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Abstract: Bacterial canker of tomato is caused by Clavibacter michiganensis subsp. michiganensis
(Cmm). The disease is highly destructive, because it produces latent asymptomatic infections
that favor contagion rates. The present research aims consisted on the implementation of Raman
spectroscopy (RS) and machine-learning spectral analysis as a method for the early disease detection.
Raman spectra were obtained from infected asymptomatic tomato plants (BCTo) and healthy controls
(HTo) with 785 nm excitation laser micro-Raman spectrometer. Spectral data were normalized
and processed by principal component analysis (PCA), then the classifiers algorithms multilayer
perceptron (PCA + MLP) and linear discriminant analysis (PCA + LDA) were implemented. Bacterial
isolation and identification (16S rRNA gene sequencing) were realized of each plant studied. The
Raman spectra obtained from tomato leaf samples of HTo and BCTo exhibited peaks associated to
cellular components, and the most prominent vibrational bands were assigned to carbohydrates,
carotenoids, chlorophyll, and phenolic compounds. Biochemical changes were also detectable in the
Raman spectral patterns. Raman bands associated with triterpenoids and flavonoids compounds can
be considered as indicators of Cmm infection during the asymptomatic stage. RS is an efficient, fast
and reliable technology to differentiate the tomato health condition (BCTo or HTo). The analytical
method showed high performance values of sensitivity, specificity and accuracy, among others.

Keywords: Clavibacter michiganensis subsp. michiganensis; plant disease surveillance; precision
farming; principal component analysis (PCA); multilayer perceptron (MLP); linear discriminant
analysis (LDA)

1. Introduction

The world population is rising continuously, therefore, it is essential to maintain an
adequate food supply in order to satisfy the nutritional requirements of people living
in urban and rural areas. The increase of crop productivity, without causing farmland
degradation and overexploitation of natural resources poses a great challenge to producers.
The adoption of improved agricultural practices contributes to increase crop efficiency, but
food security is threatened by outbreaks of pests and plant diseases [1]. Therefore, highly
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efficient technologies applied for monitoring plant health are necessary, and those that
provide an early detection of potential phytosanitary problems are strongly desired [2].

Tomato (Solanum lycopersicum L.) cultivars can be infected by Clavibacter michiganensis
subsp. michiganensis (Cmm); a plant pathogenic actinomycete considered to be the causal
agent of bacterial canker of tomato (BCTo). Cmm is directly responsible of important
economic losses in tomato-growing areas worldwide and it is classified as a quarantine
organism [3]. Potential yield losses can be severe (20–84%), but they vary according to
year, phenological stage of host infection, cultivar, cultural practices, etc. [4]. There are
no Cmm-resistant tomato cultivars and chemical control is not effective [5]. Bacteria can
survive in soil and organic debris for several years, so preventive practices are the best
alternative for its control, because bacterial dispersion is favored by cultural practices and
irrigation [6,7]. The generation of fast, sensitive and cost-efficient methods is necessary for
early disease detection. The European and Mediterranean Plant Protection Organization
(OEPP/EPPO) has proposed a standard diagnostic protocol to isolate and identify the Cmm
bacterium from plants and seeds [3]. The advantages and disadvantages considering the
sensitivity and specificity of each diagnostic method, are discussed in [8–10]. The standard
methods to diagnose and identify the causal agent Cmm involve bacterial isolation from
the host tissue and its growth in a semi-selective media. Then bacterial colonies with
suspicious cultural morphology are purified and analyzed by biochemical, serological, or
molecular methods [3]. The diagnostic procedure is usually labor intensive, costly, and
requires specialized technical training and scientific equipment.

BCTo disease detection in the field is currently based on the visual search of typical
symptoms in the plant, such as the unilateral wilting of leaflets and leaves, the presence
of corky spots on the stems and petioles, marginal leaf necrosis and internal stem discol-
oration, which can lead to sudden plant wilting and death [9]. However, the number of
infected plants is usually higher than those with visible symptoms, and in many cases, the
contagion’s incidence is underestimated because Cmm can produce latent asymptomatic
infections [7,11]. Previous works have found evidence that Cmm behaves as an endophyte
during early stages of infection but, over time, the bacterium changes its behavior inducing
disease symptoms. The transition from endophyte to pathogen is governed by the expres-
sion of putative virulence factors and the evasion or suppression of plant defense reactions.
The phenomenon is modulated by bacterial population density (quorum-sensing), plant
age, genetic diversity and the prevalent environmental conditions [4,8–10].

Raman spectroscopy (RS) is a spectroscopic technique used to determine the vibra-
tional modes of molecules by recording the inelastic scattering of photons. A major
technological innovation occurred with the invention of solid-state continuous wavelength
lasers and highly stable CCDs that allowed Raman spectrometer miniaturization and porta-
bility. Currently, RS is implemented in multiple research areas, and its application in plant
pathology are focused on early disease detection, because RS can differentiate diseased
plants based on the biochemical changes induced by a specific phytopathogen during the
plant-pathogen interaction [12]. RS procedures are fast, non-invasive and does not require
previous sample preparations [13]. Several plant diseases with diverse etiology have been
already studied using RS with the intention of performing an early plant disease diagnostic:
Candidatus Liberibacter asiaticus and Xanthomonas axonopodis pv. citri bacterial pathogens
in orange [Citrus x sinensis (L.) Osbeck] [14–16], pepper mild mottle virus (PMMoV) and
Obuda pepper virus (ObPV) in chili crops (Capsicum annuum L.) [17]; Tomato yellow leaf
curl Sardinia virus (TYLCSV) and tomato spotted wilt virus (TSWV) in tomato cultivars
(S. lycopersicum) [18], the fungus Aspergillus flavus, A. niger, Fusarium spp., and, Diplodia
spp., affecting maize grain (Zea mays L.) [19], the abutilon mosaic virus (AbMV) affecting
abutilon (Abutilum hybridum Voss) cultivars [20] and the diagnosis of rose rosette disease
(Rosa spp.) caused by the rose rosette virus (RRV) which is transmitted by eriophyid
mites [21], among others.

Considering the aforementioned, the present research aim consists on the implemen-
tation of RS as a method for the early detection of the bacterial canker of tomato (BCTo),
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and thus, being able to differente the asymptomatic diseased plants from the healthy ones.
At the same time, we also performed the quantitative validation of this technique as a
preventive, rapid and accurate diagnostic tool.

2. Materials and Methods
2.1. Experimental Setup

Tomato seeds (S. lycopersicum) of Seminis® Reserva F1 variety (Bayer AG, Leverkusen,
Germany) were germinated in peat moss (Premier Horticulture Inc., Rivière-du Loup, QC,
Canada), transplanted and kept in plastic containers. Subsequently, tomato plants at the
four-leaf stage were infected with Cmm bacteria according to the procedure described by [5]
to compose the infected plants treatment (BCTo). The healthy control plants (HTo) were
inoculated with sterilized water under the same experimental conditions. Each treatment
was on sets of ten plants and the experiment was repeated under the same conditions in
order to verify the observed results. Cultural practices were done in accordance to local
recommendations [22] and growth temperature was 23 ± 2 ◦C.

2.2. Raman Spectra Data Acquisition

Treatments were analyzed 30 days after the inoculation (DAI). The procedure consisted
of randomly selecting three asymptomatic leaves from each asymptomatic plant. Leaf
samples with no nutrient deficiency symptoms, chlorosis, physical damage, nor strange
particles such as residues from insects or dust were selected. The leaves were rinsed with
deionized sterile water and once dried leaflets were cut, and immediately analyzed at
two-four points on the adaxial side. The Raman spectra were recorded by using a Horiba
XploRA ONE™ confocal microscope spectrometer (Horiba Scientific, Ltd., Minami-ku, OP,
Japan) equipped with a 785 nm DPSS laser, CCD photodetector and 2 cm−1 of spectral
resolution. The Raman measurement conditions were 800–1800 cm−1 of spectral range,
10 s of acquisition time, 5 accumulations, ≈20 mW laser power, 1200 gr/mm grating, 100
µm slit, 300 µm hole and 20× magnification objective (micro spot with 10 µm ø). The
calibration was performed daily by recording the Raman signal of a silicon wafer. In total,
177 spectra were obtained from infected plants (BCTo) and 120 spectra from the healthy
control plants (HTo). Raman spectra shown in this work correspond to the raw baseline
corrected results.

2.3. DNA Confirmatory Diagnosis

Bacterial isolation was done from vascular tissue of each tomato plant studied. The
extracted tissue (0.5 g) was immersed in 20 mL of saline solution (NaCl 0.85%) and later
50 µL of the suspension were seeded in Petri dishes with yeast peptone glucose agar
(YPGA) solid medium, and incubated at 28 ◦C. The isolated colonies with typical morphol-
ogy to Cmm were identified by using 16S rRNA gene sequencing [3,23]. Single bacterial
colonies were grown in NBY broth (nutrient broth 8 g/L, yeast extract 2 g/L, glucose
5 g/L, MgSO4 7H2O 0.24 g/L) for 24 h at 28 ◦C. The bacterial cell pellets were harvested
(centrifuged at 12,000 rpm/10 min) and resuspended in lysis buffer (Tris-HCl 50 mM,
EDTA 50 mM, SDS 3%), and incubated at 65 ◦C for 40 min. The lysates were mixed
with an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) and centrifuged at
13,000 rpm for 5 min. The aqueous phases were then transferred to a new Eppendorf
tube and mixed with 100 µL sodium acetate (3 M) and 1 mL of cold ethanol (−20 ◦C).
The mixes were incubated on ice for 25 min and centrifuged at 13,000 rpm for 15 min.
The supernatants were decanted, the DNA pellets were washed with 500 µL of ethanol
70% and centrifuged at 13,000 rpm for 2 min. The ethanol was decanted, and the DNA
pellets were dried at room temperature. The pellets were resuspended in 50 µL of sterile
Milli-Q® water and stored at −20 ◦C. A fragment of 16S rRNA gene was PCR ampli-
fied using the universal primers F27 (5′-AGAGTTTGATCMTGGCTCAG-3′) and R1492
(5′-TACGGYTACCTTGTTACGACTT-3′) [24]. PCR products of expected sizes were puri-
fied and sequenced. The partial sequences of 16S rRNA genes were analyzed using Basic



Plants 2021, 10, 1542 4 of 13

Local Alignment Search Tool Ver. 2.9.0 (BLASTn) at National Center for Biotechnology
Information (NCBI, Bethesda, MD, USA) to identify strains for similarity comparison at
the DNA sequence level [25].

2.4. Chemometric Analysis

In order to have an automated characterization of the spectral features from healthy
(HTo) and asymptomatic infected plants (BCTo), the original spectra were first preprocessed
by eliminating the background fluorescence by subtracting a fifth-order polynomial [26].
Once the baseline correction was done, a standard normal variate (SNV) normalization
was applied taking in all the available data samples [27]. SNV normalization is given by
applying the following equation:

sni =
si − si√

∑N
1 (si − si)

2/(N − 1)
(1)

where sni is the entry corresponding to the i-th wavenumber (Raman shift) of the normal-
ized vector, which correspond to the i-th Raman shift of each spectral raw data vector after
the detrending process by subtraction of the fifth-order polynomial; it stands for the mean
of all vectors and represents the total number of samples. Previous works [28,29] proposed
to normalize Raman spectra to specific vibrational bands, because spectral intensities can
vary with coloration of each specimen, and symptoms induced by biotic (phytopathogens)
or abiotic (nutrient deficiencies) factors [30]. However, BCTo disease is characterized by
the lack of symptoms during early disease stages, so we use SNV normalization due to the
particularities of the analyzed pathosystem [10].

After data was prepossessed, we implemented the following sequence of algorithms
using the Python programing language [31] for a mechanized feature extraction proce-
dure. Starting by computing the first principal components (PCs) [32] of the set of vectors
obtained by normalizing the debased numeric values of Raman spectra for the samples.
These PCs were calculated by employing the Sklearn scientific programming libraries [33],
as well as the corresponding fractions of explained variances for each PC. Once these data
were obtained, with the intention of determining the spectral wavenumbers that have the
greatest influence over the PCs, we developed a mechanism for the inspection of the coeffi-
cients of the correlation matrix obtained by the factor analysis procedure [34]. The criterion
used to select the most important wavenumber for the classification was to consider those
which’s associated correlation factors (loadings) satisfy the following inequality:

2
N

n

∑
i=1
|ci|σi ≥ |cmax| (2)

where ci is the correlation between the PCi with the Raman shift to be analyzed, σi is the
explained variance for PCi, and |cmax| represents the maximum of the absolute values of the
correlation matrix. In this way, we manage to assign the largest weight to the correlations
associated with the PCs that explain most of the variance among the spectral samples. With
this set of wavenumber values, we created a sequence of continuous intervals, which were
related to the vibrational modes of the compounds that differentiate the plant samples into
the HTo (healthy) and BCTo (asymptomatic infected) classes. These spectrum areas give the
main wavenumber intervals that reveal the largest contributions to the variances between
both types of samples. The procedures described above convert such differences into a
comparative metric for the quantitative description of the intervals with most influence in
the classification. With the purpose of providing predictive capabilities to this methodology
to differentiate their health condition (BCTo or HTo), we employed a classifier implemented
by a neural network of the multilayer perceptron (MLP) type [35] employing the Sklearn
library. A model with 1000 hidden layers was used with the logistic function acting as
activation rule. To train the neural network, the Raman spectra were divided into two
subsets. By doing so, 70% of the samples were used as a training set, the remaining 30%
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of the spectra were used for validation, such dataset division is commonly employed
in artificial intelligence (AI) training stages in order to avoid overfitting [36] and as it
is influenced by the proportion rather than the number of samples taken. Additionally,
a classic classifier based on internal and external class variations was employed. The
method of linear discriminant analysis (LDA) [37] was added in order to have comparative
metrics and to ensure that the classification is not dependent on the classifier method, but
on the information contained in the spectral samples. In the two classification models
employed on this research, PCA is used for feature extraction, and then a classifier is
applied over such features represented by the principal components after the criterion
stated in Equation (2) is applied. Thus, comparing performances on disease detection
with each of the two classifiers operating on the principal components of the spectra, we
executed both procedures in combination with the principal component analysis (PCA).
We identify each mechanism as (PCA + MLP) when a neural network is being used on the
principal components and as (PCA + LDA) for the classifier using the principal components
with the linear discriminant analysis. For each classifier we evaluate their performance
with sensitivity values (SENS), specificity (SPEC), accuracy (ACC), positive prediction
values (PPV), negative prediction values (NPV) and F1-Score. The equations employed in
terms of true positives (TP), false positives (FP), true negatives (TN) and false negatives
(FN) are described in [38].

To make sure that classifier agreement results are not influenced by chance, we evalu-
ated the Cohen’s kappa coefficient [39] given by:

K =
(po − pe)

(1− pe)
(3)

where po is the measured agreement between classifications and pe represents the probabil-
ity for the classifications to be in agreement.

3. Results and Discussion

The group of infected plants (BCTo) remained asymptomatic during the evaluation,
and they only displayed a general growth reduction as described by [40]. Bacterial colonies
were isolated in YPGA medium from the BCTo group, and these colonies were circular,
convex, with smooth edges and mucoid texture, opaque, of yellowish color and Gram
(+) bacillus. Such features correspond to the ones described for Cmm [3]. The isolated
strains were identified by sequencing a > 1 kilobase (kb) of genomic region 16S rRNA
gene fragment and searching for homology at DNA level with BLASTn in NCBI. The
analysis allowed to classify the isolated strains as related to Clavibacter michiganensis subsp.
michiganensis when comparing with the reference sequences (NCBI Accession Number:
HQ144239.1, KR922121.1, KR922121.1, HQ144230.1). No bacterial colonies similar to Cmm
were isolated from control plants (HTo).

Bacterial isolation and DNA analysis (standard diagnostic protocol) confirmed the
plants health condition: asymptomatic infected (BCTo) and healthy (HTo), so Raman
spectroscopy is used to determine changes in plant metabolism of both groups, to provide
a confirmatory diagnostic of the bacterial canker of tomato disease induced by Cmm.
Previous studies have demonstrated that RS can allows to rapid confirmatory diagnostic,
before symptoms onset [18,29].

3.1. Spectral Differences between Groups: HTo and BCTo

The Raman spectra obtained from tomato leaves of healthy (HTo) and infected plants
(BCTo) exhibited peaks associated to cellular components, and the most prominent vibra-
tional bands were associated to monomeric and polymeric carbohydrates, carotenoids,
chlorophyll, and phenolic compounds (Table 1). The compatible pathogen-plant interaction
(Cmm-tomato) is an extremely complex biological system, because Cmm can manipulate
the plant metabolism and evade defense responses allowing the bacteria to multiply and
to shift from an endophytic to a pathogenic state, the process induce latent asymptomatic
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infections [10]. Biochemical alterations induced during the tomato-Cmm interaction were
also detectable in the Raman spectral patterns (Figure 1).
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Figure 1. Normalized Raman spectra obtained from healthy tomato plants (HTo) and asymptomatic
infected plants (BCTo). Dashed lines represent the wavenumber associated with key compounds.

BCTo group displayed an increased relative intensity at 1037–1090 cm−1 region,
and bands of 1070 and 1310 cm−1, which are related to cellulose polymers [41,42]. The
1112 cm−1 wavenumber showed a higher relative intensity, the band is associated to carbo-
hydrates monomer [18]; which suggests possible degradation processes on cell walls [4].
Different enzymes produced by Cmm take part in the degradation of cell walls during the
infection process and these are responsible for the virulence of the pathogen [9,10].

Table 1. Vibrational bands and their assignments for tomato leaves.

Band (cm−1) Vibrational Mode Molecular Assignation

915 ν(C-O-H) in plane, symmetric Cellulose, lignin [41]
985 δ(CH3) Chlorophylls [43]
1001 δ(C-CH3) Carotenoids [44,45]

1037–1090 CC and CO stretching Cellulose [42]
1070 ν(CO) Cellulose [41]
1112 δ(C-OH) Carbohydrates [18]
1156 ν(C-C) Carotenoids [44,45]
1180 ν(C-C) γ(CH) Chlorophylls [18,46]
1227 δ(CCH) Cuticle Triterpenoids [41]
1263 (=CH) Carotenoids [18]
1284 δ(phenyl-OH) Phenolics [44]
1310 δCH2 bending Cellulose [41]
1328 δ(CH)·ν(CN) Chlorophylls, Pyrrole ring br.- [18]
1350 CH3 Bend Chlorophylls [46]
1370 C-H deformation (asymmetric) Lignin [47]
1384 δCH2 bending Aliphatic [48]
1435 δ(CH2), δ(CH3)

Cuticle Triterpenoids [48]1462 δ(CH2), δ(CH3)
1482 δ(CH2), δ(CH3)
1522 ν1(C=C) Carotenoids [44]
1545 C=O stretching Flavonoids [49]
1600 C=C (aromatic ring) Lignin [47]
1620 β sheet Proteins [50]
1665 β sheet Amide I [51,52]
1680 Cycl. [ν(C=O)] Flavonoids [49]
1690 β turn Proteins [50]
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Diverse reports state that Cmm-infected plants accumulate phenolic compounds, such
as lignin and callose, at their xylem tissues [53,54], the lignin are cross-linked phenolic
polymers that also form part of cell walls, the associated bands exhibited an enhancement at
1370 and 1600 cm−1 [47]. Other Raman bands assigned to phenolic nature compounds also
showed changes in the relative intensity, because the 1284 cm−1 wavenumber increased
in diseased plants (BCTo). Flavonoids are substances considered with antimicrobial activ-
ity [53]. The healthy tomato group (HTo) showed higher intensity at 1545 and 1680 cm−1

wavenumbers, both Raman bands associated to flavonoids [49], which can be considered
as indicators of Cmm infection during the asymptomatic stage.

Triterpenoids are compounds commonly found in plant cuticular wax, which have
important functions, such as protection against pathogens [41,48]. The bands associated to
triterpenoid compounds at 1227 [41], 1435, 1462 and 1482 cm−1 [48] showed an intensity
difference between HTo and BCTo groups. Histological studies reported by [55] have stated
that tomato plants infected by Cmm showed changes in the deposition of waxy substances
on epidermal cells. Later, the thickening and lignification of cell walls were observed in
infected plants. Changes on Raman bands associated with triterpenoids are important
indicators of Cmm-infected plants during the asymptomatic stage.

Plants have a basal system for defense, and a second system based on signals that
induce the activation of genes to deal with infections in progress [56,57]. Cmm has the
ability of inhibiting these defense mechanisms in the tomato plants, because peroxidases
and other enzymes are generally downregulated, while maintaining the functional photo-
synthetic activity [58,59]. In addition, during the oxidative stress induced by the infection
process [58], the carotenoid compounds reduce the concentration of oxygen reactive species
(ROS) [60] and, consequently, the stability of cell membranes and photosynthetic activity
are maintained [61]. The representative chlorophyll Raman bands (985, 1180 and 1350 cm−1)
remained more or less stable, only slightly increasing their relative intensity in the infected
plants group (BCTo). The bands associated with carotenoid compounds showed similar
behavior between the analyzed groups (HTo and BCTo), and these were represented by
wavenumbers of 1001, 1156 and 1263, but the band at 1522 cm−1 has higher intensity in the
healthy group (HTo).

Finally, changes were detected in the intensities of 1665 and 1690 cm−1 in the healthy
tomato group (HTo), which can be assigned to proteins [50–52], this change probably
indicates the plant long distance signaling transduction triggered by the biotic stressor
(Cmm bacteria), characterized by the down-regulation of genes at early stages of Cmm
infection [59].

The previously described observations match the biochemical changes induced by
Cmm in tomato plant [8–10]. Previous works have demonstrated that RS techniques
provide a clear differentiation between biotic stress (bacterial infection), abiotic stress
(nutritional deficiencies) and healthy plants [16]. RS has the sensitivity to differentiate
a simple or multiple viral infection in the same host [18,62], including the presence of
secondary infections [30]. Additional works are required to determine the Raman spectral
specificities to the different diseases that affect tomato plant.

3.2. Chemometric Analysis and Spectral Classification

By using the PCA methodology, components of the six eigenvalues with the largest
absolute contributing values to the spectral differences were obtained. These first 6 PCs
explained up to 82% of the variance in the Raman spectra of the analyzed samples. The
choice of use of PCA for feature extraction is based on the fact that the most spectral
samples are linearly separable by hyperplanes in the component spaces [32] defined by
PC1 to PC3 and PC4 to PC6 (Figure 2).
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and PC4–PC6.

The absolute loading values are represented in Figure 3, they show which wavenum-
bers have bigger correlations with the features (in our case, principal components) that
make the largest distinctions between Raman spectra corresponding to healthy (HTo) and
the asymptomatic tomato infected plants (BCTo). The correlation matrix involved in the
PCA process was examined under the procedure described in the methodology section of
this document to automatically detect the spectral band intervals, which are associated to
chemical species of interest (Table 1) considered as disease markers [18].
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The main wavenumbers in the first principal components, can be thought as the
ones implicated with the changes of Raman intensity bands associated to the biochemical
compounds that distinguish the infected plants from healthy ones [18,30]. Therefore, the
largest loadings and the associated wavenumbers with their respective related chemical
compounds. Although, there are other features not presented with large influence in
the correlation matrix for the first PCs (Figure 3), such characteristics cannot be directly
associated to changes of Raman intensity bands associated to biochemical compound of
interest. The larger correlation values (0.01–0.02) were associated to compounds from the
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photosynthetic system (chlorophyll and carotenoids), the cell walls components (cellulose
and lignin) and other substances considered as antimicrobial metabolites (phenolic and
flavonoids). It is worth noting that while Figure 1 depicts only the centroids of the spectra
for the two HTo and BCTo sets, their respective variances are not considered in the figure.
Therefore, it is difficult in this case, if not impossible, to effectively make a characterization
of the two groups by only considering spectral centroids. Such centroids are not used
by the feature extraction procedure employed here. Instead, a combination of PCs and
linear discriminant loading-based criteria determined by Equation (2) is used. Variances
are best analyzed along principal component axes, and that is the justification for which
PCA are taken as input for the proposed classifier. On the other hand, we found that,
considering principal components, the spectra samples exhibited great class separability
between the two groups on the feature spaces regarding PC1–3 and PC 4–5, depicted at
Figure 2. It is important to note that, in comparison with the centroids of the spectra shown
in Figure 1, where some important bands present similar average values, as should be
expected due to the fact that most infected plants were asymptomatic, PC vectors plotted
in Figure 2 are distributed in a more separable manner. This separability comes from the
different behavior presented by the variances of each group along the considered range
of the spectra for both classes and is quantitatively computed by the LDA method. To
make sure that such separability correlates to BCTo-associated compounds, the automated
technique described in the methodology section was executed, the results showed that
many of the wavenumbers that have larger contributions to the main PCs, corresponded to
chemical compound associated to the compatible pathogen-plant interaction as described
in the previous section.

The classifiers algorithms multilayer perceptron (PCA + MLP) and linear discriminant
analysis (PCA + LDA) can differentiate the classes analyzed (HTo and BCTo). Perfor-
mance of the PCA + MLP and PCA + LDA classifiers presented high sensitivity values
in both cases (1.0), but the specificity was superior for PCA + MLP (0.95) compared to
the PCA + LDA (0.88) classifier. The accuracy and positive predictive value were slightly
higher in PCA + MLP (0.99 and 0.98) when compared to PCA + LDA (0.97 and 0.97), re-
spectively. The metric parameters NPV and F1-score showed adequate performance for
both classifiers (1.0 and 0.99). Performance measurements for the classification strategies
employed in this works are shown in Table 2. The few cases that cannot be easily dis-
tinguished in a linear fashion (LDA), the multilayer perceptron (MLP) can operate over
features in a non-linear way, which is probably the reason for its superior performance.
Therefore, the steps described in the sections above provide a way to detect asymptomatic
infected plants, by means of Raman spectroscopy.

Table 2. Classifier performance comparison for characterization of Raman spectra of healthy (HTo)
and asymptomatic infected plants (BCTo).

Metrics PCA + MLP PCA + LDA

SENS 1.0 1.0
SPEC 0.95 0.88
ACC 0.99 0.97
PPV 0.98 0.97
NPV 1.0 1.0

F1-Score 0.99 0.99
SENS = Sensitivity, SPEC = Specificity, ACC = Accuracy, PPV = Positive Predictive Value, NPV = Negative
Predictive Value.

Cohen’s kappa coefficients were obtained between the two classifiers PCA + MLP
and PCA + LDA (κmlp−lda) and for each of them with accordance to the ground truth(

κmlp−gnd

)
and

(
κlda−gnd

)
respectively according to Equation (3). Table 3 shows the

coefficients resulted from each calculation.
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Table 3. Cohen’s kappa coefficients (κ) comparing agreement.

κmlp−lda κmlp−gnd κlda−gnd

0.937326 0.922452 0.985053
Subscripts: mlp = multilayer perceptron; lda = linear discriminant analysis; gnd = ground truth

All values shown in Table 3 are close to 1, which means that the agreement on class
labels obtained is not influenced by chance, and that the result is not dependent on the
classifier. Besides, having

(
κmlp−gnd

)
as the value nearest to 1, confirms that the method

using the neural network is more accurate with respect to the ground truth than the more
traditional PCA + LDA approach.

4. Conclusions

Early detection of bacterial canker of tomato is essential for epidemiological monitor-
ing and plant disease management. The present work has demonstrated the usefulness
of Raman spectroscopy as an efficient, fast and reliable technology to differentiate the
infected asymptomatic plants (BCTo) from their healthy counterparts (HTo), by means
of Raman spectral signatures obtained from their developing leaves. The biochemical
changes induced by the plant-pathogen interaction were detectable by Raman spectra and
separable by machine-learning. The multilayer perceptron (MLP) and linear discriminant
analysis (LDA) algorithms showed reliable performance values after data treatment by
means of principal component analysis (PCA), but PCA + MLP was slightly compared
to PCA + LDA. High accuracy in discerning asymptomatic infected plants from healthy
ones with the procedures here described comes from the fact that the principal components
of the spectra belonging to each group are distributed across highly separable sets on the
principal component space. Despite having, at first glance, very similar spectral centroids,
their respective variances differ significantly among spectral frequency bands, identified in
this work by the wavenumbers that have larger contributions to the main PCs. These bands
are associated the vibrational modes of key chemical compounds associated to the disease
process, and such conditions were exploited for an effective detection of the infected plants
with Cmm bacteria.
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