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Abstract: Hydrogenation of CO2 to form methanol utilizing green hydrogen is a promising route to
realizing carbon neutrality. However, the development of catalyst with high activity and selectivity
to methanol from the CO2 hydrogenation is still a challenge due to the chemical inertness of CO2

and its characteristics of multi-path conversion. Herein, a series of highly active carbon-confining
molybdenum sulfide (MoS2@C) catalysts were prepared by the in-situ pyrolysis method. In compari-
son with the bulk MoS2 and MoS2/C, the stronger interaction between MoS2 and the carbon layer
was clearly generated. Under the optimized reaction conditions, MoS2@C showed better catalytic
performance and long-term stability. The MoS2@C catalyst could sustain around 32.4% conversion of
CO2 with 94.8% selectivity of MeOH for at least 150 h.
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1. Introduction

Carbon dioxide is one of the important greenhouse gases contributing to global
warming, glacial melting, sea-level rise, ocean acidification, and hypercapnia [1,2]. While
CO2 is also an inexpensive, abundant, sustainable, and renewable C1 resource [3,4], it can
be captured and utilized in a rational way to form high value-added chemicals, such as
carbonate, methanol, formic acid, olefins, aromatics, and so on [5,6]. CO2 conversion to
MeOH is the most direct route for synthesizing oxygenated compounds and has received
great interest [7–9]. As a feedstock, methanol can be used as a precursor for synthesizing
aromatics and low olefins; moreover, it is also considered to be a green hydrogen carrier
and is used as a fuel additive and fuel substitute directly [10]. Although the synthesis of
MeOH from CO2 and H2 is exothermic, CO2 conversion to MeOH is kinetically limited
at low temperatures and thermodynamically limited at high temperatures. Due to a high
activation energy barrier for the cleavage of the C-O bonds in CO2, which clearly results in
a chief challenge to developing effective catalysts for the synthesis of methanol from CO2
at a low temperature.

Until now, there are numerous endeavors on different catalyst systems to address CO2
hydrogenation to methanol, such as Cu-based catalysts [11–13], precious metal catalysts [14–18],
In2O3-based catalysts [19–21], solid solution catalysts [22–24], and so on. Among these catalysts,
the Cu/ZnO/Al2O3 catalyst has been used as an industrial catalyst for methanol synthesis
from CO2 hydrogenation. Therefore, Cu-based catalysts have been extensively investigated in
CO2 hydrogenation to methanol and the Cu-ZnO composite is employed as the active species
in more than 60% of related reports [25]. However, Cu-based catalysts showed lower selectivity
and poor stability because of the competing reverse water-gas shift reaction and the sintering
of the active phase, and it was exacerbated by the hydrophilicity of Al2O3, which could adsorb
water generated from the CO2 hydrogenation. Therefore, there was an urgent need to develop
highly efficient catalysts for CO2 hydrogenation to methanol.
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As a typical two-dimensional lamellar material, MoS2 shows magic physical and
chemical properties and is consequently applied in catalysts for hydrogen evolution re-
actions in electrocatalysis, hydrodesulfurization, and synthesis gas conversions. Early
in 1981, Saito and Anderson used MoS2 as a catalyst for CO2 hydrogenation at 350 ◦C,
1 atm, and H2/CO2 = 3.74 [26], while CO was the sole product due to the water gas shift
reaction. Combining the electrical conductivity of graphenes with the catalytic activity of
MoS2, a few layers of MoS2 platelets supported on few-layers graphene exhibited high
catalytic activity for CO2 hydrogenation, but the major product was methane, frequently
with selectivity above 95% and in some cases close to 100% [27]. The catalytic performance
of MoS2 for CO2 hydrogenation has been studied by density functional theory (DFT) and
calculations suggest that MoS2 could promote the C-O scission of HxCO intermediates, thus
explaining the high selectivity of hydrocarbons in the CO2 hydrogenation process by using
molybdenum sulfides as a catalyst [28]. Interestingly, MoS2 has been used as a support for a
single atom in the hydrogenation of CO2. The main product was methanol [29]. Zeng et al.
have reported that the MoS2 supporting isolated Pt monomers favored the conversion of
CO2 into methanol, and the selectivity of methanol arrived at 95.4% [30]. These results
were thanks to the synergetic interaction between neighboring Pt monomers on MoS2.
Recently, Wang et al. [31] found that the sulfur vacancy played a key role in the adsorption
and activation of CO2 when the sulfur vacancy-rich MoS2 was used as a catalyst for the
hydrogenation of CO2. At 180 ◦C, the selectivity of methanol was achieved at 94.3% with
a 12.5% CO2 conversion at 3000 mL gcat.

−1 h−1 and the catalyst exhibited high stability
over 3000 h without any deactivation. However, improving the catalytic performance of
molybdenum sulfide in CO2 hydrogenation to form methanol is still a challenging topic.

Due to anisotropy, the average slab length and layer stacking were important for
describing any catalytic active edge sites of MoS2. Therefore, adjusting the slab length and
layer stacking of MoS2 would be an effective strategy to generate more active edge sites.
Abundant strategies were designed to develop nano-scaled MoS2 with highly exposed
active edge sites to enhance its catalytic activity. In our previous work, MoCS@NSC has
been prepared and showed the 97.3% selectivity of MeOH and a 20.0% conversion of CO2
in the CO2 hydrogenation [32]. In this catalyst, nano-sized MoS2 was in-situ generated in
the process of preparing nano-sized Mo2C confined in carbon material by the pyrolysis
of ionic liquid precursors, but its effects on the CO2 hydrogenation to form methanol
were not clear. In the present work, carbon-confining molybdenum sulfide (MoS2@C) was
designed and prepared using glucose as a carbon source by the in-situ pyrolysis method.
On the one side, the carbon layer coating the surface of MoS2 could improve the adsorption
quantity of CO2; on the other side, MoS2 with few layers and little size was prepared by
the confinement effect of carbon, which exposed the more active edge sites. As a result, the
catalytic performance of MoS2 in CO2 hydrogenation to form methanol would be improved.
Moreover, the influence of the interaction between MoS2 and the carbon coating layer on
the CO2 hydrogenation was investigated, and the activation and the conversion route of
CO2 in the presence of MoS2@C were also discussed by in situ diffuse reflectance infrared
Fourier transform spectroscopy (DRIFTS).

2. Experiment
2.1. Materials

Glucose, ammonium molybdate, and thiourea (NH4)6Mo7O24·4H2O, AMT were re-
ceived from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). CO2 (99.99%) and
5% Ar/95% H2 (99.99%) were obtained from Qing Hua Gas Company Limited (Harbin,
China), and all reagents were unused and not further purified.

2.2. Catalyst Preparation
2.2.1. Synthesis of MoS2

The MoS2 was synthesized according to the literature [31] and as follows: ammonium
molybdate (1235.9 mg) and thiourea (2283.6 mg) were dissolved in 20 mL of distilled
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water. Then the resulting solution was placed in the glass evaporating dish at 80 ◦C for
12 h, and the dried mixture was calcined at 550 ◦C for 2 h in a nitrogen atmosphere, thus
generating MoS2.

2.2.2. Synthesis of MoS2@C

Ammonium molybdate (1235.9 mg), thiourea (2283.6 mg), and glucose (9458.4 mg)
(the molar ratio of carbon to molybdenum was 45) were dissolved in 35 mL of distilled
water. Then the resulting solution was placed in the glass evaporating dish at 80 ◦C for
12 h, and the dried mixture was calcined at 550 ◦C for 2 h in a nitrogen atmosphere. Finally,
the MoS2-45@C was obtained.

According to the same processes, the MoS2-5@C sample was prepared when the molar
ratio of carbon to molybdenum was reduced to 5 in the precursor.

2.2.3. Synthesis of MoS2/C

MoS2/C catalyst was prepared by the isovolumic impregnation method. Ammonium
molybdate (1235.9 mg) and thiourea (2283.6 mg) were dissolved in distilled water. The
coconut shell charcoal was added to the solution to achieve a 5% wt. loading. Then the
solid was dried at 80 ◦C and calcined at 550 ◦C for 2 h under a nitrogen atmosphere. After
this process, the MoS2/C was prepared.

2.3. Catalyst Characterization

The crystalline phase of the catalyst was characterized by X-ray diffraction (XRD) on a
D8 Advance with an acceleration voltage of 40 kV.

The microstructure of the catalyst was observed by transmission electron microscopy
(TEM) on a JEM-2100 with an acceleration voltage of 200 kV.

The electronic properties of the catalyst surface were determined by X-ray photoelec-
tron spectroscopy (XPS) with an ESCALAB 25, monochromatic Al Kα-rays as the X-ray
source, and energy of 1486.6 eV.

The CO2-programmed temperature desorption (TPD) was performed. A 0.2 g sample
was purged at 500 ◦C for 60 min under He (40 mL/min). It was naturally cooled to 50 ◦C
and adsorbed for 60 min under CO2 (40 mL/min). The sample was then purged for
30 min in He (40 mL/min) and finally warmed from 50 ◦C to 400 ◦C at 10 ◦C/min in He
(40 mL/min) for CO2 desorption.

In-situ diffuse reflectance and infrared Fourier transform spectroscopy (DRIFTS) mea-
surements were carried out on a Frontier spectrometer by PerkinElmer. The sample was
placed directly in the in-situ cell with a ZnSe window and pretreated at 400 ◦C for 60 min
with an H2 flow of 20 mL/min, and then the background spectrum of the sample was
collected from 500 to 4000 cm−1. The feed gas H2/CO2 (3/l, 60 mL/min H2, 20 mL/min
CO2) was introduced into the cell. The in-situ DRIFTS were recorded with a resolution of
4 cm−1 and with an accumulation of 32 scans every 1 min.

2.4. Catalytic Performance Test

The activity measurements for CO2 hydrogenation were performed in a continuous
flow high pressure fixed bed reactor (12 mm internal diameter). Prior to the reaction, the
catalyst was pretreated in situ for 3 h at 400 ◦C in pure hydrogen (22 mL/min). After
the reactor had cooled to 220 ◦C, feed gas with an H2/CO2 ratio of 3/l and a pressure
of 3.0 MPa was introduced into the reactor. The effluent was quantified using a Tianmei
GC-7900 F and a GC-7890-II gas chromatograph equipped with a flame ionization detector
and a thermal conductivity detector, respectively.

2.5. Calculation of CO2 Conversion and Product Selectivity

The CO2 conversion was calculated by an internal normalization method, and the fol-
lowing Equations (1)–(5) were used for calculating CO2 conversion and product selectivity.
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The CO2 conversion is expressed as Conv.CO2 and the selectivity of the products CO,
CH4, CH3OH and CH3OCH3 is expressed as Sel.CO, Sel.CH4 , Sel.CH3OH and Sel.CH3OCH3

respectively (Equations (1)–(5)). ACO2,out, AAr,in, AAr,out are the peak areas of the CO2 and
Ar signals at the inlet and tail, in the following order. fCO2 and fAr are the correction
factors for CO2 and Ar, in the order of precedence. ACO,out and fCO, in turn, are the tailpipe
signal response area and correction factor for CO. nCH4,out, nCH3OH,out, nCH3OCH3,out in order,
represent the molarity at the tail gas of CH4, CH3OH, and CH3OCH3. nCO2,in and nCO2,out
are the order of the moles of CO2 inlet and tail gas.

Conv.CO2 =

ACO2, in fCO2
AAr,in fAr

−
ACO2,out fCO2

AAr,out fAr
ACO2, in fCO2

AAr,in fAr

× 100% (1)

Sel.CO =

ACO,out fCO
AAr,out fAr

ACO2, in fCO2
AAr,in fAr

−
ACO2,out fCO2

AAr,out fAr

× 100% (2)

Sel.CH4 = 100% × nCH4,out/
(

nCO2,in − nCO2,out

)
(3)

Sel.CH3OH = 100% × nCH3OH,out/
(

nCO2,in − nCO2,out

)
(4)

Sel.CH3OCH3 = 100% × 2nCH3OCH3,out/
(

nCO2,in − nCO2,out

)
(5)

In addition, the space time yield (STY) of CH3OH was calculated according to the
following Equation (6):

STY =
FMY
VmW

(6)

where F is the volumetric flow rates of CO2, M is the molecular mass of CH3OH, Vm is
the molar volume of an ideal gas at standard temperature and pressure (22.414 L/mol), W
is the mass of catalyst, and Y is the yield of CH3OH, respectively.

3. Results and Discussions

The crystal phase structure of MoS2 samples was confirmed by the XRD patterns and
is shown in Figure 1. The XRD characteristic diffraction peaks of the bulk MoS2 were
shown at 14.4◦, 32.9◦, 39.5◦, 49.8◦, 58.8◦, and 69.2◦, which were assigned to (002), (100),
(103), (105), (110), and (108) crystalline planes of MoS2 [33]. When MoS2 was supported
on the coconut shell charcoal, except for the characteristic diffraction peak at 2θ of 26◦

attributed to graphitic carbon [34], there was also a weaker diffraction peak at 2θ of 44.2◦,
which was assigned to the (105) crystallographic plane of MoS2. It was suggested that
MoS2 was successfully supported on coconut shell charcoal. When the molar ratio of
carbon to molybdenum is 45 in the precursor, the resulting MoS2-45@C only shows a broad
diffraction peak at 2θ of 26◦, which corresponds to the (002) planar diffraction peak of
graphite [34]. While the characteristic diffraction peaks of MoS2 were not apparent, it was
due to the high dispersion of MoS2.

When the molar ratio of carbon to molybdenum was decreased to 5 in the precursor,
the characteristic diffraction peaks of MoS2-5@C shown at 32.9◦, 39.5◦, and 58.8◦ were
attributed to the (100), (103), and (110) crystallographic planes of MoS2, respectively. These
results confirmed that the carbon, which was formed by in-situ pyrolysis, showed the
confinement effect on the synthesis of MoS2.
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Figure 1. XRD patterns of MoS2 samples.

It also can be seen that all patterns are characterized by broad reflections with low
intensities, and these observations are clear hints for the poor crystallinity and sizes of
coherent scattering domains within the nano regime. Compared with the bulk MoS2 sample,
the intensity of the (002) reflection at 2θ of 14◦ disappeared for the samples MoS2/C, MoS2-
5@C, and MoS2-45@C. This observation can be explained by the decreasing number of
stacked MoS2 slabs in the products [35]. These results also indicated the confinement effects
of in-situ formation carbon could suppress the growth of MoS2 grains.

To further enlighten the structure of MoS2, transmission electron microscopy (TEM)
and high-resolution TEM (HRTEM) analyses were also carried out. From Figure 2a, it can
be seen that the bulk MoS2 has more layers on the edge, and the thicker part in the middle
is not even visible. The clear lattice striations on the surface clearly show that the crystal
plane spacing is 0.62 nm, corresponding to the (002) crystal plane of MoS2. Compared
with bulk MoS2, MoS2/C is limited by the pores of the coconut shell charcoal (Figure 2b),
and the layer number of MoS2 in MoS2/C was decreased to 7, which corresponded to the
results of XRD. These results suggested that loaded on the support was beneficial to reduce
the layers of MoS2 [36–38]. The image of Figure 2c showed MoS2 with fewer layers and
the smaller practical was obtained successfully in MoS2-45@C when the carbon was in situ
formed from the pyrolysis of glucose, and it was beneficial to expose the more active site at
the edges for the CO2 hydrogenation. The SAED patterns (Figure 2d) demonstrate the low
crystallinity of MoS2, which matches the XRD results.

An X-ray photoelectron spectroscopy (XPS) characterization was carried out to further
study the element chemical states in MoS2 samples. Figure S1 and Table S1 showed the
XPS survey spectra of the samples under study, and the numerical values of the surface
composition obtained from these spectra were given in Table S1. The elements of Mo, S, C,
and O were detected on the surface of all samples, and the N element was also found on
the surface of MoS2/C and MoS2-45@C. Note that the ratio of the Mo and S in bulk MoS2
followed the chemical formula, while the ratio of the Mo and S in MoS2/C and MoS2-45@C
was lower than the chemical formula. These results indicate that the carbon material was
doped by the S element when the MoS2 was generated in MoS2/C and MoS2-45@C.

Figure 3a and Table S2 show the high-resolution XPS spectrum in the Mo 3d region,
and the Mo 3d peaks of the bulk MoS2 sample with binding energies of 232.0 and 229.1 eV
are indexed to Mo 3d3/2 and Mo 3d5/2, respectively, indicating the presence of Mo4+ of
molybdenum disulfide [39]. In addition, a small peak at 226.1 eV was found and assigned
to S 2s [39]. In XPS of MoS2/C, there are two prominent peaks assigned to Mo 3d3/2 and Mo
3d5/2 (232.0 eV and 229.1 eV), which demonstrate the existence of Mo4+ and the successful
synthesis of MoS2 [40]. Additionally, the peaks at 232.8 and 235.9 eV can be ascribed
to Mo6+ 3d5/2 and 3d3/2, which were formed by the surface oxidation of MoS2 [41–43].
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Compared with MoS2/C, the characteristic peaks corresponding to Mo4+ and Mo6+ were
also found, but the binding energy between the Mo6+ 3d5/2 and 3d3/2 in MoS2-45@C gave
a negative shift (0.4 eV), suggesting that the electron interactions between carbon and the
MoS2 surface in MoS2-45@C were stronger than in MoS2/C. It is worth mentioning that
the two obvious peaks centered at 231.1 and 228.0 eV imply the existence of a C-Mo bond,
further confirming the stronger interfacial interaction between the MoS2 surface and the
carbon coating layer in MoS2-45@C [44], which could weaken the Mo-S bond [45].
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Figure 2. Catalyst characterization: (a) MoS2 TEM (20 nm); (b) MoS2/C TEM (20 nm); (c) MoS2-45@C
HRTEM (10 nm); (d) MoS2-45@C SAED (5 l/nm).

As exhibited in Figure 3b and Table S3, the S 2p spectra of the bulk MoS2 sample
showed two strong peaks at 163.2 eV and 161.8 eV for the S2p1/2 and S2p3/2 binding
energies of S2− [46,47]. The electron binding energy of S 2p3/2 of S2− in MoS2/C and
MoS2-45@C had a negative shift of about 0.3 eV compared with MoS2, respectively. It
indicated the existence of electron interactions between the carbon coating layer and the
MoS2 surface. Moreover, the doublet peaks at 163.7 and 164.8 eV were found, and they were
assigned to S2

2− and apical S2−, which indicates the formation of sulfur vacancies on the
catalyst surface [48]. The sulfur vacancies could induce the charge-density redistribution,
thus producing much more active sites on the catalyst surface. Except, so far, the peak
with a binding energy of 168.3 eV was detected in the XPS of MoS2/C and MoS2-45@C,
which resulted from the surface oxidation of sulfur elements, and it was contributed to the
presence of a sulfate group [49].

In addition, three peaks were present at 395.1 eV, 398.2–398.6 eV, and 400.1–400.5 eV in
the N1s high-resolution XPS spectrum of MoS2-45@C and MoS2/C (Figure S2 and Table S4),
which can be assigned to Mo3p, pyridinic-N, and pyrrolic-N [49]. It was mentioned that
the binding energy of pyridinic-N and pyrrolic-N in MoS2-45@C was 0.4 eV lower than
that in MoS2/C, demonstrating an increased electron cloud density around nitrogen in
MoS2-45@C, which was benefited by the adsorption of CO2 on its surface.

Moreover, observing the C 1s spectra of MoS2-45@C, it was clearly divided into five
fitted peaks at 284.5, 285.2, 286.1, 286.6, and 288.6 eV, which can be related to C-C, C-O,
C-O-C/S, C-O-Mo, and C=O (Figure S3 and Table S5). It shows that MoS2 could also be
tightly linked with carbon by the C-O-Mo bond, being conducive to the MoS2 confined in
the carbon coating layer [44]. As shown in Figure S4 and Table S6, the peaks in the O1s
spectrum at 533.3 eV, 532.5 eV, 531.7 eV, and 530.8 eV are for the Mo-O, C-OH, C-O/O-C-N,
and O=C groups, respectively [50].
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Due to the dual-site mechanism for CO2 hydrogenation, the adsorption and the
activation of CO2 occur on the surface of the supporter, implying that the activity and
conversion of CO2 are closely related to the surface basicity of the supporter [25,51–54].
The CO2-TPD experiments were carried out, and the results are shown in Figure 4 and
Figure S5. The temperature of the CO2 desorption peak was increased with the order
bulk MoS2 < MoS2/C < MoS2@C < NSC (N,S-codoping carbon), and the area of the CO2
desorption peak was also raised in the same order, suggesting the basic strength and the
number of basic sites were enhanced with the order bulk MoS2 < MoS2/C < MoS2@C <
NSC. It was due to the strong acid-base interactions between the basic S-C functional group
and the acidic CO2 molecule in the carbon skeleton and the strong dipole-dipole interaction
between the large quadrupole moment of the CO2 molecule and the polar sites associated
with the sulfur functional group [55].

Under 220 ◦C, 3 MPa, and a gas hourly space velocity (GHSV) of 5670 mL h−1 gcat.
−1,

the catalytic performance was evaluated in a fixed-bed reactor, and the results are listed in
Table 1. As a reference catalyst, the catalytic performance of NSC was investigated first,
and the result showed CO2 could not be converted, suggesting that NSC had no catalytic
activity in the CO2 hydrogenation, although it exhibited the highest CO2 adsorption
capacity. Employing MoS2 as a catalyst, the selectivity of methanol arrived at 66.9% with
the 18.3% conversion of CO2, and methane, as the major byproduct, was found with a 32.7%
selectivity. Meanwhile, dimethyl ether (DME) was also detected with a 0.4% selectivity.
These results indicated that MoS2 displayed catalytic activity for CO2 hydrogenation, but
the selectivity of methanol was lower, and the high selectivity of methane was given. Using
MoS2-45@C as an alternative catalyst, the selectivity of methanol was improved to 95.8%
with the 27.3% conversion of CO2, the selectivity of methane was reduced to 4.2%, and
DME was not detected. Additionally, the STY of methanol arrived at 0.538 ggcat.

−1 h−1

in the presence of MoS2-45@C. On the one hand, exposing the more active sites to thin
and small MoS2 and the higher carbon dioxide adsorption capacity of MoS2-45@C were
beneficial for accelerating the CO2 conversion due to the dual-site mechanism for CO2
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hydrogenation, and the complete decomposition of CO2 on the surface of MoS2-45@C
was inhibited by the higher carbon dioxide adsorption capacity, which was conducive to
improving methanol selectivity [56–58]. On the other hand, the stronger interaction of
MoS2 and the carbon coating layer in MoS2-45@C was also beneficial to CO2 hydrogenation
by decreasing the Gibbs free energy of hydrogen adsorption [43]. Moreover, the high
selectivity of methanol was also thanks to the additional S-vacancy in the MoS2-45@C
catalyst (Figure S6) [31]. When the molar ratio of carbon to molybdenum was decreased
to 5 in the precursor, the MoS2-5@C gave a 79.9% selectivity of methanol with an 18.4%
conversion of CO2. These results were probably because the larger size of MoS2 and the
less active site were exposed. The compared catalyst, MoS2/C, showed a 78.5% selectivity
of methanol, while the conversion was very low (only 4.2%). This was due to the fact that
the 5% loading capacity of MoS2 on the coconut shell carbon was too low, which resulted
in a large amount of adsorbed CO2 that could not be efficiently converted.
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Table 1. The performance of catalyst in CO2 hydrogeantion [a].

Catalyst Conversion/%
Selectivity/% STY

CH3OH CH4 CH3OCH3 /gMeOH gcat.−1 h−1

NSC - - - - -
MoS2 18.3 66.9 32.7 0.4 0.252

MoS2-45@C 27.3 95.8 4.2 0 0.538
MoS2-5@C 18.4 79.9 20.1 0 0.302
MoS2/C 4.2 78.5 21.5 0 0.068

[a] Reaction conditions: 160 ◦C, 3 MPa, GHSV 5670 mL gcat.
−1 h−1, VH2/VCO2 = 3.

In the presence of MoS2-45@C, the reaction conditions were optimized, and the re-
sults are shown in Figure 5. Firstly, the effects of reaction temperature on the catalytic
performance were investigated (Figure 5a).

It can be seen that the CO2 conversion was increased by enhancing the reaction
temperature, and it was improved from 26.3% to 32.6% by raising the temperature from
140 ◦C to 240 ◦C. These results indicated that MoS2-45@C exhibited higher catalytic activity
at a low temperature. When the reaction was performed at 140 ◦C, 89.0% selectivity of
methanol was given, and the methane selectivity reached 11.0%. With increasing reaction
temperature to 160 ◦C, the selectivity of methanol was improved to 95.8%. Further raising
the reaction temperature to 240 ◦C, the selectivity of methanol was reduced, and an 82.6%
selectivity of methanol was obtained. It was probably because the too high reaction
temperature contributed to the full decomposition of CO2 on the catalyst surface and
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enhanced the catalytic hydrogenation activity, which contributed to the high selectivity of
methane. Additively, CO was found when the reaction was performed at 240 ◦C in the
presence of MoS2-45@C.
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Controlling the reaction temperature at 160 ◦C, the effects of pressure on the CO2
hydrogenation were evaluated by using MoS2-45@C as a catalyst (Figure 5b). With increas-
ing the reaction pressure, the CO2 conversion was gradually increased with no significant
change in methanol selectivity. These results suggest the higher reaction pressure has a
positive effect on the CO2 conversion. It was because the CO2 hydrogenation was a volume
reduction reaction. At the same time, the higher reaction pressure was advantageous for the
adsorption of CO2 on the surface of MoS2-45@C, which was favorable for the conversion
of CO2. In Figure 5b, it is worth noting that the 12.2% conversion of CO2 and the 92.2%
selectivity of methanol were given when the reaction pressure was reduced to 1 MPa. These
results suggested that MoS2-45@C displayed a highly catalytic performance under the low
reaction pressure. Following that, the influence of the ratio of H2 and CO2 in the feed gas
on the CO2 hydrogenation was also investigated (Figure 5c). The results showed the CO2
conversion was susceptible to the ratio of H2 and CO2 in the feed gas, while the selectivity
of methanol was kept almost unchanged.

Stability is a fatal issue for the catalysts, which were used in CO2 hydrogenation.
Under the optimal reaction conditions, the stability of MoCS-45@C was investigated in a
fixed-bed reactor, and the results are shown in Figure 6. In the first 20 h, the CO2 conversion,
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the methanol selectivity, and STY were increased with prolonged reaction time, while the
methane selectivity was decreased. When the reaction time was more than 20 h, the catalytic
performance of MoCS-45@C was kept stable. The CO2 conversion was stabilized at around
32.4%, with about 94.8% selectivity of methanol. During the reaction period of 150 h, the
catalytic performance of MoCS-45@C showed almost no attenuation, which suggests a
promising prospect for industrial applications.
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To propose a reaction sequence and a surface reaction mechanism, in situ diffuse
reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) was used to identify
the evolution of surface species on the surface of MoS2-45@C. The in-situ drift spectra for
the hydrogenation of CO2 to methanol over MoS2-45@C at 180 ◦C with time were shown in
Figure 7, and detailed information on the evolution of intermediate species could be found.

Firstly, the pure CO2 was introduced into the MoS2-45@C catalyst (Figure 7a), and
the IR bands at 1420, 1437, 1458, 1522, 1542, and 1575 cm−1 were observed, which were
assigned to adsorbed *CO2 species [59–63]. Moreover, IR bands at 1474 and 1558 cm−1

also came into the formation, assigned to bidentate carbonate [59,64], and the signals of
monodentate carbonate species were prevalent at 1490 and 1508 cm−1 [64,65]. Additionally,
their intensities were increased by prolonging the contact time of CO2 and MoS2-45@C
from 1 min to 8 min. These results indicated that CO2 could be adsorbed on the surface of
the MoS2-45@C catalyst, and the adsorption capacity of CO2 was improved by prolonging
the contact time of CO2 and MoS2-45@C. It was worth noting that the IR bands at 2078
and 2094 cm−1 were found when the MoS2-45@C catalyst was exposed to the CO2 atmo-
sphere. These results indicated that CO2 was dissociated to yield surface-bound CO* on
the catalytic surface [56,58,66], and their intensities were increased as time went on. These
results would be beneficial for increasing the selective synthesis of methanol from the CO2
hydrogenation [31]. Then, the feeding gas was switched from pure CO2 to H2 (Figure 7b),
and the CO* peaks from the dissociation of CO2 gradually disappeared with the rise of
CH3O* peaks (2864 and 2917 cm−1) [62,67], and the intensity of which decreased as time
went on, thereby indicating the hydrogenation of CO* to CH3O* and then the formation of
CH3OH. At the same time, a weak shoulder peak that appeared at 2957 cm−1 in the ν (CH)
region was also detected, and it was a combination of the CH bending and asymmetric
OCO stretching modes of formate species (HCOO*) [60,68]. It was indicated the carbonate
species adsorbed on the surface of the MoS2-45@C catalyst were also hydrogenated. These
results explain the decrease in the peaks intensity of the carbonate species when H2 was
introduced. Moreover, the IR bonds at 2850 cm–1 were also found, and they were assigned
to the symmetric and asymmetric H2CO* stretching vibrations [60,69], respectively, which
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might derive from both formate and CO-hydro pathways. These results confirmed that
both CO and formate were significant intermediate species for CO2 hydrogenation to
methanol over the MoS2-45@C catalyst. Exposing MoS2-45@C to the feed gas (CO2 + H2),
similar in-situ drift IR spectra were obtained (Figure 3c), and these results suggested that
the HCOO* hydrogenation route and the CO* hydrogenation route were performed simul-
taneously in the presence of the MoS2-45@C catalyst in the CO2 hydrogenation. Hence,
combining the results of in-situ DRIFTS with the literature [56–69], we held the opinion
that the hydrogenation of HCOO* and CO* were all carried out when MoS2-45@C was
employed as a catalyst in the CO2 hydrogenation (Figure 8).
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