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Background
MicroRNA (miRNA) is a class of endogenous small molecule single-stranded non-cod-
ing RNA (ncRNA), which can specifically bind to 3’-UTR (3’-untranslated region) of the 
target mRNA [1]. Research shows that miRNA is involved in many cell activities includ-
ing cell proliferation, apoptosis, and stem cell differentiation [2, 3]. It’s reported that 

Abstract 

Background:  A growing proportion of research has proved that microRNAs (miR‑
NAs) can regulate the function of target genes and have close relations with various 
diseases. Developing computational methods to exploit more potential miRNA-disease 
associations can provide clues for further functional research.

Results:  Inspired by the work of predecessors, we discover that the noise hiding in the 
data can affect the prediction performance and then propose an anti-noise algorithm 
(ANMDA) to predict potential miRNA-disease associations. Firstly, we calculate the simi‑
larity in miRNAs and diseases to construct features and obtain positive samples accord‑
ing to the Human MicroRNA Disease Database version 2.0 (HMDD v2.0). Then, we apply 
k-means on the undetected miRNA-disease associations and sample the negative 
examples equally from the k-cluster. Further, we construct several data subsets through 
sampling with replacement to feed on the light gradient boosting machine (LightGBM) 
method. Finally, the voting method is applied to predict potential miRNA-disease 
relationships. As a result, ANMDA can achieve an area under the receiver operating 
characteristic curve (AUROC) of 0.9373 ± 0.0005 in five-fold cross-validation, which is 
superior to several published methods. In addition, we analyze the predicted miRNA-
disease associations with high probability and compare them with the data in HMDD 
v3.0 in the case study. The results show ANMDA is a novel and practical algorithm that 
can be used to infer potential miRNA-disease associations.

Conclusion:  The results indicate the noise hiding in the data has an obvious impact 
on predicting potential miRNA-disease associations. We believe ANMDA can achieve 
better results from this task with more methods used in dealing with the data noise.

Keywords:  miRNA-disease association, k-means, Noise smoothing, Light gradient 
boosting machine

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Chen et al. BMC Bioinformatics          (2021) 22:358  
https://doi.org/10.1186/s12859-021-04266-6

*Correspondence:   
jiangzhenran@163.com 
School of Computer Science 
and Technology, East 
China Normal University, 
Shanghai 200062, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04266-6&domain=pdf


Page 2 of 15Chen et al. BMC Bioinformatics          (2021) 22:358 

48,860 different mature miRNAs sequences have been found from 271 organic organ-
isms, of which 2654 mature miRNAs sequences come from humans [4].

MiRNA-related malfunctions are related to various types of human diseases including 
tumor, neurodegeneration, and diabetic cardiomyopathy, etc. [5–7]. Therefore, uncov-
ering the miRNA-disease associations can provide valuable clues for disease diagnosis 
at an early stage [8]. Based on the hypothesis that miRNAs with similar functions tend 
to be related to similar diseases [9], much effort has been devoted to developing vari-
ous computational methods for miRNA-disease associations prediction during the past 
years [10].

In general, there are four main types of methods proposed to predict potential 
miRNA-disease associations.

One type of method is the score function-based algorithms. Jiang et al. [11] integrated 
miRNAs functional interactions network and disease similarity network and then imple-
mented a scoring method to predict the associations. Chen et al. [12] used a model of 
calculating within-scores and between scores for miRNA-disease association probabili-
ties (WBSMDA) by integrating miRNA functional similarity, disease semantic similarity, 
and using Gaussian kernel functions. One challenge of these methods is to utilize more 
effective features and to design a reasonable score function.

Another type of method is network-based algorithms. Shi et al. [13] tried to connect 
miRNA and disease through the gene function network and applied the random walk 
algorithm for final prediction. You et  al. [14] constructed a heterogeneous graph with 
many paths by using weighted matrices to design a path-based algorithm for prediction 
(PBMDA). Qu et al. [15] built a reliable heterogeneous network and used KATZ to pre-
dict miRNA-disease associations (KATZMDA). One challenge of the methods is to inte-
grate different data to build reliable networks and analyze the network function.

The third type of method is mainly based on machine learning algorithms. Chen et al. 
[16] proposed a ranking-based k-nearest neighbor method for miRNA-disease associa-
tions prediction (RKNNMDA). RKNNMDA searched miRNA and disease by k-nearest 
neighbors and re-ranked them by support vector machine (SVM). Ha et al. [17] utilized 
a matrix factorization method to predict miRNA-disease associations (PMAMCA). 
Zhu et  al. [18] used the biased heat conduction (BHCMDA) to pay more attention to 
unpopular nodes and improve the final results. Recently, ensemble learning methods 
have been designed to solve this problem and achieve great success. For instance, Zhao 
et al. [19] adopted the adaptive boosting algorithm for prediction (ABMDA). By adapt-
ing the weighing coefficient of residual samples, the algorithm re-learned the residual 
samples and obtain better results. Zhou et al. [20] combined gradient boosting decision 
trees with logistic regression (GBDT-LR) to predict potential pairs. Yao et al. [21] used 
the random forest to select 100 important features and predict miRNA-disease associa-
tions based on the selected features (IRFMDA-100). Peng et al. [22] attempted to solve 
this association inference based on ensemble learning and kernel ridge regression (EKR-
RMDA). However, the training cost of the ensemble learning methods is often high.

The last type of method belongs to deep learning-based methods. As convolution neu-
ral networks (CNN) can obtain potential information between features effectively, Peng 
et al. [23] used auto-encoders for dimensionality reduction and then applied CNN to pre-
dict miRNA-disease associations (MDACNN). To extract dense and high-dimensional 
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representations of diseases and miRNAs, Ji et al. [24] used a deep autoencoder frame-
work (AEMDA). Further, to utilize the information of all miRNA-disease pairs during 
the pre-training process, Chen et al. [25] adopted a deep-belief network (DBNMDA) to 
predict the associations. Li et al. [26] applied fully connected graph convolutional net-
works to rank the potential pairs, which combined the graph-related techniques and 
CNN (FCGCNMDA). However, deep learning may be more suitable for bigger data.

Although much progress has been made in this field, the noise hiding in the data is an 
unprecedented problem to be tackled. As some researchers [19–21, 23, 25, 26] regard 
undetected miRNA-disease pairs as negative samples and randomly choose several sam-
ples to feed into algorithms, the algorithms may be influenced by some unreliable nega-
tive samples.

This paper proposes a novel anti-noise algorithm predict potential miRNA-disease 
associations (ANMDA). According to the method, we first analyze the interference of 
the noise and then use a k-means algorithm to pick negative samples, subsample to noise 
smoothing, and finally apply Light Gradient Boosting Machine (LightGBM) to tackle 
this problem.

The main contributions are listed as follows: (1) We focus on the noise hiding in the 
data from a new perspective. (2) We subsample the data to smooth the noise to eliminate 
the influence of the noise. (3) We apply an effective algorithm (LightGBM) to further 
deal with the noise. The results demonstrate that ANMDA can outperform some pub-
lished methods.

Result
Experiment design

To validate the performance of ANMDA, we design different experiments to demon-
strate the effect of subsampling for noise smoothing and the superiority of LightGBM. In 
our study, all of the experiments are implemented by using five-fold cross-validation 100 
times, and the evaluation metrics are the same as other works including the area under 
the receiver operating characteristic curve (AUROC), area under the precise-recall 
curve (AUPR), precision, recall, and F1-score.

Performance evaluation on ANMDA

We evaluate the performance of ANMDA and compare the results of ANMDA with 6 
other published methods: WBSMDA, BHCMDA, EKRRMDA, MDACNN, FCGC-
NMDA, and DBNMDA. The main character for each method is shown in Table  1. 
WBSMDA is a classic method, BHCMDA and EKRRMDA are recently published 
machine learning methods, EKRRMDA is an ensemble learning method and more com-
parable to ANMDA. Furthermore, the deep learning-based models: MDACNN, FCGC-
NMDA, and DBNMDA are also picked.

The AUROCs of ANMDA and other 6 published methods are shown in Fig. 1, as we 
can see, ABMDA achieves the best performance in these 6 methods. What’s more, the 
standard deviation of ANMDA is 0.0005, which means that ANMDA is more stable than 
other methods such as WBSMDA (0.0009) and DBNMDA (0.0026).

To further show the performance of ANMDA, we repeat ABMDA, GBDT-LR, and 
IRFMDA-100 to compare with ANMDA because they have similar feature construction 
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and data construction. In addition, all of them belong to ensemble learning algorithms. 
To design a fair and convincing experiment, we test these methods on the same data. 
The results are shown in Fig. 2. It is shown from the ROC curve and the precise-recall 
curve that ANMDA can outperform ABMDA, GBDT-LR, and IRFMDA-100. In addi-
tion, ANMDA can achieve higher AUROC and AUPR and lower standard deviation 
than ABMDA, GBDT-LR, and IRFMDA-100. Table 2 shows the performance of different 
methods in 100 times five-fold cross-validation test.

Effect of subsampling for noise smoothing

To evaluate the influence of subsampling for noise smoothing, we compare the results of 
using subsampling for noise smoothing or not. The results are shown in Fig. 3.

Noisy_KNN and Noisy_MLP represent applying k-Nearest Neighbor (kNN) and 
Multilayer Perceptron (MLP) directly for the data, respectively. Smooth_Noisy_KNN 

Table 1  The main ideas of ANMDA and 6 published methods

Method Main idea

ANMDA Adopts subsampling for noise smoothing and light gradient boosting machine for prediction

BHCMDA Uses biased heat conduction-based method to pay attention to specific nodes for prediction

DBNMDA Constructs deep-belief network for prediction

EKRRMDA Applies ensemble learning and kernel ridge regression on various data subset created by random 
selection of features for prediction

FCGCNMDA Applies fully connected graph convolutional networks for prediction

MDACNN Uses auto-encoders for dimensionality reduction and then applies convolutional neural networks 
for prediction

WBSMDA Calculates within-scores and between scores for prediction

Fig. 1  The AUROCs of ANMDA and other 6 published methods
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Fig. 2  The performance of ANMDA, ABMDA, GBDT-LR and IRFMDA-100 tested on the same data

Table 2  The performance of ANMDA, ABMDA, GBDT-LR and IRFMDA-100 in 100 times five-fold cross 
validation

Metrics ANMDA ABMDA GBDT-LR IRFMDA-100

AUROC 0.9373 ± 0.0005 0.9023 ± 0.0021 0.9246 ± 0.0010 0.9267 ± 0.0009

AUPR 0.9328 ± 0.0008 0.8879 ± 0.0032 0.9177 ± 0.0015 0.9222 ± 0.0012

Precision 0.8561 ± 0.0017 0.8213 ± 0.0033 0.8403 ± 0.0026 0.8447 ± 0.0021

Recall 0.8728 ± 0.0020 0.8371 ± 0.0044 0.8567 ± 0.0031 0.8598 ± 0.0025

F1-score 0.8643 ± 0.0014 0.8290 ± 0.0030 0.8484 ± 0.0021 0.8521 ± 0.0016

Fig. 3  The ROC and PR curves of different algorithms with and without subsampling for noise smoothing
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and Smooth_Noisy_MLP represent applying kNN and MLP in subsampling for noise 
smoothing on the data, respectively.

The results demonstrate that the performance of both algorithms is improved after 
using subsampling for noise smoothing. Specifically, the average AUROC of kNN and 
MLP increases by 2.35%, and the average AUPR increases by 3.75%, respectively.

The superiority of LightGBM in noise resistance

To reveal the noise resistance ability of each algorithm, we compare the performance 
of the methods (LightGBM, kNN, and MLP) on the dataset. The results are shown in 
Fig. 4.

Noisy_KNN, Noisy_MLP, Noisy_LGB represent applying kNN, MLP LightGBM 
method, respectively. It can be seen that the performance of LightGBM is better than 
the other two algorithms, reflecting that LightGBM is expert in dealing with the noise 
in the data.

Case study

Further, we use ANMDA to predict undetected miRNA-disease pairs that are not 
recorded in the Human MicroRNA Disease Database version 2.0 (HMDD v2.0). Then, 
we verify the results in HMDD v3.0 which records more newly-discovered miRNA-
disease associations. The results of the top 200 miRNA-disease associations predicted 
by ANMDA are shown in the Additional file 1.

Two kinds of case studies are carried out to prove the prediction ability of ANMDA. 
In the first part, we sort all of the undetected pairs and then verify the top 50 associa-
tions predicted by ANMDA with HMDD v3.0. The results are shown in the Additional 
file  2: Table  1. In the second part, we apply ANMDA to predict prostate neoplasm, 
gastric neoplasm, colorectal carcinoma, melanoma, and hepatocellular carcinoma. 
For each disease, the top 10 predicted miRNA-disease associations are selected based 
on the probabilities. The results are shown in the Additional File 2: Table 2.

In conclusion, the case studies indicate that ANMDA can predict potential miRNA-
disease associations with high accuracy.

Fig. 4  The ROC and PR curves of kNN MLP and LightGBM without subsampling for noise smoothing
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Discussion
In this work, we analyze the noise hiding in the data systematically and propose a 
novel and practical algorithm ANMDA to tackle the noise properly. The main reasons 
can be listed as follows: (1) By subsampling for noise smoothing, we extract several 
subsets from the data. In this way, the noise can be separated into each subset, thereby 
it reduces the interference to the algorithm on judging positive samples because of 
the noise aggregation. Further, subsampling for noise smoothing can further decrease 
the influence of the noise by averaging the prediction results of each subset. (2) The 
residual is mainly caused by the noise hiding in the data. Further, LightGBM based on 
GBDT can fit residual in each iteration and improve the final prediction.

However, there are also some limitations in ANMDA. First, the high computational 
cost in the training process of ANMDA is an important problem. For instance, it 
takes about 300 min to finish five-fold cross-validation 100 times with CPU of Intel 
Xeon E3-1231 and 1.5 GB of memory usage. In addition, using the current sampling 
method to discover reliable negative samples is common, therefore, there is still room 
for improvement.

Conclusion
This paper proposes a novel method (ANMDA) to predict potential miRNA-disease 
associations. The experiment results confirm that ANMDA can achieve better results 
than other published methods. In the case study, several miRNA-disease associations 
predicted by ANMDA are supported by HMDD v3.0. Therefore, ANMDA is effective 
and can provide a reference for researchers. In the follow-up work, we plan to use 
feature selection to accelerate the training process and try to find reliable negative 
samples. Further, some biological experiments can also be conducted to verify the 
prediction results of ANMDA.

Methods
The framework of ANMDA is shown in Fig. 5.

First, the features are constructed based on the miRNA functional similarity, dis-
ease semantic similarity, and Gaussian kernel functions. Second, we try to visualize 
the noise to reveal the effect of noise on data. Based on HMDD v2.0, we construct 
positive samples and use k-means on undetected pairs to select negative samples as 
data. Then, we subsample the data to smooth the noise. Finally, each subset is fed to 
LightGBM, and a voting rule is used to decide the final prediction.

MiRNA‑disease associations

HMDD records experimentally supported human miRNA and disease associa-
tions. The current version of HMDD is 3.0. As most of the researchers [12–22, 25, 
26] choose HMDD v2.0 to test their methods, so we also take it to validate ANMDA. 
Finally, we obtained 5430 experimentally verified associations, including 495 miRNAs 
and 383 diseases [27].
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Feature construction

We construct the features by integrating miRNA functional similarity, disease seman-
tic similarity, and using Gaussian kernel functions, which is similar to several other 
methods [14, 16, 18–22, 24–26].

Disease semantic similarity

Based on the idea that "functionally similar miRNAs may be associated with similar 
diseases, vice versa" [28], we calculate the semantic similarity of two diseases accord-
ing to the extent that they share in common [29].

First, according to MeSH (Medical Subject Headings) tree structure, the relation-
ship between diseases can be displayed as a layered directed acyclic graph (DAG). 
Each vertex is composed of tree numbers and the heading of one disease. The directed 

Fig. 5  The framework of ANMDA contains three steps: construct features; construct data (construct positive 
samples and using k-means on undetected pairs to select negative samples based on HMDD v2.0); apply the 
algorithm to predict the associations
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edge in DAG represents the coordination of different diseases. The diseases with a 
more general heading (like neoplasm) are at an upper layer in the DAG called ances-
tor nodes. The vertex at a lower layer in the DAG called the children node is com-
posed of diseases having a more specific definition. Given a disease di and its DAG 
Equation is as follows:

where P(di) represents the set of vertexes in the DAG and S(di) represents the set of 
edges in the DAG.

Therefore, the similarity based on the semantic value between two diseases can be 
measured according to their positions in the DAG. The more information two diseases 
share in common, the more similar they are. To be specific, the semantic similarity 
between disease di and disease dj can be calculated as follows:

Respectively, Ddi(d) is defined as the semantic value of the disease d contributes to the 
disease di. Disease d is a set of the vertex shared by the disease di and the disease dj in 
common in the DAG. V(di) represents the semantic value of the disease di.

To calculate Ddi(d), we assume that diseases at different layers in the DAG contribute 
differently to the semantic value of disease di [38]. Therefore, we define it as a semantic 
contribution factor and the contribution of disease to di itself is defined as 1, and the 
disease located at the upper node of the DAG denotes less to the semantic value of the 
disease di. Therefore, the contribution of disease d to the semantic value of disease di can 
be calculated by the formula:

In addition, to avoid the problem that two kinds of diseases having different occur-
rences in the DAG are calculated as the same semantic value for being at the same layer, 
a new way is used to define the contribution of disease d to the semantic value of disease 
di:

In the formula, Nd is the number of DAGs that contain diseases d. N represents the 
number of all of the diseases. Based on the contribution of each disease d in the DAG to 
the disease di, disease di’s V(di) can be calculated by the formula:

As shown in Eqs. (3) and (4), there are two ways to calculate Ddi(d). Thus, two seman-
tic similarities (SS1 and SS2) are calculated according to Eq. (2). Here, the final semantic 
similarity is calculated as follows:

(1)DAG(di) = (di,P(di), S(di))

(2)SS
(

di, dj
)

=

∑

d∈P(di)∩P(dj)

(

Ddi(d)+ Ddj (d)
)

V (di)+ V (dj)

(3)Ddi(d) =

{

1, d = di
max

(

�× Ddi(d
′)/d′ ∈ children space of space d/

)

, d �= di

(4)Ddi(d) = − log
Nd

N

(5)V (di) =
∑

d∈P(di)

Ddi(d)
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miRNA functional similarity

Research combine disease phenotype similarity, semantic similarity, and miRNA-disease 
network to calculate miRNAs functional similarity [30, 31].

For the two miRNAs mi and mj, (1) According to the miRNA-disease network, we set 
MDi = {md1, md2, …, mdni} for all the diseases associated with mi, and MDj = {md1, md2, 
…, mdnj} for all the diseases associated with mj. (2) We calculate the semantic value of 
each disease in MDi and MDj. (3) Finally, the functional similarity of mi and mj is calcu-
lated as follows:

Respectively, ni is the number of diseases associated with mi. nj is the number of dis-
eases associated with mj. S(md, MD) is the max semantic similarity between the disease 
md and any diseases in another set MD.

Disease and miRNA similarity

As mentioned above, the Gaussian interaction kernel function is used for computing the 
disease and miRNA similarity [32].

In the miRNA-disease association network, the binary interaction profile vector IP(xi) 
represents the interaction information of disease or miRNA. Therefore, the Gaussian 
interaction profile kernel similarity for diseases or miRNAs is defined as follows:

In the formula, x can represent disease d or miRNA m, IP(xi) is the interaction infor-
mation of disease di or miRNA mi. IP(xj) is the interaction information of disease dj or 
miRNA mj.

γx is a parameter controlling the kernel bandwidth and can be calculated by normal-
izing γx’ by the average number of related miRNAs(diseases) per disease(miRNA). The 
specific formula is as follows:

Here, we set γx’ to a value of 1 based on the previous study [33], so that we can have a 
better comparison.

Integrated similarity for diseases and miRNAs

To deal with the problem that some diseases have no semantic similarity or miRNAs have 
no functional similarity, here we propose a reasonable method: if SS(di, dj) (the semantic 
similarity of disease di and dj) exists, the similarity of these two diseases will finally be

(6)SS
(

di, dj
)

=
SS1

(

di, dj
)

+ SS2
(

di, dj
)

2

(7)FSM
(

mi,mj

)

=

∑

1≤p≤nj
S
(

mdp,MDi

)

+
∑

1≤q≤ni
S
(

mdq ,MDj

)

ni + nj

(8)GSx
(

xi, xj
)

= exp
(

−γx
∥

∥IP(xi)− IP(xj)
∥

∥

2
)

(9)γx = γ ′
x/

(

1

nx

nx
∑

i=1

�IP(xi)�
2

)
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the average of Gaussian interaction profile kernel similarity and semantic similarity; 
otherwise, it will be only GSd(di, dj) (Gaussian interaction profile kernel similarity). In 
the same way, if FSM(mi, mj) (the functional similarity of miRNA mi and mj) exists, the 
similarity of these two miRNAs will finally be

the average of Gaussian interaction profile kernel similarity and functional similarity; 
otherwise, it will be only GSm(mi, mj) (Gaussian interaction profile kernel similarity).

Noise visualization

From HMDD v2.0, we download 5430 miRNA-disease associations as a positive sample. 
According to the research in AEMDA [24], there are 12,034 known pairs in HMDD v3.0. 
Therefore, if we choose negative samples randomly, we estimate that it will obtain the 
data containing about 3.59% of the noise.

To illustrate the impact of the noise, we design the experiment as follows:

1.	 First, we extract 200 positive samples and 200 negative samples as noise-free data 
from the UCI ML Breast Cancer Wisconsin (Diagnostic) dataset [34].

2.	 Then, we deliberately change 7 positive samples’ labels in the noise-free data into 
negative labels to simulate the noise hiding in data and form the noise data. The situ-
ation process is shown in Fig. 6. The red dots represent the noise hiding in the data. 
The blue dots and the black ones represent positive samples and negative samples, 
respectively. It is shown that the decision boundaries are different because of the 
noise in the two situations.

(10)
GSd

(

di, dj
)

+ SS
(

di, dj
)

2

(11)
GSm

(

mi,mj

)

+ FSM
(

mi,mj

)

2

Fig. 6  The interference of the noise hiding in the dataset

Table 3  The performance of logistic regression algorithm on noise and noise-free data

Data AUROC AUPR Precision Recall F1-score

Noise-free 0.9897 0.9892 0.9273 0.9450 0.9344

Noise 0.9647 0.9519 0.9039 0.9400 0.9204
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3.	 Further, we maintain positive samples and negative samples 200 each in the noisy 
data to make sure the experiment is rigorous.

4.	 Finally, we use the logistic regression algorithm on both noise-free and noise data to 
demonstrate the interference caused by the noise. The results are listed in Table 3.

1: Training data:

Loss function:

2: Number of subsets:
Number of samples in one subset:
Iterations:
Sampling ratio of large gradient data: sampling ratio of small gradient data:

3: Generate subsets by sampling with replacement:

each subset has samples:

4: for to do

5: Merge mutually exclusive features of by exclusive feature bundling (EFB)

method

6: Initialize a decision tree on set

7: for to do
8: Compute absolute values of gradients:

9: Get a new set by Gradient-based One-Side Sampling (GOSS) method:

10: Get a new decision tree on set

11: Update

12: end for

13: return

14: end for

15:

Fig. 7  The pseudocode of ANMDA
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Further, the experiments can prove that the noise hiding in the data affects the final 
results of miRNA-disease associations prediction to a certain extent. To be specific, the 
noise hiding in the data is close to positive samples, which can cause interference to 
algorithms on judging positive samples.

Method for negative samples selection

Inspired by ABMDA [19], here we use the k-means algorithm [35] to select negative 
samples. The specific process is as follows: we cluster all undetected miRNA-disease 
pairs into 23 clusters by k-means. The similar pairs will be in the same cluster after clus-
tering, which makes the noise in the same cluster and distinguished easily. Then, we 
extract equal amounts of samples from each cluster as negative samples in a way that the 
noise can be reduced to some extent.

Anti‑noise computational model for miRNA‑disease associations prediction

To further resist the noise, we propose a subsampling method for noise smoothing moti-
vated by Ho [36]. In detail, we construct several subsets by sampling with replacement 
from the original data.

Then, we feed each subset to LightGBM [37], which is an ensemble algorithm based 
on GBDT [38]. In each learning iteration, the basic model of LightGBM learns the resid-
ual result from the previous iteration so that it can improve the performance. What’s 
more, LightGBM utilizes two significant techniques: Gradient-based One-Side Sam-
pling (GOSS) for data samples and Exclusive Feature Bundling (EFB) for features. To 
be specific, GOSS can maintain the examples with large gradients and randomly picks 
examples with small gradients, which reduces the training cost. EFB can bundle many 
exclusive features to fewer dense features, which further reduces the cost of calculating 
for zero feature values.

The eventual result is an average of each subset’s prediction result. The detailed steps 
of the ANMDA are shown in Fig. 7.
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