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Abstract

The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell
division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In
monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically
distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite
DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the
centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative
fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes
exhibit remarkably long primary constrictions that contain 3–5 explicit CenH3-containing regions, a novelty in centromere
organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains
varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost
entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of
centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres
of Pisum as novel ‘‘meta-polycentric’’ functional domains. Our results demonstrate that the organization and DNA
composition of functional centromere domains can be far more complex than previously thought, do not require single
repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings,
we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of
repetitive DNA in centromere evolution, determination, and function.
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Introduction

Centromeres are chromosome domains that are essential for

faithful chromosome segregation during cell division. It is

maintained that stable chromosomes can be either monocentric,

possessing centromere activity within a cytologically distinguish-

able primary constriction, or polycentric (holocentric), lacking a

primary constriction and exhibiting centromere activity over

nearly the entire chromosome length. It is assumed that

polycentric chromosomes have arisen multiple times during

evolution because they are present in independent eukaryotic

lineages. However, the mechanism of transition from monocentric

to polycentric chromosomes is not yet known, nor has any

intermediate between the two types been documented.

A functional centromere domain is currently defined as a

chromosomal region upon which a kinetochore assembles and to

which microtubules of the mitotic spindle are attached [1]. One of

the fundamental inner kinetochore proteins is a centromere-

specific histone H3 variant, referred to as CenH3 (CenpA in

animals, CID in Drosophila melanogaster, Cse4 in Sacharomyces cerevisiae

or HCP3 in Caenorhabditis elegans) [2]. Contrary to canonical

histone H3, which is extremely conserved in all eukaryotes,

CenH3 shows considerable variability between species [2]. Since it

is present in the functional centromere of all eukaryotes studied so

far, it has become a universal marker of centromeric chromatin. It

has been shown that functional centromere domains of monocen-

tric chromosomes are composed of small intermingling subunits,

10 to 50 Kbp in length, containing nucleosomes with either

CenH3 or canonical H3 histones [3,4]. During chromosome

condensation, it is postulated that the CenH3-containing subunits

accumulate toward the poleward face of the centromere and are

the foundation for a single compact kinetochore complex [4–6].

While the CenH3-containing chromatin forms a single domain

localized within primary constriction of the monocentric chromo-

somes, it is distributed as contiguous loci in a linear axis over

nearly the entire length of the polycentric ones [7–9].

In our previous work we found that chromosomes of the pea

(Pisum sativum) exhibit unusually long primary constrictions

containing multiple clusters of distinct families of satellite DNA

[10]. This contrasts with most species investigated so far, that

exhibit short primary constrictions and often a single family of

satellite DNA that is common to all centromeres of a given

PLoS Genetics | www.plosgenetics.org 1 June 2012 | Volume 8 | Issue 6 | e1002777



karyotype. Although the role of satellite DNA for centromere

function is not yet fully understood, the centromere domains tend

to be established upon its arrays [11]. In order to uncover how the

size and DNA sequence composition of primary constrictions are

related to the organization of the functional centromere domains

in pea chromosomes, we employed molecular and cytological

techniques combined with next-generation sequencing of genomic

and ChIP-enriched DNA followed by bioinformatics analysis. We

demonstrate that the elongated constrictions in pea chromosomes

exhibit 3–5 explicit CenH3-containing regions, a centromeric

novelty. We introduce this as a meta-polycentric organization,

representing the first example of an intermediate between

monocentric and polycentric centromeres. We show that these

domains are tightly associated with clusters of 13 distinct families

of satellite DNA, indicating an important role of satellite DNA in

centromere function and evolution.

Results/Discussion

Although CenH3 is, with few known exceptions [12–15],

encoded by a single gene in diploid species [16], in the pea genome

we identified two divergent copies, designated as CenH3-1 and

CenH3-2 (GenBank accession numbers JF739989 and JF739990),

sharing only 55% identity. CenH3-1 and CenH3-2 proteins differ

both in length and sequence, being composed of 123 and 119

amino acid residues, respectively, and having 72% identity

(Figure 1A). Transformation experiments using pea hairy-root

tissue cultures expressing constructs containing cDNA fragment

coding either of the CenH3 variants fused with yellow fluorescence

protein (YFP) gene demonstrated that, despite the sequence

differences, both CenH3 variants target all 14 centromeres in

diploid nuclei (Figure 1B–1C). Immunodetection experiments

further showed that both CenH3 variants completely co-localized

in interphase and mitotic chromosomes (Figure 1E–1M). In sharp

contrast to other investigated species, including Vicia faba [17,18]

which is a close relative of the pea, we found that primary

constrictions of all pea chromosomes contain not a single but

multiple functional centromere domains (Figure 2). These domains

were best distinguished in prophase and prometaphase chromo-

somes exhibiting three to five domains that are clearly separated

by chromatin blocks lacking CenH3. With increasing condensa-

tion in late metaphase and anaphase, the domains came very close

to one another or merged into a single extended layer at the

poleward face of the primary constriction. However, even in fully

condensed chromosomes, the CenH3 within the layer was not

evenly distributed, showing intermingling fluorescent signal spots

of varying intensity in a row, resembling a string of beads

(Figure 2F–2G). The chromosome segments delimited by the two

most distant domains were roughly estimated to represent 9.5–

18.8% of individual chromosomal DNA which corresponds to 69–

107 Mbp (Table S1). To verify that all CenH3-containing

domains are indeed sites of kinetochore formation, we carried

out the simultaneous immunodetection of CenH3 and tubulin, a

protein of the mitotic spindle which is also localized to the

kinetochore [19]. Tubulin signals detected in the kinetochore

colocalized with those of CenH3, indicating that all CenH3-

containing regions are truly functional centromere domains

(Figure 2H and Figure 3).

We selected chromosome 3 for the investigation of the

centromere structure and the CenH3 distribution with higher

resolution using correlative light fluorescence microscopy (LFM)

and field emission scanning electron microscopy (FESEM). In this

approach, CenH3-containing regions were detected with Fluor-

oNanogold, allowing for the investigation of the same chromo-

somes with both techniques (Figure 4A–4C). Three distinct and

strongly labeled regions, located on either side of the longitudinal

chromosome axis, were detected using both LFM and FESEM

imaging (Figure 4A–4B). Secondary electron (SE) imaging of the

primary constriction revealed longitudinally oriented fibrillar

structures interspersed with chromomeres in the range of about

200 nm in diameter (Figure 4C). Backscattered electron (BSE)

detection of CenH3 markers showed that labeled regions are

composed of discrete multiple signals (Ø 10–15 nm) from markers

near the surface, as well as diffuse regions from markers in the

interior of the centromere (Figure 4B). Subsequent investigation

with a dual beam focused ion beam (FIB) and FESEM system

allowed direct visualization of CenH3 markers in the centromere

interior (Video S1). Measured by 5 nm milling steps, markers

occurred between 10 nm and approx. 200 nm from both

poleward centromere surfaces (Figure S1). High resolution 3-D

reconstruction of the CenH3 distribution revealed that very few of

the CenH3 signals actually occur at the chromosome surface

(Video S2), indicative of other kinetochore factors at the

chromatin-microtubule interface.

In order to uncover DNA sequence composition of the

functional centromere domains, we carried out chromatin

immunoprecipitation sequencing (ChIP-seq) which produced

approximately 9.5 and 19.7 million 35 nt long reads for ChIP

and its input control sample, respectively. As the whole pea

genome sequence is not yet available, we employed as a reference

sequences that were obtained by paired-end Illumina sequencing

of the pea nuclear DNA at 0.486 coverage (20.5 million reads,

100 nt in length; all deep sequencing data related to this study

have been deposited into the Sequence Read Archive under the

study accession number ERA079142 (http://www.ebi.ac.uk/ena/

data/view/ERA079142)). Sequences associated with CenH3 were

identified based on the ratio between ChIP and input sequences

mapped either to sequence clusters representing the most

abundant repeats of the pea genome or to each reference read

(Figure S2). The latter approach revealed a total of 354 717

reference reads (1.73%) showing at least 10-fold enrichment which

were grouped into sequence clusters based on their mutual

similarity, as described previously [20]. Further analysis of the

clustered sequence data revealed that a vast majority (99%) of the

ChIP-enriched sequences belongs to 13 distinct families of satellite

DNA (Table 1) and one family of Ty3/gypsy retrotransposon

belonging to the CRM clade of chromoviruses [21]. This data

suggests that functional centromere domains are established

Author Summary

During cell division, DNA packed in chromosomes must be
perfectly distributed between daughter cells. Centromeres
play a crucial role in this process. Current centromere
biology maintains that stable chromosomes can be either
monocentric, with one functional domain located at a
single position, or polycentric, with multiple domains
located along the entire chromosome. We found that pea
chromosomes are different, exhibiting very large single
centromeres containing multiple functional domains, thus
representing a novel intermediate type of centromere. We
demonstrate that all of the functional centromere domains
in the pea are tightly associated with clusters of distinct
satellite DNA families, indicating their role in centromere
evolution. Our results support the idea that the tandem
organization of repeating units, but not their primary
sequences, is an important co-determinant of functional
centromere domains.

Centromere Organization in the Pea

PLoS Genetics | www.plosgenetics.org 2 June 2012 | Volume 8 | Issue 6 | e1002777



Centromere Organization in the Pea

PLoS Genetics | www.plosgenetics.org 3 June 2012 | Volume 8 | Issue 6 | e1002777



almost exclusively upon repetitive DNA sequences. These repeats

differed considerably from one another, not only in their primary

sequences but also in the size of repeating units and abundance in

genome (Table 1, Figure 5 and Dataset S1). The association of all

these repeats with functional centromere domains was confirmed

using fluorescence in situ hybridization (FISH) combined with

immunodetection of CenH3-1 (Figure 4D–4F and Figure 6) which

allowed the assignment of each CenH3-containing domain to

some of the identified satellites. These experiments also showed

that only the repeats with a high ChIP/input ratio are specific to

functional centromere domains, while those with lower ChIP/

input ratio (e.g. PisTR-B and TR-12) are localized predominantly

outside of these domains (Table 1, Figure 6 and data not shown).

In addition to the ChIP-enriched satellites, we included in these

Figure 1. Pea has two variants of the CenH3 that fully colocalize in centromeres of all chromosomes. A: Alignment of protein sequences
of the pea CenH3 histones. Red line above the alignment marks a putative centromere targeting domain (CATD). Dotted lines above and below the
alignment show the peptide sequences which were used as antigens to produce antibody to CenH3-1 and CenH3-2, respectively. Secondary
structure of the histone fold domain is depicted below the alignment. B–C: Direct visualization of fusion proteins of CenH3-1 or CenH3-2 with YFP
revealed 14 foci in the interphase nucleus, corresponding to the number of chromosomes in diploid cells. D: Fusion protein of canonical H3 with YFP
is localized in whole nucleus. ELISA assays of the two CenH3 antibodies revealed low level of cross-reaction of the CenH3-1 antibody to the peptide
designed from the CenH3-2 (data not shown). As we could not determine if the cross-reactivity was sufficient to produce signal after detection in situ,
the colocalization experiments were performed using highly-specific antibodies to YFP and CenH3-2 in hairy root lines expressing CenH3-1_YFP. E–J:
Detection of CenH3-1_YFP (red) and CenH3-2 (green) revealed full colocalization of the two proteins both in interphase nucleus (E–G) and metaphase
chromosomes (H–J). K–M: Fully overlapping signals were observed also using simultaneous detection of CenH3 proteins with antibodies to CenH3-1
(red) and CenH3-2 (green) as shown on the example of chromosome 3 possessing three distinct domains containing CenH3. This indicates that either
of the two antibodies was capable of detecting all functional centromere domains and that the gaps between individual domains lack CenH3 of any
type. Bar = 5 mm.
doi:10.1371/journal.pgen.1002777.g001

Figure 2. Organization of CenH3-containing domains during the cell cycle. A: Number of CenH3-containing domains in interphase nucleus
corresponds to the number of chromosomes in diploid cells (2n = 14). B–D: Mitotic chromosomes at the early prophase (B), prophase (C) and
prometaphase (D) show multiple domains containing the CenH3 which are clearly separated with chromatin segments lacking the CenH3. E–G: The
separation of CenH3-containing domains becomes less apparent with the progress of chromatin condensation: metaphase (E), spread of single-
chromatid anaphase chromosomes (F), anaphase (G). However, the multiple domain structure can be observed in some cases even in the highly
condensed anaphase chromosomes (detail windows in F and G). H: Simultaneous detection of CenH3-1 (green) and tubulin (blue) revealed that
microtubules are attached to all CenH3 containing domains as shown for chromosome 3. All chromosomes were counterstained with DAPI
(pseudocolored in red). Bar = 5 mm.
doi:10.1371/journal.pgen.1002777.g002

Centromere Organization in the Pea

PLoS Genetics | www.plosgenetics.org 4 June 2012 | Volume 8 | Issue 6 | e1002777



experiments three families of satellite DNA (TR-2, 4, and 5) that

are known to occupy primary constrictions but showing no ChIP

enrichment (ChIP/input,1.1), which indeed localized outside of

CenH3-containing regions (Figure 6D–6E and 6M–6N). Contrary

to most other species that possess a relatively high level of sequence

homogenization among all centromeres [22] DNA sequence

composition of the centromere domains in the pea varied between

chromosomes as well as between individual domains of the same

chromosome. The only exception was chromosome 2 that

contains a single centromeric satellite family (TR-11, Figure 6F).

It has already been shown that functional centromere domains

of monocentric chromosomes are composed of intermingling

subunits, 10 to 50 Kbp in length, containing nucleosomes with

either CenH3 or canonical H3 histones [3,4]. Although it is not yet

well understood how the centromeric chromatin folds during

chromosome condensation in mitosis, all current models postulate

that CenH3-containing subunits are brought together toward the

poleward face of the centromere to form a single compact

kinetochore [4–6]. As the size of the subunits is relatively small,

they can be observed only at the finest resolution of chromatin

fiber but not at the level of condensed mitotic chromosomes. Thus,

none of the current models allow for large intermingling domains

at the poleward side of mitotic chromosomes, as are observed in

the pea. On the other hand, the high resolution 3-D distribution of

CenH3 in individual centromere domains (Video S2) resembles

that postulated for single centromere domains of previously

investigated centromeres [6].

From a molecular point of view, therefore, the pea chromo-

somes have multiple centromere domains, yet they have only one

primary constriction at metaphase. Chromosomes with two or

more functional centromeres are usually unstable due to the

formation of anaphase bridges leading to chromosome breakage.

One exception is when the two centromeres are physically so close

that they are able to fuse into a single centromere without

disturbing mitosis [23]. The maximum distance between two

centromeres that still allows faithful segregation of dicentric

chromosomes was estimated to be about 20 Mbp [24]. Taking

into account the size of the chromosome segments delimited by the

two outermost functional centromere domains (Table S1) and the

total number of these domains in individual chromosomes, the

distance between any two domains is likely to be either below this

limit or not exceed it considerably. This probably allows the

multiple domains to act in concert, assuring that pea chromosomes

are stable during mitosis, behaving as functional monocentrics.

The high diversity of DNA sequence composition of functional

centromere domains observed in the pea is unprecedented, but it

concurs with the notion that centromeres are determined rather

epigenetically (for review see [25]). On the other hand, similarly to

most other species investigated thus far [11], all of the centromere

domains in the pea are made up of satellite DNA, indicating that

the tandem organization of repeating units co-determines centro-

mere domains. This converges with the recently proposed role of

repetitive DNA in centromere function relying on a formation of

covalently closed DNA loops made by inter-repeat homologous

Figure 3. The CenH3-containing domains are fully colocalized with tubulin. A: Immunodetection of tubulin and CenH3-1 on two isolated
metaphase chromosomes 3. Although isolated chromosomes never remained attached to microtubules they rarely exhibited weak tubulin signals
which fully colocalized with CenH3-1. B–C: Detection of tubulin and CenH3-1 on chromosomes prepared using squash technique. The squash
technique allowed some chromosomes to remain attached to microtubules. Whenever present, the remnants of mitotic spindle attached to
chromosomes at all CenH3-containing domains on both metaphase (B) and anaphase (C) chromosomes. Bar = 5 mm.
doi:10.1371/journal.pgen.1002777.g003
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recombination [26]. However, the tandem arrangement of the

repeating units is clearly not the only precondition for a DNA

sequence to function as a centromere because some clusters of

satellite DNA located within the primary constrictions are not

associated with CenH3.

The structure of large pea centromeres is reminiscent of

holocentric, also called polycentric, chromosomes that exhibit

numerous discrete centromere domains extending over nearly the

entire length of the chromosome [7]. As with the pea, the

centromere domains congregate during mitosis to form a

composite, linear-like kinetochore [7,9,27]. The sizes of segments

of pea chromosomes delimited by the outermost functional

centromere domains (Table S1) approach or even exceed the size

of entire polycentric chromosomes of some species, including C.

elegans (14–21 Mbp) and Luzula nivea (155 Mbp on average)

[28,29]. A portion of centromere domains in Luzula nivea is

composed of scattered clusters of satellite LCS1 [30], suggesting

that satellite DNA is an important centromere determinant in at

least some holocentric chromosomes. Remarkably, the LCS1

satellite has a similarity to the RCS2 (CentO) which is the major

centromeric satellite of monocentric chromosomes of some Oryza

species [31].

Although the mechanism of transition from monocentric

chromosomes to polycentric ones is not yet known and may differ

between organisms, a conceivable scenario for Luzula nivea could

be that it occurred as a consequence of spreading of centromere-

competent satellite(s). If this is the case, then pea chromosomes

with multiple distinct clusters of CenH3-associated satellites might

represent an intermediate ‘‘meta-polycentric’’ type between

monocentric and polycentric chromosomes. However, it has been

postulated that centromere expansion causes deleterious effects

which in turn create pressure for its suppression, possibly by

changes in key factors such as CenH3 or Cenp-C [32]. This

explains why the centromere expansion is not an infinite process

and why the size of centromeres of most eukaryotic species

remains limited to relatively small chromosome domains. There-

fore, we assume that pea centromeres are more likely to be or to

have already been suppressed in their expansion rather than

continue their spreading further into noncentromeric regions. It is

tempting to speculate that the presence of two CenH3 genes in the

pea is somehow related to the unusual centromere structure.

However, it is impossible to conclude from the available data

whether the ancient duplication of CenH3 genes and their

diversification occurred before or after the centromere expansion.

Further research is necessary to fully understand the cause and

effects of these unusual features of pea centromeres. Establishing

the pea as a new model organism for centromere investigation will

contribute to a better understanding of centromere chromatin

organization and dynamics during the cell cycle as well as the still

elusive role of repetitive DNA in centromere evolution, determi-

nation and function.

Materials and Methods

Plant material
All experiments were performed using pea (Pisum sativum)

cultivar Carrera. Seeds were obtained from Osiva Boršov (Boršov

nad Vltavou, Czech Republic).

Figure 4. Organization and DNA sequence composition of CenH3-containing domains in chromosome 3. A–B: Primary constriction of
chromosome 3 contains three functional centromere domains as defined by the presence of CenH3-1. Correlative fluorescence and scanning electron
microscopy images of the same chromosome using FluoroNanogold showed that the three domains recognized with fluorescence (A, red signals) are
composed of multiple foci from markers (bright spots) near the surface of the primary constriction (B, backscattered electron micrograph). C:
Secondary electron micrograph image of the same chromosome. The primary constriction exhibits few chromomeres and a typical longitudinal
orientation of fibrillar substructures, to which the CenH3 domains roughly correspond. The arrows mark the CenH3-1 containing regions. D–F:
Detection of three different families of satellite DNA by FISH (green) combined with immunodection of CenH3-1 (red). Each of the functional
centromere domains is composed of different family of satellite DNA; the domain closest to the long arm is composed of PisTR-B (D), the middle one
of TR-1 (E) and the one closest to the short arm of TR-18 (F). Chromosomes were counterstained with DAPI (blue). Bar = 2 mm (A and D–F) or 0.2 mm
(B–C).
doi:10.1371/journal.pgen.1002777.g004
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Identification and cloning CenH3 genes in the pea
Search for CenH3 gene was done using sequence data obtained

from next-generation sequencing of the pea transcriptomes of roots,

leaves and flowers (about 72.2 million 50 nt long reads generated by

SOLiD sequencing, unpublished data) and the pea genome at the

depth corresponding to 0.486coverage (about 20.5 million 100 nt

long reads generated by Illumina sequencing). It revealed two

different variants of CenH3 genes, designated as CenH3-1 and

CenH3-2. Long fragments of the CenH3 genes were amplified using

PCR. CenH3-1 was amplified with primers PN_ID317 (AAA AGC

GAA ATT GAA AAT CAA AAT CTG) and PN_ID320 (GAC

TCA TTT TAA ATT CTC ATT CTC ATT CTC ATT) while the

CenH3-2 was amplified with primers PN_ID321 (AGT CGC TCT

CTG TGT ACA CAA ACT TAA AG) and PN_ID324 (GTT CCA

AGA ATT TTA CTT TCC AGA TAG ATA CTT A). Each 30 ml

PCR contained 16 PCR buffer, 0.2 mM dNTP, 0.3 mM of each

primer, 2% (w/v) DMSO, 0.3 U LA DNA polymerase (Top-Bio,

Prague, Czech Republic) and 150 ng pea genomic DNA. The

reaction profile consisted of a denaturation step (94uC/60 s)

followed by 35 cycles of 94uC/15 s, 61uC/30 s and 68uC/3 min.

Amplified fragments were cloned into the pCR4-TOPO plasmid

vector (Invitrogen, Carlsbad, CA). Consensus sequences derived

from sequencing of three randomly selected clones of each CenH3

variant have been deposited in GenBank under accession numbers

JF739989 and JF739990.

The coding regions of the CenH3-1, CenH3-2, and canonical H3

genes were obtained by RT-PCR amplification. Total RNA was

isolated either from leaves of the pea (CenH3-1 and CenH3-2) or

Medicago truncatula (H3) using Trizol reagent (Invitrogen,

Carlsbad, CA) and treated with DNase I (Ambion, Austin, TX).

First strand synthesis was achieved with a SuperScript III First-

Strand Synthesis System for RT–PCR kit (Invitrogen, Carlsbad,

CA), following the manufacturer’s recommendations and employ-

ing random hexamers as primers. A sample of 5 ng of the resulting

cDNA was used as template for a 25 ml PCR containing 16PCR

buffer, 0.2 mM dNTP, 0.2 mM of each primer (PN_ID76: ATG

GGT AGA GTT AAG CAC TTC C and PN_ID69: CCA AAG

TCT TCC TAT TCC TGT AAG for CenH3-1, PN_ID313: ATG

GCG AGA GTT AAA CAA ACA and PN_ID314: CCA AGG

TCT TCC TAT CCC G for CenH3-2, PN_ID93: ATG GCA

CGT ACC AAG CAA ACT G and PN_ID95: AGC GCG CTC

ACC ACG GAT for H3), 1.5 mM MgCl2 and 1 U Platinum Taq

polymerase (Invitrogen, Carlsbad, CA). The amplification regime

consisted of an initial denaturation step (94uC/3 min), followed by

35 cycles of 94uC/30 s, 55uC/50 s and 72uC/60 s and a final

extension of 72uC/10 min.

Table 1. Characterization of satellite DNA families identified in the pea.

Family1 ChIP enrichment2 Genome proportion (%/Mbp)3 Monomer size4 AT content Localization on chromosomes5

1 2 3 4 5 6 7

PisTR-B 20.5 1.374/59.09 a 50 0.72 T T C C, T C,P T T

TR-1 51.7 0.021/0.91 b 867 0.67 C - C, T C - - -

TR-6 59.3 0.011/0.49 b 245 0.76 - - - - C - -

TR-7 49.7 0.135/5.82 b 164 0.73 C - - - - - -

TR-10 76.3 0.01/0.43 a 659 0.74 - - - C, P - - -

TR-11 74.9 0.103/4.44 b 510 0.76 C C - - C C C

TR-12 5.4 0.006/0.29 a 120 0.69 I P, I I C, I I I I

TR-18 82.5 0.013/0.57 b 1644 0.74 - - C - - - -

TR-19 65.9 0.033/1.43 b 2094 0.77 C - - - C - -

TR-20 50.7 0.004/0.19 b 867 0.76 - - - - - - C

TR-21 44.0 0.006/0.24 b 642 0.73 - - - - - C -

TR-22 102.9 0.004/0.17 b 881 0.76 - - - - - C -

TR-23 10.7 0.002/0.09 b 1813 0.69 - - - - - C -

TR-2 0.6 0.207/8.92 a 440 0.68 - P - - P P -

TR-3 0.3 0.058/2.48 a 82 0.79 - - P I - - -

TR-4 0.6 0.200/8.61 a 172 0.67 - - - - - P -

TR-5 1.1 0.151/6.51 a 54 0.65 - P - - - - -

TR-9 0.4 0.009/0.37 a 189 0.79 T T - - - - T

TR-17 0.5 0.012/0.52 a 191 0.74 - - - - - - I

1Satellite DNA families which are not at all associated with CenH3 are included in the bottom part of the table, starting from TR-2.
2ChIP enrichment values were calculated using the top one thousand most repetitive clusters build from 2 million randomly selected reads (Figure S2A). The only
exceptions included TR21 and TR-22 which were not represented within this data set. Their enrichment values were therefore calculated from clusters build from ChIP-
enriched reads.
3Genome proportion was estimated as a proportion of reads belonging to a given repeat family to the total number of analyzed reads. The table shows the greater
estimate of those calculated from either the top one thousand most repetitive clusters (a) or clusters build from all ChIP-enriched reads (b). The total size of the repeats
was calculated from the genome proportion assuming that the genome size of the pea is 4 300 Mbp.
4Monomer sizes were estimated based on contigs assembled from clustered reads and confirmed by sequencing PCR products amplified from genomic DNA.
5C – centromeric (associated with CenH3), P – pericentromeric (located in or adjacent to primary constriction but not associated with CenH3), I – intercalary, T – (sub-
)telomeric.
doi:10.1371/journal.pgen.1002777.t001
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Fusion constructs and transformation
RT-PCR amplified fragments encoding for CenH3 and H3

histones were cloned into the pCR8/GW/TOPO entry vectors

using pCR8/GW/TOPO TA Cloning Kit (Invitrogen, Carlsbad,

CA). The fragments in appropriate orientation were subsequently

recombined into destination vector pEarleyGate104 (obtained

from TAIR; http://www.arabidopsis.org/), allowing for C-

terminal fusion with YFP. The recombination reaction was carried

out using Gateway LR Clonase II Enzyme Mix (Invitrogen,

Carlsbad, CA) according to the manufacturer’s instructions.

Nucleotide sequences of all constructs were verified by sequencing.

Transgenic hairy root cultures expressing the reporter gene

were obtained by transformation of P. sativum plants by Agrobacter-

ium tumefaciens C58C1 carrying both hairy root inducing plasmid

pRiA4 and pEarleyGate104 vector possessing either of the

constructs. The transformation was performed by injecting

Figure 5. All to all dot-plot comparison of the pea satellite repeats. With exception of TR-11 and TR-19, the sequences of different satellite
DNA families show no similarity. A fragment of long monomer of TR-19 shows high similarity to TR-11. FISH experiments revealed that all loci of TR-19
repeat contain also TR-11, but only some of TR-11 loci contain TR-19 (Figure 6 and data not shown), indicating that these two repeats should be
considered as different families. Sequences used for dot-plot comparison are provided in Dataset S1.
doi:10.1371/journal.pgen.1002777.g005
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Agrobacterium suspension into stems of 7-days-old seedlings culti-

vated in vitro on 50% Murashige and Skoog medium (Duchefa,

Haarlem, Netherlands). The seedlings were grown at 20uC (16 h

photoperiod). After 3–4 weeks of cultivation, hairy roots emerging

from the inoculation sites were excised and placed on solid

Gamborg B5 medium (Duchefa, Haarlem, Netherlands) supple-

mented with ticarcillin (500 mg/l) and cefotaxime (200 mg/l) for

elimination of bacteria, and glufosinate ammonium (10 mg/l) for

selection of lines carrying the YFP constructs. Hairy root cultures

were grown in Petri dishes at 24uC in the dark and transferred to

fresh B5 medium once a month.

The images of transgenic cells expressing the constructs of

CenH3 and H3 (both YFP at C-terminal end) were captured using

confocal microscope Olympus FV1000 and processed in FW10-

ASW software.

Chromatin immunoprecipitation (ChIP)
Nuclei were isolated from 10 g of young leaves as described

previously [10]. The isolated nuclei were centrifuged at 400 g for

5 min at 4uC and resuspended in 3 ml micrococcal nuclease

(MNase) buffer (10% sucrose, 50 mM Tris-HCl pH 7.5, 4 mM

MgCl2, 1 mM CaCl2). The chromatin suitable for ChIP was

prepared by digestion of the nuclei with MNase (150 units of the

enzyme per 3 ml of nuclei) for 40–60 min at 37uC. The reaction

was stopped by adding 0.5 M EDTA to a final concentration of

20 mM and samples were centrifuged at 13,000 g for 5 min at

4uC. The supernatant containing well digested chromatin was

saved (fraction 1) while the pellet containing poorly digested

chromatin was resuspended in 200 ml MNase buffer and

redigested with 15 units of MNase for 5 min at 37uC. The

reaction was stopped with EDTA and centrifuged as described

above. The supernatant was mixed with the fraction 1 and a

200 ml aliquot was taken from the chromatin sample for DNA

isolation to serve as an input control sample. The rest of the

mixture was diluted with the same volume of ChIP incubation

buffer (50 mM NaCl, 20 mM Tris-HCl pH 7.5, 5 mM EDTA,

0.2 mM phenylmethylsulfonyl fluoride, 16 protease inhibitor

cocktail (Sigma-Aldrich, St. Louis, MO)). ChIP was done using

Immunoprecipitation Kit – Dynabeads Protein G (Invitrogen,

Carlsbad, CA) according to manufacturer’s instructions with some

modifications. The ChIP was preceded with a precleaning step;

2 ml of the chromatin were mixed with Dynabeads Protein G

from 50 ml of the stock, incubated on a rotator for 4 h at 4uC, and

finally separated from the beads using a magnet. Antibody binding

was done for 2 h at 4uC in 200 ml of Ab binding and washing

buffer containing magnetic beads from 50 ml and 30 mg of the

antibody to CenH3-1. The beads with bound antibody were

mixed with the precleaned chromatin and the mixture was

incubated with rotation overnight at 4uC. Immunoprecipitated

complexes were washed 465 min using 200 ml of the washing

buffer. Elution of the chromatin was done using 26100 ml of

preheated elution buffer (1% sodium dodecyl sulfate, 0.1 M

NaHCO3) for 30 min at 65uC. DNA from the ChIP and input

control samples was isolated using ChIP DNA Clean and

Concentrator Kit (Zymo Research, Irvine, CA). Sequencing of

the input and ChIP DNA was done using Illumina technology

producing 36 nt long reads (Creative Genomics, Shirley, NY).

Chromosome preparations, immunodetection, and
fluorescence in situ hybridization (FISH)

Most immunostaining and FISH experiments were done using

chromosomes isolated from root tip meristem cells synchronized

using 1.25 mM hydroxyurea and blocked at metaphase using

15 mM oryzalin or 10 mM APM as described previously [33]. The

squash preparations were made in 16 phosphate-buffered saline

(PBS) buffer by squashing synchronized root tip meristems fixed in

4% formaldehyde for 25 min and digested with 2% cellulase and

2% pectinase in 16 PBS for 85 min at 28uC. To avoid potential

influence of the synchronization on signal patterns of CenH3, we

employed also squash preparations made of nonsynchronized

meristems which produced the same results. Affinity purified

polyclonal antibodies to peptides designed from CenH3-1 (GRV

KHF PSP SKP AAS DNL GKK KRR CKP GTK C) and

CenH3-2 (TPR HAR ENQ ERK KRR NKP GC) histones were

custom-produced (Genscript, Piscataway, NJ) in rabbit and

chicken, respectively. Commercially available antibodies included

rabbit antibody to GFP (Invitrogen, Carlsbad, CA; catalog

number A11122) and mouse antibody to a-tubulin (Sigma-

Aldrich, St. Louis, MO; catalog number T6199). Prior to

incubation with either antibody, the slides were incubated in

PBS-T buffer (16 PBS, 0,1% Tween 20, pH 7,4) for 30 min at

room temperature (RT). The slides were incubated with primary

antibodies diluted in PBS-T overnight at 4uC. Dilution ratios were

as follows: 1:1000–5000 for both CenH3 antibodies, 1:500 for YFP

antibody, and 1:50 for antibody to a-tubulin. Following two

washes in 16PBS for 5 min, the antibodies were detected by anti-

rabbit-Rhodamine Red-X-AffiniPure (1:500, Jackson ImmunoR-

esearch, Suffolk, UK; catalog number 111-295-144), anti-chicken-

DyLight488 (1:500, Jackson ImmunoResearch; catalog number

103-485-155), anti-mouse-FITC (1:100, Abcam, Cambridge, UK;

catalog number ab6785) or anti-rabbit-Alexa488-NanoGold

(Nanoprobes, Yaphank, NY) in PBS-T buffer for 1 h at RT.

After final washes of PBS, the slides were counterstained with 49,6-

diamino-2-phenylindole (DAPI) and mounted in Vectashield

mounting medium (Vector Laboratories, Burlingame, CA). In

double immunodetection experiments, the two primary or

secondary antibodies were incubated together and appropriate

control experiments were performed to exclude non-specific

binding.

For a combined detection of the CenH3 proteins and the

satellite repeats, the immunodetection procedure was followed by

FISH. After CenH3-1 detection and washing, the slides were

immediately postfixed in 4% formaldehyde in 16PBS for 10 min

at RT, and dehydrated in series of 70% and 96% ethanol, 5 min

at RT each. Chromosome denaturation was carried out in a PCR

buffer (Promega, Madison, WI) supplemented with 4 mM MgCl2
for 2 min at 94uC. The preparation of hybridization probes,

hybridization conditions, and probe detection were set up as

described by Macas et al. [10]. The chromosomes were examined

using a Nikon Eclipse 600 microscope. Images were captured with

a DS-Qi1Mc cooled camera and analyzed by NIS Elements 3.0

software (Laboratory Imaging, Praha, Czech Republic).

The chromosome sizes in Mbp were estimated from relative

chromosome lengths of individual chromosomes and haploid

genome size of 4 300 Mbp [34] using following formula: genome

Figure 6. Association of satellite DNA sequences with CenH3-containing domains. The figure shows results of simultaneous detection of
different families of satellite DNA by FISH (green) and immunodection of CenH3-1 (red). A–C, F–L and O–R: All families of satellite DNA showing high
ChiP enrichment were found to be colocalized with regions containing CenH3-1. D–E and M–N: The DNA families with no ChIP enrichment but
present in primary constrictions were indeed found outside of the CenH3-containing domains. Colocalization of CenH3-1 and satellite DNA families
on chromosome 3 is shown in the Figure 4. Bar = 5 mm.
doi:10.1371/journal.pgen.1002777.g006
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size6relative chromosome length/100. The relative chromosome

lengths were taken from Neumann et al. [35]. Centromere size was

estimated using chromosomes stained with DNA-binding fluores-

cent dye DAPI as a proportion of integrated fluorescence density

within the segments delimited by the two outermost CenH3-

containing regions compared to that of whole chromosome. The

measurements were done on mitotic chromosomes at prometa-

phase to metaphase.

Identification of ChIP–enriched sequences
Reads from ChIP and input sequencing were trimmed at both

59 and 39 end, leaving 31 bp sequences which were further

subjected to quality filtering (reads containing more than one base

with a quality lower than 20 were removed). This left 9,515,830

and 19,699,136 high quality reads in the ChIP and input data sets,

respectively. In order to get a suitable reference needed for the

identification of ChIP-enriched sequences, we sequenced the pea

nuclear genome at about 0.486 coverage (20,527,392 reads

100 bp in length) using Illumina technology producing pair end

reads. All sequence data has been deposited to the Sequence Read

Archive under the study accession number ERA079142 (http://

www.ebi.ac.uk/ena/data/view/ERA079142). The mapping of

the ChIP and input reads to the reference sequences was done

using PatMaN program [36], allowing for up to two differences

between the query and the hit, both of which could be indels with

a maximum total size of four bases. The ChIP enrichment was

calculated as a ratio between a proportion of ChIP and input reads

mapped to a reference. This was done using two approaches. The

first approach employed clusters calculated due to computational

limitations from only 2 million randomly selected reference

sequences as described previously [20]. The clusters grouped

together reads derived from individual repeat families or their

fragments. Top 1000 clusters with the highest genome represen-

tation were used to determine their ChIP-enrichment. In this

approach the ChIP and input reads were mapped to the reference

sequences present in the clusters. ChIP or input sequence read was

assigned to a given cluster if it had a hit to at least one reference

read from that cluster. It should be noted that each read could be

assigned to only a single cluster. Reads with equal similarity to

reference sequences from more than one cluster were assigned to

the one with a higher genome representation. The ChIP

enrichment values were calculated from the total number of reads

assigned to individual clusters. Advantage of this approach was

that it allowed to determine ChIP-enrichment values for all major

repeat families present in the pea genome. On the other hand, it

missed all single and low-copy sequences.

The other approach relied on determination of the ChIP

enrichment values for each of 20,527,392 reference sequences.

Only those showing the ChIP enrichment of at least 10 were

selected to build the clusters as described in Novák et al. [20].

Thus, these clusters were made only of sequences putatively

derived from CenH3-associated regions, providing about 10-fold

deeper coverage as compared to the clusters build from 2,000,000

reads. In addition, this analysis involved all available sequences

regardless of their repetitiveness.

Type of ChIP-enriched repeat families was determined by their

similarity to previously characterized repeats [10] and by their

graph shape [20]. Tandem arrangement of novel satellite repeat

families was confirmed by PCR using primers directed outwards

from a putative monomer instead towards each other (data not

shown). In such PCR design, a product of expected size can be

obtained only if monomer sequences have head-to-tail tandem

organization. The only non satellite centromere repeat, the Ty3/

gypsy retrotransposon belonging to the CRM clade, was

determined by high level of similarity to a full-length element

described recently [21].

Field emission scanning electron microscopy (FESEM)
Prior to FESEM, immunolabeled (Alexa488-NanoGold, see

above) specimens were washed in 100% ethanol to remove

mounting medium, washed in distilled water, and silver enhanced

for 4 min according to the manufacturer’s instructions (HQ Silver,

Nanoprobes, Yaphank, NY). After washing again in distilled

water, specimens were dehydrated in acetone, critical point dried

from CO2, cut to size and mounted onto aluminum stubs.

Specimens were carbon-coated by evaporation (Balzers high

vacuum evaporator BAE 121, Liechtenstein) to a layer of 3–

5 nm for orthogonal (top-view) FESEM and examined at 10–

30 kV with an Hitachi S-4100 field emission scanning electron

microscope equipped with a Everhard-Thornby chamber second-

ary electron (SE) detector and a YAG-type back-scattered electron

(BSE) detector (Autrata). SE and BSE images were recorded

simultaneously with DigiScan hardware and processed with

Digital Micrograph 3.4.4 software (both Gatan, Pleasanton, CA).

Dual beam focused ion beam/field emission scanning electron

microscopy (FIB/FESEM) investigations were performed on a

Zeiss Auriga CrossBeam Workstation, a field emission scanning

electron microscope equipped with a Gallium ion beam, in-lens,

chamber SE and EsB detectors (Carl Zeiss, Germany) as described

in Schroeder-Reiter et al. [37]. For FIB/FESEM sectioning the

specimens were carbon-coated to 10 nm for stability. Milling steps

were defined at 5 nm. The electron beam voltage was 1 kV; the

EsB grid was set at 900 V. In the cut-and-view mode FESEM

images were recorded using a ratio of 70% BSE to 30% SE signal

detection. Specimens were tilted to an angle of 54u; image

recordings were tilt-compensated.

Marker molecules were quantified by counting the number of

signal spots per milled centromere section. Animation of FIB

milling and partial alignment functions were performed with

ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of

Health, Bethesda, MD, http://rsb.info.nih.gov/ij/). Segmentation

and labeling of signals and chromatin, 3D reconstructions, and

animations were achieved using Amira software (Visage Imaging,

Richmond, Australia).

Supporting Information

Dataset S1 Set of sequences representing different satellite DNA

families in the pea.

(FASTA)

Figure S1 Diagram showing the number of CenH3 markers per

centromere domain of chromosome 3. The markers were counted

in milled sections of the pea chromosome 3 shown in the

Figure 4A. Individual markers (approx. 10 nm in diameter) could

be counted in sequential high resolution FIB/FESEM micro-

graphs (a series of 126 milled sections at a milling thickness of

10 nm per section). 3D reconstruction of labeled centromere

region (box) designates the three separate centromere domains for

which the CenH3 marker count is shown in the diagram. For all

three domains, the marker number peaks around mid-chromatid,

with very few markers near the poleward centromere surfaces

(arrowheads) and a minimum at the central axis of the

chromosome (dotted line) over approximately 200 nm.

(TIF)

Figure S2 Plots of ChIP enrichments. Sequences associated with

the CenH3 were identified using two approaches. A: Using

sequence data from the top 1000 clusters calculated from 2 million
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randomly selected reference reads. Each cluster represents a group

of reads belonging to the same repetitive element or its fragment.

Chip enrichment was calculated as a proportion between ChIP

and input reads mapped to each of the clusters. Note that vast

majority of clusters is ChIP-depleted indicating that most

repetitive sequences are localized outside of centromeric region.

This computationally less demanding approach was sufficient to

identify all major centromeric repeats but failed to find the less

abundant ones. B–C: Using all 20.5 million reference reads. B:

Scatter plot showing number of ChiP and input reads mapped to

the reference reads. C: Histogram of ChIP enrichment values. Red

and green lines mark the enrichment values of 10 and 1,

respectively. A total of 354 717 reads showing at least 10-fold

enrichment were used for clustering which allowed to identify and

characterize additional, less abundant, centromeric repeats

including mainly TR-21, TR-22, and TR-23 (Table 1).

(TIF)

Table S1 Size estimation of regions delimited by the most

distant CenH3-containing domains.

(DOC)

Video S1 Animation of a FIB/FESEM series of SEM micro-

graphs (1 kV, signal ratio 30% SE and 70% BSE) showing

sequential images of milled surface revealing the exposed

centromere interior. The series is of 124 images acquired after

sequential 5 nm milling steps.

(MOV)

Video S2 An animated rotation around a 3D reconstruction of

the centromere of pea chromosome 3 showing CenH3 distribution

(CenH3 markers = yellow) together with total chromatin distribu-

tion (chromatin = transparent magenta), showing clearly that the

majority of CenH3 markers are located toward the poleward

centromere boundaries; only few CenH3 markers are localized on

the lateral centromere surface. The three strongly labeled regions

are composed of numerous individual signals; few diffuse signals

are also found between and bordering these concentrated regions.

(MPG)
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