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Abstract

Motivation: Sputum in the trachea is hard to expectorate and detect directly for the patients who are

unconscious, especially those in Intensive Care Unit. Medical staff should always check the condition

of sputum in the trachea. This is time-consuming and the necessary skills are difficult to acquire.

Currently, there are few automatic approaches to serve as alternatives to this manual approach.

Results: We develop an automatic approach to diagnose the condition of the sputum. Our

approach utilizes a system involving a medical device and quantitative analytic methods. In this

approach, the time-frequency distribution of respiratory sound signals, determined from the spec-

trum, is treated as an image. The sputum detection is performed by interpreting the patterns in the

image through the procedure of preprocessing and feature extraction. In this study, 272 respiratory

sound samples (145 sputum sound and 127 non-sputum sound samples) are collected from 12

patients. We apply the method of leave-one out cross-validation to the 12 patients to assess the

performance of our approach. That is, out of the 12 patients, 11 are randomly selected and their

sound samples are used to predict the sound samples in the remaining one patient. The results

show that our automatic approach can classify the sputum condition at an accuracy rate of 83.5%.

Availability and implementation: The matlab codes and examples of datasets explored in this

work are available at Bioinformatics online.

Contact: yesoyou@gmail.com or douglaszhang@umac.mo

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sputum is produced by the trachea when the trachea is stimulated.

Usually when there is sputum in the trachea, the sputum will be

ejected through coughing. However, people who are unconscious,

especially patients in Intensive Care Unit (ICU) whose breathing is

assisted by a ventilator, cannot eject the sputum by themselves. They

need medical staff to check the condition of the sputum and remove
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the sputum using a suction catheter. If the sputum is not timely

removed, it can lead to hypo ventilation, dioxide retention and even

pulmonary infection. For this nursing work of clearing the sputum

in the trachea, the most important is to determine the sputum condi-

tion. The traditional method for this determination involves using

lung sounds auscultation to get lung sounds from different parts of

the lung. Experienced physicians can determine whether there is

sputum in the trachea through distinguishing the sputum sound

from mixture sounds. However, this job is time-consuming and

requires a skill that is difficult to acquire (Jones et al., 2000; Ranson

et al.,2014; Sarkar et al., 2015; Yao et al., 2014). Therefore, meth-

ods and devices that can accurately detect the condition of the spu-

tum should be investigated. So far, there has been research that

focuses on abnormal sound. For example, Habukawa et al. (2013)

used breath sounds to evaluate the control level of asthma. Pinho

et al. (2015) adopted fractal dimension and box filtering methods to

detect the crackle sounds. Bahoura (2009) used pattern recognition

methods to classify normal and wheeze sounds. Abbasi et al. (2013)

applied Neural Network and Support Vector Machines to classify

normal and abnormal sounds. However, few studies involve sputum

detection (Shang, 2011; Oliveira et al., 2013; Paratz, et al., 2014).

Usually, electronic stethoscopes were used for data acquisition

(Riella et al., 2009; Zolnoori et al., 2012). Some research also used

two or more sound sensors to detect the signal. Azarbarzin et al.

(2011) and Waitman et al.(2000) placed two microphones in differ-

ent parts of the breast to record data. Charleston et al. (2011) placed

25 sound sensors on the back of the body to obtain the sound sig-

nals. All of the devices used in these studies require physical contact

with the bodies of the patients. But this extended physical contact

can lead to discomfort. For sputum detection, it is necessary to mon-

itor sputum condition in real time. In this paper, we develop a new

automatic approach that can be used to measure respiratory sounds

of trachea in real time and analyze those sounds in order to detect

the condition of the sputum.

Compared with other respiratory sound measurement devices,

the sound sensor of our device is embedded in the ventilation tube

near the mouth. This helps prevent the noise from the environment

from affecting our measurements when we measure the respiratory

sound. Currently, most research just focuses on the waveform of a

signal and its mathematical procedures. These methods differ from

the image recognition that can give better visualization of sputum

conditions. Consequently, it is necessary to prepare visual-based evi-

dence of auscultation sound from a practical viewpoint. In this

paper, we propose a method for sputum detection by interpreting

the time-frequency distribution of respiratory sound signals using

image processing techniques. The time-frequency distribution of res-

piratory sound signals, determined from the spectrum, is treated as

an image. After preprocessing, a gray level co-occurrence matrix is

used to extract the texture features. Through extracting sputum-

specific features, we can then use machine learning to diagnose the

sputum condition.

The aim of our research is to develop an approach that can auto-

matically detect the sputum in real-time and inform the medical staff

when sputa exist in the respiratory tract of a patient. Indeed, for an

in-house experiment with 272 respiratory sound samples (including

145 sputum and 127 non-sputum), our automatic approach can cor-

rectly diagnose the sputum at an accuracy of 83.5%. Moreover, this

method can be used practically in clinical environments.

2 Materials and methods

A device is used to measure the respiratory sound from the trachea.

After obtaining the sound data, the method of segmentation is taken

to divide them into several segments, each of which includes one res-

piratory cycle. Each segment consists of several frames. We employ

texture of the time-frequency distribution spectrum as features for

each sound dataset. Using these features, the segments are classified

into sputum sound and non-sputum sound. In the feature extraction

step, the Gray Level Co-occurrence Matrices (GLCM) are used. The

classifier is then set up for classification. The overview of our pro-

posed method is shown in Figure 1.

2.1 Data acquisition device
In this study, a new device was developed to measure the respiratory

sound signals from the trachea. As shown in Figure 2, this device

consists of six major parts: a sound sensor, an audio card, an airway

connector, a waterproof connector, a signal amplifier and a power

supply. The sound sensor is embedded in the respiratory tube. This

way, the noise of environment can be lessened which can increase

Fig. 1. An overview of the method for sputum detection

Fig. 2. Respiratory sound acquisition. The respiratory sound signal was

acquired using the captive microphone with a frequency response from 20 to

20 000 Hz and a dynamic range from 30 to 126
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the signal-to-noise ratio. The amplifier is used to amplify and

denoise the sound signal. The waterproof connector is used to keep

the head of the sound sensor desiccated. The audio card is used to

connect with the computer and transform the analog signal to a digi-

tal one so that the sound can be recorded by the computer with a

sampling rate of 44 100 HZ.

2.2 Data analysis
In order to use respiratory sound signals to distinguish between spu-

tum and non-sputum, we need to obtain the features inherent in the

signals and use these features for classification. The process for data

analysis includes segmentation, feature extraction, feature selection,

model training and model testing (Fig. 3). Respiratory sound acquis-

ition and feature extraction are performed using code from MatLab

(See the Supplementary material for the MatLab codes). Feature

selection and classification are performed with the WEKA machine

learning tool available at http://www.cs.waikato.ac.nz/ml/weka/.

2.2.1 Segmentation of input lung sound

An autocorrelation method is carried out in the segmentation step

(Jalil et al., 2013). Each recording signal will be separated into many

frames by a window function. In this paper, a Hamming window is

used. The autocorrelation Ri xð Þ of the ith frame of recording sound

signal can be calculated as follows.

Ri kð Þ ¼
XL�1�k

m¼0

xi�1 iþmð Þw mð Þ½ � xi iþmþ kð Þw kþmð Þ½ � (1)

where xi iþmð Þ is the ith (i¼1,. . ., M) frame of the signal. M is the

total number of frames. L is the length of the data frame and k is the

time shift used to compute the autocorrelation. In the experiment,

the values of L and k are 1024 and 400 respectively.

Two thresholds, C1 and C2, are calculated to segment the sound

data. Based on the property of respiratory sound, the C1 and C2 are

calculated by the formula C1 ¼ aC0 and C2 ¼ bC0. The values of a

and b should be adjusted based on the measurement environment.

The C0 is the first silent frames of the recording sound signal. It is

assumed that the first 0.025 s of recording sound signal are

silent frames, and the average of their maximum of autocorrelated

functions C0 is calculated. Because the autocorrelation of noise is

much lower than the respiratory sound, the maximum of autocorre-

lation is lower than C1. When the maximum of autocorrelation

(maxRi kð Þ) is greater than C2, it can be used to judge whether the

frames of sound belong to the respiratory cycle. And when the maxi-

mum value of autocorrelation is greater or less than C1, it can be

used to judge the start or end of respiratory cycle. In this paper, to

prevent the short stop between inspiration and expiration from

affecting the segmentation, we introduce the max silence time Ts

whose value is based on the breathing frequency. The section with

low autocorrelation whose lasting time is lower than Ts will still be

treated as a portion of a respiratory cycle.

2.2.2 Feature extraction

From the image of the time-frequency distribution of respiratory

sound signals as described in Figure 4, the difference between the

time-frequency distribution of sputum and non-sputum sound sig-

nals is displayed on the texture of the image. In Figure 4a, some ver-

tical textures can be seen in the red rectangle. However, in Figure

4b, there are few vertical textures. We can use these textures for

classification and sputum detection. That is, the time-frequency dis-

tribution of respiratory sound signals, determined from the spec-

trum, is treated as an image, and the sputum detection is performed

by interpreting the patterns in the image. Short-time Fourier trans-

form (STFT) is used to get the time-frequency distribution of sound

signal (Wang et al., 1993; Yu et al., 2016) and gray level co-

occurrence matrices (GLCM) is used to extract the texture parame-

ters from the image of the time-frequency distribution.

STFT of discrete time signal x nð Þ can be calculated as:

X n;wkð Þ ¼
X1
m¼0

x mð Þ �w n�mð Þ � exp
�2pjkm

N

� �
(2)

where m is the number of frames in advance of the signal, N is the

length of the frame in advance of the signal and the value of N is

1024. w nð Þ is the window function. In this study, Blackman–Harris

window is chosen. Computing the result of this equation with a digi-

tal signal and specific window function yields a matrix of complex

numbers. It can be expressed as followed:

X n; kð Þ ¼
XN�1

m¼0

xn mð Þe�j2pkm
N (3)

To get a digital spectrogram from this, the magnitude of each num-

ber in the STFT matrix is computed and squared.

E n; kð Þ ¼ jX n; kð Þj2 ¼ X n;kð Þð Þ � conj X n;kð Þð Þð Þ (4)

where E n;kð Þ is the power spectrum and its value can present the

image gray level, n is treated as the horizontal axis and k is treated

as the vertical axis. The DB spectrum image is then calculated by

using a transformation of 10 log10 E n; kð Þð Þ. Using the method

above, we determine the time-frequency spectrum as shown in

Figure 4.

After getting the image of time-frequency distribution, the

GLCM is used to quantitatively evaluate textural parameters

(Mohanaiah et al., 2013; Soh et al., 1999; Zucker et al.,1980). The

GLCM is a matrix where the number of rows and columns is

equal to the number of gray level G in the image. The matrix ele-

ment P i; jjd;wð Þ is the relative frequency of two pixels which are sep-

arated by a pixel distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
in the direction of w.

Fig. 3. Procedure of data analysis: segmentation, feature extraction, feature

selection and classification. Autocorrelation method was used to segment the

signal. Feature vectors of signals were obtained by using GLCM and PPC.

Logistic classifier was used for classification
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The element P i; jjd;wð Þ contains the second order statistical proba-

bility and can be written as

P i;j;d;wð Þ¼f x;yð Þ; xþDx;yþDyð Þjf x;yð Þ¼i;f xþDx;yþDyð Þ¼ jg
(5)

Due to their large dimensionality, the GLCM is very sensitive to the

size of the texture samples on which they are estimated. Thus, the

number of gray levels is often reduced. Prior to matrix calculation,

the input gray level of image was reduced to 16 levels while

maintaining the histogram shape. Four important texture features,

angular second moment (energy), inertia moment, correlation and

entropy, were selected.

Angular Second Moment (Energy)

Energy ¼
Xg

i¼1

Xg

j¼1

P2 i; j;d;wð Þ (6)

Inertia moment

IN ¼
Xg

i¼1

Xg

j¼1

i� jð Þ2P2 i; j;d;wð Þ
h i

(7)

Correlation

Correlation ¼
Xg

i¼1

Xg

j¼1

i� j� P i; j;d;wð Þ � u1 � u2½ �= d1 � d2ð Þ (8)

where

u1 ¼
Xg

i¼1

i
Xg

j¼1

P i; j; d;wð Þu2 ¼
Xg

j¼1

j
Xg

i¼1

P i; j;d;wð Þ

d2
1 ¼

Xg

i¼1

i� u1ð Þ2
Xg

j¼1

P i; j; d;wð Þd2
2 ¼

Xg

j¼1

j� u1ð Þ2
Xg

i¼1

P i; j; d;wð Þ

Entropy

Entropy ¼ �
Xg

i¼1

Xg

j¼1

P i; j;d;wð Þ � log10P i; j; d;wð Þ (9)

Based on the data we collected and similar respiratory sound analy-

sis (Nogata et al., 2015), the most texture concentrates on four

directions (w ¼ 0�, 45�, 90�, 135�). Therefore, each feature measure

is obtained for 4 angles (w ¼ 0�, 45�, 90�, 135�). We get 4�4¼16

attributes.

2.2.3 Classification method

Before the classification step, relevant and descriptive features

should be selected. A good set of this feature is the one that contains

features highly correlated with class. In other words, if the feature is

correlated with the class, it will be useful in classification (Hall,

1999). The Pearson correlation coefficient (PCC) gives an indication

of the strength of the linear relationship between features and result

of classification. Based on the value of PCC, the useful feature can

be selected (Zhou et al., 2016). Thus, to find the optimal feature set,

a feature selection method based on PCC is used in this paper.

The task of classifying is deciding class membership y’ of an

unknown item x’ based on a dataset D ¼ x1; y1ð Þ; � � � xn; ynð Þ for

item xi with known class memberships yi. In this study, the type of

classification is a dichotomous classification. The class labels are

either sputum sound or non-sputum sound. yi ¼ 0 represents non-

sputum sound and yi ¼ 1 represents sputum sound. xi’s are usually

d-dimensional vectors which are attributes of the signal. Currently,

logistic regression is a popular method to model binary data and is

often used in biomedical data processing (Press et al., 1978; Subasi

and Erçelebi, 2005). Therefore, logistic regression is used to classify

the sound data. To avoid unstable parameter estimation when the

number of covariates is relatively large or when the covariates are

highly correlated, the logistic regression model with a ridge estima-

tor is applied (Lee et al., 1988).

Fig. 4. Time-frequency spectrum of signal. Image (a) and image (b) represent

sputum sound signal and non-sputum signal respectively. Both images include

three parts, the first part is the original wave signal of respiratory sound. After

STFT, the time-frequency distribution of signal is represented by the second

part. Then through segmentation, the third part that represents the time-fre-

quency distribution of one respiratory cycle is determined. The texture features

are extracted from the image of the time-frequency distribution
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Suppose that there are n observations Xi;Yið Þ, where Y is defined

as Yi ¼ 1 for a sputum sound signal and Yi ¼ 0 otherwise, Xi are

d-dimensional feature row vectors of the signal. Then the probabil-

ity that Yi¼1, given the value of Xi ¼ Xi1; � � �Xi16ð Þ, is denoted by

p Xið Þ and is modeled with the standard logistic regression model.

p Xið Þ ¼
1

1þ e�g Xi ;hið Þ (10)

where g Xi; hð Þ ¼ h0 þ h1Xi1 þ h2Xi2 þ � � � þ h16Xi16, in this paper, h

is a 17-dimensional vector of parameters which can be regarded as

weight of each feature parameter. The probability of Yi is deter-

mined by the value of h. The vector h is chosen so that it maximizes

p Xið Þ. Based on the p Xið Þ, the classification result can be acquired.

There is no constant term involved in this regression problem. The

log-likelihood l of data (X, Y) under this model is

l hð Þ ¼
X

i

Yi log p Xið Þ þ 1� Yið Þ log 1� p Xið Þð Þ½ � (11)

When there is correlation between the various explanatory varia-

bles, it will lead to unstable parameters estimates. If h can be shrunk

towards 0 and allow a little bias, it can stabilize the system and pro-

vide more appropriate estimates. Therefore the log-likelihood l hð Þ
can be rewritten as follows:

lk hð Þ ¼ l hð Þ � kkhk (12)

where l hð Þ is the unrestricted log-likelihood function and

khk ¼ ð
P

h2
j Þ

1=2 is the norm of the parameter h.k is the ridge param-

eter that is used to shrink the norm of h. When k ¼ 0, the problem

will become maximum likelihood estimation. With a small value of k,

a little bias will be introduced to the system, which will stabilize the

system and lower the variance of the estimation. The value of bhk
can

be obtained when the equation reaches its maximum. This way, the

estimate bhk
will be on average closer to the real value of h.

The bhk
can be obtained by the Quasi-Newton method (Richard

et al.,1989). The first derivative of lk hð Þ is

rlk hð Þ ¼
X

i

Xi Yi � p Xið Þð Þ � 2kh (13)

The first step is to construct an objective function. This step is analo-

gous to Taylor‘s transformation.

m sð Þ ¼ lk bhk

k

� �
þrlk bhk

k

� �T

sþ sTBs

2
(14)

where lk bhk

k þ s
� �

� m sð Þ. B is an approximation to the Hessian

matrix which is a positive definite matrix. The gradient of equation

(14) is

rlk bhk

k þ s
� �

� rlk bhk

k

� �
þ Bs (15)

To get the optimal solution, B is chosen to satisfy the Equation (14)

and the gradient is set to zero. Define s ¼ sk, B ¼ Bk, Therefore

sk ¼ �akBk�1rlðbhk

kÞ, where ak ¼ jak�1 0 < j < 1ð Þ should satisfy

the Armijo-Goldstein rule condition that is used to ensure a suffi-

cient descent (Renato et al.,1984). Set bhk

kþ1 ¼ bhk

k þ sk, where sk is

the searching direction to ensure that the iteration is working.

Equation (16) can be identified as

Bk
bhk

kþ1 � bhk

k

� �
¼ rl bhk

kþ1

� �
�rl bhk

k

� �
(16)

When Bk satisfies Equation (16), it can be used to update bhk

k to bebhk

kþ1. In this paper, the DFP method (Richard et al., 1989) is used to

calculate Bk. Suppose that dk ¼ bhk

kþ1 � bhk

k, yk ¼ rlðbhk

kþ1Þ � rlðbhk

kÞ,
Hk ¼ B�1

k . The iteration formula of Bk can be written as follows:

B�1
kþ1 ¼ Hkþ1 ¼ Hk �HkykykTHk

ykTHkykþdkdkT
ykTdk

(17)

With the iteration, the estimate bhk
can be calculated. In this paper, B0

and k are set as B0 ¼ I, k ¼ 1:0� 10�8, respectively. Figure 5 shows

the iteration steps for calculating p Xið Þ in formula (10) and the class

of classification can be determined based on the value of p Xið Þ.

3 Results

We conducted an experiment to test our proposed approach. In this

experiment, 272 respiratory sound samples were collected from 12

intubated patients (with 145 being sputum sounds and 127 being

non-sputum sounds) in the ICU of Chaoyang Hospital. The age of the

patients ranged from 60 to 85years old. Because certain lung diseases

and other diseases (such as pneumonia, respiratory failure, cerebellum

infarctions, etc.) may lead to the lack of ability in breathing by them-

selves, they were intubated to help them breath. The measurement

environment is shown in Figure 6. Before the experiment, the water-

proof connector and other equipment was sterilized with autoclave.

Based on the result of the suction and the judgement of experi-

enced nurses, the presence of sputum was determined and catego-

rized as either sputum or non-sputum. When there was secretion

after suction, the sounds recorded in the 1–2 min before suction

began will be treated as the sputum sound. The sound in 1–2 min

recorded after suction was completed was treated as non-sputum

sound. The accuracy in detection of the presence of sputum was

then evaluated.

3.1 Training data and test data
The data before the suction was defined as sputum sound and those

after suction was regarded as non-sputum sound. The respiratory

sound consists of one or two minute waveforms. All the data was

Fig. 5. The block diagram for the logistic algorithm
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automatically segmented by the autocorrelation method. Through

the simulation using Matlab, as shown in Figure 7, the red solid line

is the start of a respiratory sound cycle and the red dashed line repre-

sents the end of a respiratory sound cycle.

To evaluate the performance of classifiers, we set the training

and test sets using the cross-validation strategy applied to the

patients as follows. Among the 12 patients, we select one patient

and all the sound samples from this patient to form a test set. The

sound samples from the remaining 11 patients form the training

set. For each classifier, we use the training dataset to predict

the test set and obtain a corresponding discrimination rate. We

then apply this process to each of the 12 patients. The overall

performance is the average of the 12 values of discrimination rate

for each classifier. A total of 272 sound samples (145 sputum

sounds and 127 non-sputum sounds) from 12 patients were tested

in this cross-validation process. For each classifier, we look at the

highest discrimination rate and its corresponding number of

features.

In this paper, to minimize the effect of the correlations among

samples from the same patients on the classification, two methods

are taken. One is to use the data that comes from the different meas-

urement time (each patient will be measured 2–4 times.). Because

the sputum is related to the patient situation that is easily affected

by the treatment performance (Burgel et al., 2009), it is always

changing. The generation of sputum sound is more like a random

procedure. The correlation of data comes from different times are

treated as uncorrelated. The other is to define the training data and

test data from the different patients so that the test set comes from a

patient that is independent from the patients in the training set.

3.2 Analytic result
Our proposed method can be evaluated by discrimination rate: how

many segments were correctly classified and how large the sensitiv-

ity and specificity of the diagnosis were. The sensitivity is the pro-

portion of actual positives that are correctly identified whereas

specificity is the proportion of negatives that are correctly identified.

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TN þ FP

where TP, TN, FP and FN denote true-positive, true-negative, false-

positive and false-negative, respectively. In order to compare the

proposed method with the other classification method, Bayesnet,

Naı̈ve Bayes, K-nearest neighbors (KNN), RandomForest and

Reptree were also tested.

To test the reliability of the segmentation method described in

2.2.1, we apply the method to 239 segment samples (including 111

sputum and 128 non-sputum segments) all with known positions.

The accuracy of segmentation is 98.7% overall, 98.2% for the spu-

tum segments and 99.2% for the non-sputum segments, which indi-

cates that the segmentation method is reliable.

As described in Section 2.2.3, PCC was used to rank an attribute.

The results are shown in Table 1. The highest value of PCC was

energy in a 45-degree direction and the lowest value was entropy in

a 45-degree direction (Table 1).

Fig. 6. Measurement environment. The device is connected to the tube of

ventilator near the mouth of a patient. The respiratory sounds are measured

by the sound sensor and then transformed into a digital signal by the audio

card at a sampling rate of 44 100 Hz

Fig. 7. Segmentation. The signal wave was segmented by the red solid lines

and red dashed lines. The red solid line is the start of the respiratory cycle

and the red dash line is the end of the cycle. The bottom panel shows short-

time autocorrelation

Table 1. Correlation between attribute and sputum status

Rankj Feature Direction Coefficient

1 Energy 45 0.130

2 Inertia 90 0.130

3 Energy 135 0.125

4 Energy 0 0.125

5 Energy 90 0.122

6 Inertia 135 0.111

7 Inertia 0 0.110

8 Correlation 45 0.089

9 Correlation 0 0.088

10 Correlation 135 0.088

11 Correlation 90 0.087

12 Entropy 90 0.032

13 Entropy 135 0.031

14 Entropy 0 0.031

15 Inertia 45 0.019

16 Entropy 45 0.018
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In order to compare the logistic model with other commonly

used existing classification methods, Bayesnet, Naı̈ve Bayes, KNN,

RandomForest and Reptree were also tested. Following the rank

order in Table 1, different numbers of features were chosen to con-

duct discrimination using the cross-validation process described in

Section 3.1 for each classifier. The results are shown in Figure 8,

which indicate that the highest discrimination rate is achieved using

the logistic regression model with all the 16 attributes.

The highest discrimination rate and its corresponding number of

attributes for each classifier are shown in Table 2, which leads to

two discoveries. First, the three classifiers with the single highest dis-

crimination rates, i.e. Logistic, KNN and Random forest, all

achieved their highest discrimination rates when all the 16 attributes

were included in the model, indicating that all the 16 attributes

make contribution to classification and should be included in the

classification analysis. Second, among the 6 tested classifiers, the

logistic model achieves the highest discrimination rate of 83.5%.

Based on these discoveries, we adopted the logistic model for dis-

criminating sputum sounds in our automatic sputum detection pro-

cedure. The sensitivity and specificity of this adopted classifier is

further shown in Table 3, which indicates that the sensitivity and

specificity are 82.1 and 85.0%, respectively.

4 Discussion

Several techniques for sound feature extraction in either the time,

frequency or complex domains have been developed (Azarbarzin

et al., 2009; Charleston et al.,2011; Riella et al., 2009; Waitman

et al., 2000; Zolnoori et al., 2012). However, most of them

(Azarbarzin et al., 2009; Charleston et al.,2011; Waitman et al.,

2000; Zolnoori et al., 2012) have focused on the extraction of the

information contained in only a narrow band of the signal spectrum,

centering on the fundamental or one of the harmonics of the respira-

tory sound signal frequency. In this paper, the method of features

extraction in the joint time-frequency domain was proposed. The

spectrum gives a one to one mapping between each signal compo-

nent. There are no interference terms. The pattern can be displayed

in the distribution and correctly reflect the local energy distribution

over the time and frequency domains. Based on the GLCM method

for texture feature extraction, the wave signal recognition was trans-

formed into a visual-based recognition. This constitutes a novel

wide band analysis technique. In addition, to reduce heavy back-

ground noise, the sound sensor was embedded in a thick tube which

was used to connect the trachea with the airway of the ventilator.

There are five steps in the process of classification. They are res-

piratory data acquisition, auto-segmentation, feature extraction,

feature selection and classification. Because the sound sensor was

embedded into respiratory airway, the thick tube of airway can min-

imize the background environment noise. Because of this, the signal-

to-noise ratio can be increased. Auto-segmentation was performed

by the maximum of autocorrelation function. Based on the property

of respiratory sound, the threshold of C1 and C2 are calculated by

the formulas C1 ¼ aC0 and C2 ¼ bC0 respectively. The segmenta-

tion method is reliable with an accuracy of over 98%.

In this paper, various classifiers (including the logistic model,

Bayesnet, Naı̈ve Bayes, KNN, RandomForest and Reptree) were

investigated. Table 2 shows that the highest accuracy was obtained

by using the logistic model and it can reach 83.5%. The sputum

sound and non-sputum sound were 82.1 and 85.0% respectively

(Table 3). The classification accuracy of non-sputum sound is higher

than the sputum sound.

In this study, experiments were conducted using real data

recorded at the ICU. Our method achieved a discrimination rate of

about 83% which can be accepted by the doctor in ICU. The experi-

mental results show that the proposed detection system is able to

effectively detect respiratory sounds associated with sputum for the

real environments in the hospital. Our proposed approach is a neces-

sary and novel way to help doctors or nurses judge when to proceed

with endotracheal suctioning and reduce the frequency of unneces-

sary suction. According to American Association for Respiratory

Care (AARC) guideline (AARC, 1993), the endotracheal suctioning

should be performed at a minimum frequency or when clinically

indicated (i.e. when complications due to accumulated secretions

are manifested). Since endotracheal suctioning can cause hypoxe-

mia, mechanical trauma, bronchospasm and hemodynamic instabil-

ity, an accurate assessment of the need for suctioning may decrease

the frequency of suctioning complications.

For future work, possible improvements can be introduced by

increasing the number of features, implementing recently developed

non-linear metrics such as sample entropy (Zhang et al., 2017) and

strictly standardized mean difference (Zhang et al., 2011) and select-

ing more appropriate training samples (Ren et al., 2017). In addi-

tion, more subjects with various types of sounds will be tested. In

Fig. 8. The accuracy of classification with various classifiers

Table 2. The highest discrimination rate and its corresponding

number of features for each classifier

Classifier Highest discrimination rate (%) Number of attributes

Logistic 83.5 16

KNN 73.2 16

Random forest 68.7 16

Reptree 64.0 15

Bayesnet 60.0 10

Naı̈ve Bayes 57.1 15

Table 3. Confusion matrix for the logistic method

Signal Class Accuracy (%)

Sputum Non-sputum

Sputum 119 26 82.1

Non-sputum 19 108 85.0
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clinical practice, the first question to be asked is whether there exists

a sputum condition. Thus, in this paper, we develop an automatic

approach to detect whether a sputum condition exists. In addition

to answering the question of whether a sputum condition exists,

doctors are also interested in predicting the amount, proportion and

location of sputum. Hence, there is also a future need to build mod-

els capable of detecting that information.
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