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Abstract: The microstructural and functional behavior of TiNi-based wires with a silver content of
0–1.5 at.% was evaluated. The concentration range for Ag doping determined for the TiNi wires with
potential for the medical industry was 0–0.2 at.%. Microstructure analysis of TiNi wires with different
silver contents at room temperature indicated a multiphase structural state. Various internal structures
with tangled grain boundaries were formed by intense plastic deformation. The nanocrystalline
structure and phase state of wire with the minimum silver content (0.1 at.% Ag) provide full shape
recovery, the greatest reversible strain, and optimal strength and ductility. TiNi ingots with a high Ag
content (0.5–1.5 at.%) cracked under minimum load due to excess silver that crystallized along the
grain boundaries and broke cohesion bonds between the TiNi grains.
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1. Introduction

The development and study of new TiNi-based materials is a promising direction in the field of
medical materials science. The special properties of the alloys are shape-memory and superelasticity
due to reversible austenite-martensite transformations caused by changes in external conditions such
as load and temperature [1–4]. There are differences between thermal and stress-induced martensite
transformations that affect the magnitude of the transformation strain [5,6].

TiNi-based wire is widely used in the manufacture of both temporary and long-functioning
surgical implants because of bio-inertness and ability to undergo viscoelastic deformation with tissues,
surviving millions of deformation cycles without failure [7,8]. In order to increase the survival rate of
TiNi implants, an additional antibacterial effect is required. This effect can be achieved with silver
doping [9,10]. At the same time, it is important to obtain a technological alloy that can be used to
produce implants with high functional properties including fully reversible deformation, high strength,
and ductility.

Nowadays, doping and coating of coarse-grained TiNi alloys with Ag with a concentration of 0.5
to 9 at.% without subsequent thermomechanical treatments is a common practice worldwide [11–15].
In terms of using TiNi–Ag materials in the medical industry, alloying TiNi with Ag provides the
alloy with new attributes suitable for biomedical applications, improving its cytocompatibility and
antibacterial capacity [11], while increasing yield and tensile strengths [16,17]. TiNi composite surface
films doped with silver (4–10 at.%) enhance mechanical strength, biocompatibility, and corrosion
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resistance to implants [18–20]. However, as the silver concentration exceeds 5 at.%, the antibacterial
properties of the alloy deteriorate. Therefore, doping with lower silver concentration is of particular
interest. The shape memory effects of Ag-doped TiNi were studied at a concentration of 1.4 at.%
silver [12], and martensite transformations as well as microhardness were mainly considered in the
range of 0.6–1.9 at.% Ag [21–24]. However, the issue of how lower silver content (< 0.5 at.%) could affect
the functional characteristics and deformability of TiNi–Ag wires has not yet been studied thoroughly.

The above-mentioned overview of the effect of high silver doping on the structure and
properties of TiNi indicates the relevance of this issue for biomedical applications. During implant
manufacturing, alloys are subjected to numerous thermo-deformation effects, so deformation properties
are of high importance. At the first stage, the structure, shape memory, as well as mechanical
and biocompatibility properties of TiNi-based alloys with 0–1.5 at.% Ag were studied before
thermo-mechanical treatments [25,26]. Interpretation of the resulting dependencies between phase
composition, microstructure, functional and mechanical properties served as the scientific basis for
creating new implants from TiNi wires with enhanced performance.

This study is the second stage of research aimed at creating biocompatible TiNi alloys with
high functional properties and an additional antibacterial effect. The purpose of the current study
is to determine the range of silver content for the production of TiNi–Ag wires obtained by intense
plastic deformation and to study their structure, phase composition, shape memory effect and
mechanical properties.

2. Materials and Methods

TiNi–Ag alloys were melted in an induction furnace according to the following doping scheme:
Ti50Ni50−XAg (X = 0, 0.1, 0.2, 0.5, 1, and 1.5 at.%). The combined method of intensive plastic deformation,
consisting of multiple processes of cold rolling and intermediate annealing (T = 400–450 ◦C), was used
to produce wire with a diameter of 1 mm. Three main production stages were used: i) rolling of ingots
(8 cycles) up to a bar 80 mm thick; ii) rotary-forging of round bars up to a 3.5 mm wire (7 cycles); iii) hot
wire drawing up to 1 mm (25 cycles). The following requirements of cold deformation processes were
fulfilled: low degree of compression per cycle, and intermediate annealing to reduce work-hardening
effects and increase metal ductility. Intermediate annealing temperatures were selected in such a way
that the recrystallization of grains occurred, but there was no increase in grain size.

Ingots with a high Ag content (0.5–1.5 at.%) cracked under minimum compression using a rolling
mill (Figure 1).
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Figure 1. Rolling and drawing of TiNi–Ag with different silver content.

The phase composition and structural parameters of the phases were studied using a Shimadzu
XRD-6000 diffractometer (Kyoto, Japan) with CuKα radiation. The diffraction patterns were indicated
by means of the PowderCell 2.4 full-profile analysis program and compared with the PDF 4+ database.
A survey of the side surface of wires in the direct scan geometry θ/2θ did not give the expected results.
The X-ray profiles exhibited only reflections of titanium oxides, carbides, and nitrides because of
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a screening effect of the surface oxide layer on the matrix. Therefore, a special method of sample
preparation was developed for the examination of the matrix of 1 mm thick wire. In order to obtain a
flat surface, 20 wire segments were connected with a thin TiNi thread into a dense “bundle” and filled
with epoxy resin at the base. After that, the end surface of the “bundle” was mirror polished. The shape
memory effect parameters were studied in tension at a constant load of 2 kg. Transmission electron
microscopy (TEM) imaging of thin foils were performed using a JEM-2100 transmission electron
microscope (JEOL, Tokyo, Japan) at an accelerated voltage of 200 kV. The mechanical properties were
studied using an Instron testing machine under tensile strain conditions.

3. Results and Discussion

Ingots with a high Ag content (0.5–1.5 at.%) cracked under minimum compression, as depicted
in Figure 1. The deformation process is significantly affected by the grain/grain boundary interface
interaction, since grain boundaries have a chemical composition and characteristics that differ from
those of the grains themselves [27,28]. The grain boundaries have a significant impact on the
deformation conditions, since their chemical composition and properties differ from those of the grains.
There are zones at the grain boundaries that prevent deformation. The movement of atoms in the grain
boundaries required for intergranular deformation is complicated by the presence of insoluble Ag
phases. Silver phases in TiNi alloys with an Ag concentration of more than 0.5. at.% were formed as a
result of their limited solubility in TiNi [29]. The liquation of excess silver along the grain boundaries
in the alloys broke cohesion bonds between TiNi grains. Thus, the presence of phases along the grain
boundaries changes the deformation mechanism; as deformation is developing, cavities arise in the
form of microcracks and micropores, which lead to cracks nucleating at specific points and propagating
across the material.

XRD analysis showed that TiNi wires with different silver concentrations at room temperature are
characterized by a multiphase structural state (Figure 2). The purity of the silver used as a dopant was
99.9%, as confirmed by a certificate. However, as is evident from the presented XRD patterns, no traces
of Ag-related phases were revealed. The findings on elemental mapping reported in our previous
work have also proved no aggregate of metallic Ag0 or oxides AgxOy [25]. The main structural
component of the wires is intermetallic TiNi in B2 and R modifications. This is confirmed by the
angular distribution and high intensity of the main reflections of these phases. In the angular interval,
2θ = 42–43◦, a pronounced splitting of the main reflection of the B2 phase with a partial overlap of
{110}B2 and {303}R peaks was found (inset in Figure 2a). These results correlate with the electrical
resistivity ρ(T) data in the same series of samples [25].

The sizes of the coherent scattering regions (CSR) of the B2 phase in the studied wires do not
exceed 30 nm, which indicates a fine-crystalline structural state after multiple mechanical and thermal
effects (Figure 2d). Qualitative XRD analysis revealed the presence of structural reflections from TiNi
phases with a stoichiometry of Ti2Ni, Ti3Ni4, and TiNi3 with a total volume fraction not exceeding
15 vol.%, which were distributed differently depending on the composition. The occurrence of Ni-rich
phases is stemmed from the segregation of Ti to the alloy surface during drawing, with subsequent
formation of an oxide layer through intermediate annealing [30,31]. No phases with Ag were detected
in the XRD diffraction pattern of wire samples. A small amount of silver is not sufficient for the
formation of individual intermetallic compounds; therefore, the silver completely dissolves in the
matrix replacing titanium in its sublattice, as indicated by a decrease in the lattice parameter (Figure 2e).

Silver dissolves in the TiNiB2 phase to a limited extent, up to 0.26 at.% [11,12]. The addition of
0.1 at.% Ag causes the occurrence of reflections of the B19’ phase. An increase in silver content in
combination with intense plastic deformation leads to an increase in the preferential orientation of the
crystal lattice of B2-phase grains in the {200} direction from 17 to 35%.

An increase in the concentration of Ag in TiNi solid solution decreases the B2 lattice parameter,
thereby changing interatomic interaction forces and increasing internal elastic stresses ∆d/d from
1.2 × 10−3 to 12.45 × 10−3 (Figure 2f), provoking a B2→R→B19′ phase transformation. The volume
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fraction of the peritectic Ti2Ni phase decreases from 7 to 4 vol.%, and the amount of the metastable
phase Ti3Ni4 increases from 5 to 8 vol.%.
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Qualitative XRD analysis of the diffraction pattern of the wire with 0.2 at.% Ag showed a high
content of B19’ martensite and Ni-rich fine phase Ti3Ni4, and structural lines from the secondary Ti2Ni
and Ti3Ni4 phases that were less intense than those of the wire with 0.1 at.% Ag. Assessment of the
volume fractions of phases showed that when the silver concentration increases, the volume fraction of
B2 austenite and secondary phase Ti2Ni decreases, while that of Ti3Ni4+TiNi3 increases (Figure 2g).

The average grain size and microstructural features evident from Figure 3 indicate that in alloys
with different silver contents, the intense plastic deformation formed various internal structures where
the average grain size changed nonlinearly. The small addition of Ag has an ambiguous effect on
the processes of relaxation of internal stresses and dynamic recrystallization, variously inhibiting
or inducing them. Figure 3 shows that the grain size and the number of deformation defects at the
boundaries and in the grain volumes are different, and phases of different sizes are formed.

The TiNi wire without Ag is characterized by a fully crystalline ultrafine-grained structure with
high dislocation density and an average size of recrystallized grains of 500 ± 50 nm (Figures 3 and 4).
In Figure 4a–c inhomogeneous contrast of the extinction contour in the subgrains indicates the presence
of a substructure in which the curvature of the crystal lattice, level of stresses, and density of dislocations
is high. The lamella TEM image with the corresponding electron diffraction patterns (EDP) enabled
to identify of the TiNiB2 matrix, white elongated Ti2Ni inclusions 50–150 nm in size along the grain
boundaries, and fine Ni-rich Ti3Ni4 precipitates 20–60 nm in size in individual areas of the matrix.
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concentrations: 0 at.% (a), 0.1 at.% (b), 0.2 at.% (c); concentration dependence of the average grain
size (d); TEM image of the parent and Ti2Ni phase, Ti3Ni4, Ti2Ni3 precipitations with corresponding
electron diffraction patterns (EDP) presenting in the studied wires (e–g).

In the TiNi wire with 0.1 at.% Ag, a more homogeneous nanocrystalline structure was formed
without dislocation defects and with an average grain size of 100 ± 50 nm. No dislocation defects
were detected in the grains because the small grain sizes prevent the development of dislocation slip.
There are areas with inhomogeneous contrast of displacement bands types because of intergranular
stresses near the boundaries, caused by the grain orientation difference on the boundary (Figure 4d).
EDP identification from different areas of the matrix showed the presence of parent B2, martensite R
and B19’ phases, Ti2Ni phase with sizes of 10–50 nm, and Ti3Ni4 and Ti2Ni3 phases (10–30 nm). Finely
dispersed Ti3Ni4 precipitates are uniformly dispersed throughout the volume (Figure 4e). The total
number of Ti2Ni particles along with the TiNi grain boundaries was half of the precursor TiNi wire,
which is in good agreement with the XRD data.

In the TiNi wire doped with 0.2 at.% Ag, an ultrafine-grained structure with dislocation defects
similar to that of the TiNi wire (Figure 4f–h) and average grain size of 250–300 nm (Figure 3c) was
observed. Identification of diffraction patterns from individual wire areas confirms the presence of
the parent B2 and R phases, and secondary Ti2Ni and Ti3Ni4 ones. No diffraction reflections from
martensite B19’ were found in the investigated lamella, although the volume fraction of this phase
in the XRD spectrum attained 18 vol.%. Figure 3e–g indicates the EDP for typical B2, Ti2Ni, Ti2Ni3,
and Ti3Ni4 phases persist in the wires studied.

The formation of ultrafine-grained and nanocrystalline structures is a result of thermomechanical
treatment by rolling and drawing with intermediate annealing [7,32] during which a number of excess
equilibrium TiNi3 and metastable Ti2Ni3 and Ti3Ni4 phases are precipitated [33–35]. The structures
formed have a positive effect on the resistance of the material to plastic deformation.
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The functional properties significantly depend on the microstructural features, including grain
size, defects, precipitated secondary phases, and internal stress, which form during intense plastic
deformation in the process of obtaining TiNi–Ag wire.

Figure 5 shows the features of the shape memory effect (SME) for all wire samples; and the
measured SME parameters are given in Table 1. In the cooling-heating cycle under a constant tensile
load, all wires are characterized by high reversible deformation values. However, in the wire with
0.2 at.% Ag, the defect structure of the B2 phase has suppressed the martensite transformation due to
an increase in the Ag concentration in the TiNi solid solution and the presence of a high density of
dislocations as a result of intense plastic deformation.

The onset temperature of direct martensite transformation (MT) insignificantly depends on
the silver concentration and remains stable at 38 ± 2 ◦C. This means that the crystal lattice of the
B2 phase is stable to martensite transformations at the macro level under load despite a change in
silver concentration. It is known that doping of TiNi alloys with a third element leads to a sharp
decrease in the MT temperature or complete suppression, especially under conditions of intense plastic
deformation. However, noble elements (palladium, platinum etc.) at low concentrations form solid
solutions based on the B2 structure and have contrary effects on the stability of B2 austenite [36],
as in our case with silver [17]. The thermal hysteresis ∆T, which characterizes the amount of energy
dissipation during the phase transformation, increases from 55 to 68 ◦C with a silver concentration
increase in the 0–0.2 at.% range.

The main contribution to the width of thermal hysteresis is made by incoherent particles of the
Ni-rich secondary phases, in which energy dissipation occurs during the movement of martensite
boundaries in shape recovery.
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In wires with 0.1 and 0.2 at.% Ag, during MT under loading with decreasing temperature, leads to
the formation of dislocation defects during the movement of the austenite-martensite (A→M) interfaces.
Then, upon heating during reverse MT, these defects impede the movement of the M→A interface.
This phenomenon leads to a broadening of the temperature range of the reverse MT under load, as also
reported in [37,38].

The characteristic temperatures M’f, A’s, and A’f decreased, as residual strain occurs in TiNi wires
with 0.2 at.% Ag. The residual strain is caused both by the accumulation of the plastic strain component
and by defects that arise during intense plastic deformation. The plastic strain component is the main
mechanism for the dissipation of elastic energy. These phenomena significantly affect the movement
of interfaces and lead to irreversible effects. The residual strain appears because of the irreversible
plastic deformation caused by the high content of finely dispersed Ti3Ni4 precipitates, which do not
undergo martensite transformations. The slope of the thermal hysteresis loop is related to the high
heterogeneity of the structure and the density of defects in the initial TiNi wire and in the TiNi wire
with 0.2 at.% Ag, and is in good agreement with TEM studies.
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Table 1. Comparative shape memory effect (SME) parameters in TiNi and TiNi–Ag wires.

M’s, ◦C M’f, ◦C A’s, ◦C A’f, ◦C ∆T, deg εrev, % εres, %

TiNi −36 −164 −22 25 55 6.2 0
TiNi49.9–Ag0.1 −40 −145 −14 13 60 6.5 0
TiNi49.8–Ag0.2 −38 −108 −27 27 68 4.7 0.2

Figure 6 shows the mechanical behavior of the wires during tensile tests. Tensile tests performed
at room temperature show that B2→R→B19′ martensite transformation caused by deformation occurs
in all wires, as evidenced by the phase yield region ∆εy. The linear section depicted on the σ-ε curves
corresponds to the strain accumulation of the B2 phase. The presence of a stress plateau indicates
the development of the stress-induced B2→R→B19′ martensite transformation and an increase in the
volume fraction of the B19′ phase [39]. A comparative analysis of stress–strain diagrams demonstrates
the effect of silver content on the length of the phase yield section ∆εy, tensile strength σв, and maximum
strain before fracture εв (Table 2). The maximum values of the ∆εy, σв, and εв in the stress–strain
curves belong to the TiNi wire doped with 0.1 at.% Ag.
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Table 2. Mechanical properties of the TiNi–Ag wires.

σy, MPa σв, MPa ∆εy, % εв, %

TiNi 350 ± 20 1370 ± 20 7 ± 0.5 32 ± 0.5
TiNi49.9–Ag0.1 435 ± 20 1450 ± 20 10 ± 0.5 34 ± 0.5
TiNi49.8–Ag0.2 400 ± 20 1330 ± 20 8 ± 0.5 31 ± 0.5

The homogeneous nanocrystalline dislocation-free structure with a significant volume fraction
of finely dispersed reinforcing Ti3Ni4 precipitates is the rationale for the high strength and ductility
of the TiNi wire doped with 0.1 at.% Ag. In addition, with increased density of grain boundaries,
the uniformity of plastic strain in the material volume increases, and the internal stress level decreases.
The lower mechanical properties of other wires are associated with a high density of dislocations,
which are stress concentrators and can cause destruction [38,39]. The presence of a large volume fraction
of incoherent Ti2Ni particles in the TiNi wire and their interaction with the dislocation substructure
also lead to a strong stress concentration and make the wires less durable.

4. Conclusions

Ultimately, the concentration range for Ag microalloying was found for TiNi wires (0–0.2 at.%)
obtained by intense plastic deformation. The combined method of intense plastic deformation,
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consisting of multiple processes of cold rolling and intermediate annealing (T = 300–450 ◦C), was used
to produce wire with a diameter of 1 mm. The optimal balance between strength, ductility, and shape
memory parameters was achieved at a silver concentration of 0.1 at.%. The mechano-thermal treatment
promotes the formation of a submicrocrystalline structure and recrystallization of the finely dispersed
phases TiNi3, Ti2Ni3 and Ti3Ni4, and reduces the size of Ti2Ni particles. In the wires, the minimum
silver concentration (0.1 at.% Ag) provides full recovery of the shape (εres = 0%), the greatest reversible
strain (εrev = 6.5%), and optimal strength (σв = 1450 MPa) and ductility (εв = 34.4%) properties. This is
achieved by virtue of the dislocation-free homogeneous nanocrystalline structure with an average
grain size of 100 ± 50 nm and a high concentration of Ti3Ni4 dispersion-strengthening precipitates
in the TiNi(Ag) matrix. TiNi wire 1 mm in diameter and doped with 0.1 at.% silver may be a
suitable alternative to implants of known titanium alloys for use as actively functioning implants in
biomedical applications.
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