosterol [47] utilised

was contaminated with a small amount of campesterol (3.98%) (Figure D in S1 File). Within

our range of accuracy, we identified the same ratio of β-sitosterol (95.95%) to campesterol

(4.05%) in sterols extracted from mycelium. Our analysis of extracted sterols showed in some

cases small additional peaks not present in the standards: these did not correspond to any

known sterols or sterol-derivatives (Figure D in S1 File).

Bioinformatic mining for sterol related genes in P. infestans. P. infestans is known to be

incapable of de novo sterol biosynthesis and to have a close homologue of the human Δ7 sterol

reductase gene (PITG_13128) [12]. Building on this, we mined the P. infestans genome for

additional genes related to the synthesis of sterols or sterol precursors. We identified genes

responsible for the conserved regions of the MVA pathway up to the condensation of DMAPP

and IPP into FPP (Fig 1), but could not identify candidate SQS or OSC genes (Table 2) [13, 20,

48]. We did uncover a putative Δ5 sterol desaturase (PITG_21426, Table 2). The products of

these two genes might act in a cascade to modify sterols such as lathosterol and ergosterol

(Figure E in S1 File), although neither of these sterols was converted by P. infestans (Figure D

in S1 File).

Expression analysis of candidate P. infestans sterol related genes. Genes encoding a

3-hydroxy-3-methylglutaryl-coenzyme A (PITG_12495), a predicted Δ5 sterol desaturase

(PITG_21426) and a predicted Δ7 sterol reductase (PITG_13128) were all expressed in P. infes-
tans mycelium grown with β-sitosterol. Expression of these genes was also analysed for myce-

lium grown on lathosterol (a substrate for Δ5 sterol desaturase) and ergosterol (a substrate for

Δ7 sterol reductase), as well as cholesterol, lanosterol and zymosterol (Fig 4). The data shown

in Fig 4 strongly suggest an inability to modify sterols, since PITG_21426 and PITG_13128

showed no obvious increase in gene expression in the presence of their likely substrates.

Indeed, PITG_13128 showed the lowest level of expression during growth on ergosterol.

Discussion

Reconstruction of a complete sterol synthesis pathway in S. parasitica

Sterol synthesis pathways have recently been proposed for several Saprolegniales species [11,

12, 18, 19]. These reconstructions may be useful to identify targets in strategies to control the

spread of these organisms. The pathway we propose for S. parasitica (Fig 5) is informed by a

combined approach of bioinformatics to predict enzyme activity, GC-MS analysis of sterols

Sterol metabolism in two model oomycetes
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extracted from mycelium, and qPCR analysis of gene expression levels. The pathway begins

with the synthesis of a series of precursor molecules via the MVA pathway (Table 1; Figure B

in S1 File) [7, 8, 49].

Committed sterol synthesis begins with the formation of lanosterol. Following the oxi-

dation of squalene, 2,3-oxidosqualene is cyclised to create lanosterol. We recently demon-

strated conclusively that the SPRG_11783 gene encodes a lanosterol synthase (SpLASA, [32]),

and this is further supported by the sterol profile of S. parasitica (Fig 2), where no cycloartenol

was detected. Additional support derives from the predicted activity of the CYP51 sterol

14-alpha-demethylase (SPRG_09493): while this enzyme was shown to have similar binding

affinities for lanosterol, eburicol and obtusifoliol, inhibition in vivo led to a high level of myce-

lial accumulation of lanosterol [19]. We therefore assume that SPRG_09493 encodes an

enzyme acting on the lanosterol produced by SpLASA [32].

In total, we predict genes associated with 11 enzymatic steps (Table 1, Fig 5, Table C in S1

File) converting lanosterol ultimately to cholesterol, desmosterol, 24-methylenecholesterol,

and fucosterol. Each enzymatic step proposed by the MetaCyc pathway pages (http://www.

metacyc.org/) (37), was separately investigated by a literature survey, and support was found

for all cases (Table C in S1 File). After lanosterol synthesis, a CYP51 sterol 14α demethylase

(SPRG_09493), Δ14 sterol reductase (SPRG_00418), Δ4 methyl sterol oxidase (SPRG_01623),

Δ3 sterol dehydrogenase (SPRG_01499) and Δ3 sterol keto reductase (SPRG_16338) act in con-

cert to produce zymosterol (Fig 5) before three alternative routes branch out. The Δ3 sterol

Table 2. Gene sequences putatively involved in the mevalonate (MVA) pathway of P. infestans, or with roles in sterol modification.

Protein/Gene ID Blast2GO sequence

description

Closest orthologue prediction (GeneID) Predicted function EC

numberIn Oomycetes Excluding

Stramenopiles

MVA

pathway

XP_002908392.1/

PITG_01783

Acetyl-acetyltransferase XP_008619526 (S.

diclina)

WP_010602725 (P.

agri)

Acetyl-CoA C-

acetyltransferase

2.3.1.9

XP_002900378.1/

PITG_12495

Hydroxymethylglutaryl-

synthase

XP_008902107 (P.

parasitica)

2F82_A (B. juncea) Hydroxymethylglutaryl-CoA

synthase

2.3.3.10

XP_002901817.1/

PITG_11028

Mevalonate kinase ETM49801 (P.

parasitica)

XP_007030863 (T.

cacao)

Mevalonate kinase 2.7.1.36

XP_002906345.1/

PITG_03270

Phosphomevalonate kinase XP_008911663 (P.

parasitica)

CDH52938 (L.

corymbifera)

Phosphomevalonate kinase 2.7.4.2

XP_002898035.1/

PITG_15778

Diphosphomevalonate

decarboxylase

ETL30939 (P.

parasitica)

XP_007468497 (L.

vexillifer)

Diphosphomevalonate

decarboxylase

4.1.1.33

XP_002896895.1/

PITG_16665

IPP Δ-isomerase XP_008900922 (P.

parasitica)

KDB11805 (V. virens) Isopentenyl-diphosphate Δ-

isomerase

5.3.3.2

XP_002895983.1/

PITG_20043

Solanesyl diphosphate

synthase

XP_008870257 (A.

invadans)

CDH51283 (L.

corymbifera)

Solanesyl diphosphate

synthase

2.5.1;

2.5.1.1

XP_002900610.1/

PITG_13077

Geranylgeranyl

pyrophosphate synthetase

XP_008870257 (A.

s invadans)

XP_004341343 (A.

castellanii)

Dimethylallyltranstransferase 2.5.1.1

Sterol XP_002894944.1/

PITG_21426

C5 sterol desaturase XP_008619546 (S.

diclina)

NP_593135 (S.

pombe)

Δ5 sterol desaturase 1.14.21.6

XP_002900651.1/

PITG_13128

7-dehydrocholesterol

reductase

CAQ55987 (A.

euteiches)

WP_013924762 (P.

acanthamoebae)

Δ7 sterol reductase 1.3.1.21

Closest orthologue predictions were made by comparing first only to other oomycetes, and then to all organisms except Stramenopiles. Predicted gene

functions and the corresponding EC numbers are provided for each predicted activity, where available. All sterol biosynthetic gene homologues from Homo

sapiens and equivalent homologues from plants and fungi in the MetaCyc metabolic pathway database were used for the BLASTp searches to predict

enzyme function.

doi:10.1371/journal.pone.0170873.t002
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keto reductase is newly identified in our pathway, and is responsible for a reduction at C3 to

convert 3-dehydro-4-methyl-zymosterol into 4α-methyl-zymosterol.

Three synthetic pathways diverge after the formation of zymosterol. The major point

of diversion between the three synthetic routes is the fate of zymosterol (Fig 5). First, a cascade

of three enzymes acts sequentially to convert zymosterol to desmosterol: a Δ8 sterol isomerase

(SPRG_13330) produces 5α-cholesta-7,24-dien-3β-ol, a Δ5 sterol desaturase (SPRG_17773 or

SPRG_18554) converts this to 7-dehydrodesmosterol, and a Δ7 sterol reductase (SPRG_01085)

produces desmosterol. Desmosterol was highly abundant in S. parasitica mycelium (Fig 2). If a

Δ24 sterol methyltransferase (SPRG_05001) acts directly on zymosterol, producing fecosterol,

the aforementioned three enzymes will produce episterol, 5-dehydro-episterol, and 24-methy-

lenecholesterol (Fig 5). 24-Methylenecholesterol was also detected in the mycelium (Fig 2) and

Fig 4. Gene expression analysis by qPCR of putative P. infestans sterol related genes. Expression

levels of genes with possible roles in sterol modification were studied during growth in media supplemented

with a range of different sterols. Transcript abundance was standardised by comparison with 3 housekeeping

genes, and normalised to expression levels during growth on the host sterol β-sitosterol. Genes are identified

by their Gene ID. PITG_21426: Δ5 sterol desaturase. PITG_13128: putative Δ7 sterol reductase.

PITG_12495: HMG-CoA synthase. Three replicate experiments were performed in each case. Error bars

represent one standard deviation from the mean.

doi:10.1371/journal.pone.0170873.g004
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Fig 5. In silico reconstruction of the sterol synthesis pathway of S. parasitica. Synthesis steps are

indicated by the gene (SPRG_xxxxx) predicted to encode the responsible enzyme. An asterisk (*) highlights

those sterols which were previously extracted from Saprolegniales species. All sterols highlighted in grey boxes

were identified in S. parasitica mycelium during this study. Zymosterol is shown larger than other sterols to

highlight its role as a branching point between multiple synthetic routes.

doi:10.1371/journal.pone.0170873.g005
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can act as a substrate for the Δ24 sterol methyltransferase, which converts it to fucosterol

(found in mycelium from some media, Fig 2). Finally, if a Δ24 sterol reductase (SPRG_04988)

acts on 5α-cholesta-7,24-dien-3β-ol, it will produce lathosterol: the synthetic pathway is

diverted to produce 7-dehydrocholesterol, and finally cholesterol, which was detected to a

small extent in the mycelium. The previous identification of lathosterol and 7-dehydrocholes-

terol, intermediates between zymosterol and cholesterol in Aphanomyces euteiches [12],

strengthens the potential for such a route to cholesterol synthesis which does not require des-

mosterol as an intermediate.

Branching between these alternative routes is mediated by SPRG_05001 and SPRG_04988

(Fig 5), which encode enzymes to transfer or reduce the side chain at position C24. While in

higher plants and diatoms, the Δ24 sterol methyltransferase appears to act on cycloartenol [1,

20, 50, 51], the Saccharomyces cerevisiae enzyme converts zymosterol to fecosterol [51–53],

and we predict the same activity in S. parasitica (Fig 5). Indeed, without the action of the Δ24

sterol methyltransferase (SPRG_05001), cholesterol and desmosterol would be the only end

products of the biosynthetic pathway, while we have clearly shown that S. parasitica mycelium

can also contain large proportions of fucosterol and its precursor 24-methylenecholesterol.

Cross-talk between the three primary routes of synthesis. Although zymosterol is the

preferred substrate for fungal Δ24 sterol methyltransferases, these enzymes can also act on 5α-

cholesta-7,24-dien-3β-ol, 7-dehydrodesmosterol, desmosterol and others [6, 51, 54]. We

hypothesise that the action of a catalytically flexible Δ24 sterol methyltransferase in S. parasitica
will allow for multiple potential routes to fucosterol production, as intermediates from the

pathways leading to cholesterol and desmosterol may be diverted towards fucosterol synthesis,

as illustrated in Fig 6. Desmosterol is a known possible intermediate in cholesterol biosynthesis

[55], and while the Δ24 sterol reductase (SPRG_04988) could convert desmosterol into choles-

terol, we have shown that cholesterol is not very abundant in S. parasitica mycelium, despite

expression of the SPRG_04988 gene. While the intermediates lathosterol and 7-dehydrocho-

lesterol could not be detected in S. parasitica, there is some support for this multiple function-

ality of the Δ24 sterol reductase in the identification of these sterols in A. euteiches [12].

As the Δ24 sterol methyltransferase is predicted to act at multiple stages to divert synthesis

towards fucosterol, one would expect that high expression of SPRG_05001 would lead to a sig-

nificant shift in the profile of end sterols. Indeed, our data on mycelium grown in different

media show that the highest levels of SPRG_05001 expression correlate with the highest pro-

portions of fucosterol and its immediate precursor 24-methylenecholesterol. However, fucos-

terol was absent in Machlis medium-grown mycelium, despite expression of the gene. It may

be that the enzyme must be specifically targeted to a cellular area to perform this function, and

the weak growth in Machlis medium impairs this process.

S. parasitica adapts its sterol profile in response to environmental changes. S. parasitica
mycelium grown in different media shows high variability in sterol composition (Fig 2). In

defined Machlis medium, the synthetic route leading to desmosterol production dominates.

Conversely, in YM and Peptone media, the fucosterol route dominates, although it tends to

terminate with the production of 24-methylenecholesterol. Our gene expression analyses show

complementary transcriptional changes based on growth media conditions (Fig 3). By visual

observation, growth of S. parasitica on Machlis medium produces a denser mycelium mat, and

a reduced amount of biomass compared to the other media. This may be due to slightly nutri-

ent-poor conditions in Machlis medium. While YM and peptone media provide complex sug-

ars, peptides, and amino acids, the synthetic medium contains only glucose, methionine,

glutamic acid and thiamine. The resulting increase in metabolic difficulty might be a factor

influencing the sterol synthesis pathway taken. In the synthetic medium, it is feasible that S.

parasitica has different membrane requirements or reproductive behaviours, which will

Sterol metabolism in two model oomycetes

PLOS ONE | DOI:10.1371/journal.pone.0170873 February 2, 2017 14 / 21



require a different sterol profile. To our knowledge, adaptation of sterol synthesis to different

growth media has not been demonstrated earlier for S. parasitica. This implies that the local

environmental conditions and host tissue during infection may impact the sterol profile of the

invading oomycete.

Sterol requirements of P. infestans

Sterol feeding studies of Peronosporales species have previously demonstrated the conversion

of small proportions of provided lanosterol or cycloartenol into 1–5% cholesterol [27, 28, 56].

Conversion of these sterols to cholesterol would likely require at least 9 enzymes performing

multiple conversion steps. Our own bioinformatic mining of the P. infestans genome revealed

only two such genes, which putatively encode a Δ5 sterol desaturase (PITG_21426) which may

act on lathosterol, and a Δ7 sterol reductase (PITG_13128) which may act on ergosterol

Fig 6. Potential cross-talk between the three major pathways of sterol biosynthesis in Saprolegnia

parasitica. The flow-chart shows how the enzymes encoded by SPRG_05001 (Δ24 sterol methyltransferase)

and SPRG_04988 (Δ24 sterol reductase) may be capable of acting on multiple different sterols, creating

cross-talk between the three synthetic routes described in Fig 5. Solid arrows show the main synthesis routes

depicted in Fig 5, while the dashed arrows indicate predicted points of cross-talk between these routes.

doi:10.1371/journal.pone.0170873.g006

Sterol metabolism in two model oomycetes

PLOS ONE | DOI:10.1371/journal.pone.0170873 February 2, 2017 15 / 21



(Figure E in S1 File). We initiated a sterol feeding study of P. infestans to explicitly probe the

likely functions of these enzymes, and to assess the capacity of the organism to take up and

modify specific sterols which are likely substrates of these enzymes. As in previous studies [14,

16, 17, 46], sterol provision was an absolute requirement for growth. Additionally, while all of

the sterols tested were taken up and supported growth, we found no evidence of conversion to

different sterols in any case. This includes lathosterol and ergosterol, which were selected to

specifically probe for activity of the putative enzymes. Although we confirmed expression of

both PITG_21426 and PITG_13128, neither was expressed at a much higher level in the pres-

ence of a putative substrate (Fig 4). Our data therefore indicate that in vivo sterol modification

does not occur in P. infestans to a detectable extent, even though the required genes are

expressed (Fig 4). The true functions of the genes encoding a Δ5 sterol desaturase and a Δ7 ste-

rol reductase still need to be elucidated, but it is conceivable that they might have roles in host

fitness or sterol parasitism [57].

Sterol modification as a survival adaptation and drug target

The two model species of pathogenic oomycetes we have studied take very different

approaches to sterol acquisition. Both are highly successful pathogens in their natural environ-

ments, as evidenced by the significant impacts they make on agriculture and aquaculture. Yet

it is intriguing to consider whether sterol autotrophy or heterotrophy offer different survival

advantages.

A potential advantage to survival for the oomycetes is an ability to evade host defence

mechanisms. In plants, sterols generally play an important role in host resistance to pathogen

infection [58, 59]. It is tempting to suggest that P. infestans, which produces no ‘alien’ sterols

detectable by the plant, is adapted to survive in its host. However, oomycete sterol uptake from

the host, necessary for P. infestans survival [60], is typically performed by carrier proteins

known as elicitins [61, 62]. It is unknown precisely how oomycete elicitins affect plant behav-

iour, but they are named specifically for their ability to elicit a high level of defensive response

in plants [63–65]. These are abundant in the mycelium of Peronosporales species [62, 66], and

likely compensate for an inability to synthesise sterols [62]. The elicitins could therefore repre-

sent a promising drug target for disruption of nutrient acquisition in the oomycete.

Preliminary efforts to control oomycete growth via the direct inhibition of sterol synthesis

show some early promise. The Δ24 sterol methyltransferase encoded by SPRG_05001 may be a

suitable target for inhibition in S. parasitica, as it is not found in animals [6]. However, as this

gene is expressed at very different levels in different media, its expression level should be stud-

ied in host tissues. The multiple pathways of sterol synthesis we propose might even allow for

effective compensation for the loss of this activity. Indeed, the adaptive nature of sterol synthe-

sis in S. parasitica may be a significant driver of the organism’s success in its environment.

Fungicide-mediated inhibition of the CYP51 enzyme, which acts before the zymosterol

branching point, has already shown some success as a control treatment [19]. To complicate

matters, the presence of an elicitin-encoding gene in Aphanomyces euteiches suggests that the

inhibition of sterol synthesis could be compensated for in some Saprolegniales by increased

sterol uptake from the host [11, 12].

Conclusions and outlook

Since sterols are vital for oomycete survival, we emphasise the importance of these molecules

as potential drug targets in control strategies. However, the acquisition of these lipids differs

greatly between the Saprolegniales and Peronosporales, which will limit the range of applica-

bility of any sterol-targeting treatments. We have shown that the fish pathogen S. parasitica
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can produce a range of different sterols. The sterol profile in the mycelium is altered by chang-

ing the growth medium, which correlates with alterations in the level of expression of sterol

synthesising genes. Our data indicate that the profile of sterols synthesised in a natural setting

is likely to be host-dependent, and that S. parasitica could compensate for the loss of one sterol

synthesis route. This observation should inform the design of control strategies. Nonetheless,

the complex sterol synthesis pathway we present for S. parasitica may lead to the identification

of some specific targets for inhibition. We have additionally confirmed that in our experimen-

tal set-up P. infestans mycelial growth is absolutely dependent upon sterol uptake, and found

no evidence that the organism can modify exogenous sterols despite possessing some genes for

sterol modification. We expect that future investigations into the inhibition of sterol uptake by

P. infestans might be more successful by focussing on the elicitin proteins, which are likely key

to sterol uptake by this devastating pathogen.

Supporting information

S1 File. Table A Primers used in qPCR analysis of gene expression in Saprolegnia parasi-
tica. Table B Primers used in qPCR analysis of gene expression in Phytophthora infestans.

Figure A GC-MS analysis of media and media components utilised for cultivation of

Saprolegnia parasitica. Sterols were shown to be absent in all media and media components

utilised in the study. A: GC chromatogram of peptone. B: GC chromatogram of Peptone

medium. C: GC chromatogram of yeast mold. D: GC chromatogram of YM medium.

Figure B Gene expression analysis by qPCR of S.parasitica genes with predicted roles in

the MVA pathway. Expression levels of each gene were standardised against that of a panel

of housekeeping genes, and normalised to expression during growth on the defined Machlis

medium. Different growth media are indicated in different colours (blue: Machlis medium,

red: Peptone medium, yellow: Yeast-Mold medium). Abbreviations used in the predicted

enzyme names are as follows: SP (Saprolegnia parasitica), C14SR (Δ14 sterol reductase),

HMG (hydroxymethylglutaryl-CoA synthase), HMGCAR (hydroxymethylglutaryl-CoA

reductase), IDI (isopentenyl-diphosphate isomerase), MVD (mevalonate disphosphate

decarboxylase/ diphosphomevalonate decarboxylase), MVK (mevalonate kinase), PMK

(phosphomevalonate kinase), SQE (squalene monooxigenase) and SQS (squalene synthase).

Three replicate experiments were performed in each case. Figure C Growth of Phytophthora
infestans on synthetic media supplemented with different sterols. The colour key indicates

the sterol or sterol precursor present in each experiment. The control culture contained no

sterols and led to severely reduced growth. Growth on the sterol precursor squalene was also

very poor. A 5 mm plug of excised mycelia was used to inoculate each growth medium. Six

replicate experiments were performed in each case. Figure D Various sterols fed to P. infes-
tans, and subsequently extracted from mycelia, as investigated by Gas Chromatography

coupled to Mass Spectrometry (GC-MS). Each box represents a different sterol used in the

feeding study, where the black spectra indicate sterol standards used for feeding and the red

spectra indicate sterols extracted from 14-day-old P. infestans mycelia. The major peaks in

the GC spectra are indicated in each case by an asterix (�), and the accompanying MS spectra

show the important identifying m/z values in the fragmentation pattern. For β-sitosterol

(top), two peaks can be seen in the gas chromatogram, a minor peak corresponding to cam-

pesterol, and a major peak corresponding to β-sitosterol (both confirmed by MS fragmenta-

tion analysis). Other small peaks could be observed, but fragmentation patterns showed that

these did not correlate with any sterols, and are likely extract residues from the SPE column

preparations. Figure E Putative sterol modifying activities of a Δ5 sterol desaturase and a Δ7

sterol reductase. A: predicted conversion of lathosterol to 7-dehydrocholesterol by a Δ5
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sterol desaturase. B: predicted conversion of ergosterol to brassicasterol by a Δ7 sterol

reductase.
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