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Abstract
Endocrine and paracrine fibroblast growth factor 23 (FGF23) is a protein predominantly produced by bone cells with strong 
impact on phosphate and vitamin D metabolism by targeting the kidney. Plasma FGF23 concentration early rises in kidney 
and cardiovascular diseases correlating with progression and outcome. Lactic acid is generated in anaerobic glycolysis. Lactic 
acidosis is the consequence of various physiological and pathological conditions and may be fatal. Since FGF23 production 
is stimulated by inflammation and lactic acid induces pro-inflammatory signaling, we investigated whether and how lactic 
acid influences FGF23. Experiments were performed in UMR106 osteoblast-like cells, Fgf23 mRNA levels estimated from 
quantitative real-time polymerase chain reaction, and FGF23 protein determined by enzyme-linked immunosorbent assay. 
Lactic acid dose-dependently induced Fgf23 gene expression and up-regulated FGF23 synthesis. Also,  Na+-lactate as well 
as formic acid and acetic acid up-regulated Fgf23. The lactic acid effect was significantly attenuated by nuclear factor kappa-
light-chain enhancer of activated B-cells (NFκB) inhibitors wogonin and withaferin A. Lactic acid induces FGF23 produc-
tion, an effect at least in part mediated by NFκB. Lactic acidosis may, therefore, be paralleled by a surge in plasma FGF23.
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Abbreviations
1,25(OH)2D3  Calcitriol
AMPK  Adenosine monophosphate-dependent 

kinase
ANOVA  Analysis of variance
DMEM  Dulbecco’s modified eagle medium
ELISA  Enzyme-linked immunosorbent assay
EPO  Erythropoietin
FBS  Fetal bovine serum
FGF23  Fibroblast growth factor 23
NFκB  Nuclear factor kappa-light-chain enhancer 

of activated B-cells
PTH  Parathyroid hormone
qRT-PCR  Quantitative real-time polymerase chain 

reaction
sKL  Soluble klotho
SEM  Standard error of mean
Tbp  TATA box-binding protein

Introduction

Bone cells are the main source of fibroblast growth factor 
23 (FGF23), a proteohormone with additional paracrine 
effects [1–4]. As an endocrine factor, it regulates vitamin 
D and phosphate homeostasis in the kidney by down-reg-
ulating CYP27B1, the key enzyme for activation of vita-
min D, and NaPiIIa, the major  Na+-dependent phosphate 
transporter [5–8]. In doing so, FGF23 inhibits the synthesis 
of 1,25(OH)2D3, active vitamin D [9], and enhances renal 
phosphate excretion resulting in lower plasma phosphate 
levels [10]. In the parathyroid glands, FGF23 decreases the 
secretion of parathyroid hormone (PTH) [11, 12]. Taken 
together, FGF23, 1,25(OH)2D3, and PTH are part of a com-
plex hormone circuit influencing each other and controlling 
phosphate as well as  Ca2+ homeostasis [5].

The aforementioned endocrine effects of FGF23 are 
dependent on a membrane receptor which assembles with 
transmembrane protein αKlotho [13–15]. Apart from being 
the co-receptor for FGF23, αKlotho has become known 
as a powerful anti-aging factor: Transmembrane αKlotho 
can release a fragment called soluble Klotho (sKL) with 
additional endocrine effects including anti-cancer activity 
[16–19]. FGF23 or αKlotho deficiency results in rapid aging 
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and early onset of aging-associated diseases [14] whereas 
overexpression of αKlotho extends the life span of mice by 
about 30% [20].

Paracrine effects of FGF23 may affect the liver [21], heart 
[3, 22, 23], or immune system [24] and are, at least in part, 
αKlotho independent.

In clinical medicine, the plasma FGF23 concentration has 
been revealed as a valuable disease biomarker [25] which 
is positively correlated with progression and outcome in 
chronic kidney disease [26, 27] and further cardiovascular 
disorders [28–30].

Therefore, the regulation of FGF23 production is of high 
interest. Regulators of FGF23 include diet [31–33], PTH 
[34, 35], 1,25(OH)2D3 [36, 37], systemic factors such as 
inflammation [38–42], other hormones including erythro-
poietin (EPO) [43, 44] or insulin [45] as well as intracellu-
lar signaling pathways such as adenosine monophosphate-
dependent kinase (AMPK) signaling [46].

Lactic acid is the result of anaerobic glycolysis. Its pro-
duction is enhanced both under physiological conditions 
(e.g., physical activity above the anaerobic threshold leading 
to a marked surge in the plasma lactate concentration [47]) 
and pathological conditions (e.g., poorly controlled diabe-
tes [48] or intoxication with metformin [49]). The resulting 
lactate acidosis [50] can have a wide spectrum of outcomes 
ranging from rapid recovery over life-threatening conditions 
[51] to death [52].

Since inflammation is a major driver of FGF23 produc-
tion [53] and lactate induces pro-inflammatory activity [54], 
we sought to clarify whether and by which mechanism lactic 
acid regulates FGF23 production.

Methods

Cell culture

Cell culture experiments were conducted with UMR106 
rat osteoblastic osteosarcoma cells (CRL-1661; ATCC, 
Manassas, VA, USA) cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) high glucose (Gibco, Life Tech-
nologies, Darmstadt, Germany) supplemented with 10% 
fetal bovine serum (FBS) (Gibco, Life Technologies), 100 
U/ml penicillin, and 100 μg/ml streptomycin (Gibco, Life 
Technologies) under standard culture conditions. Cells were 
pretreated with 10 nM 1,25(OH)2D3 (Tocris, Bristol, UK) 
for 24 h (6-well format; 2 ×  105 cells/well). Twenty-four 
hours later, they were treated with the indicated concen-
tration of L-lactic acid or Sodium  (Na+)-L-lactate (sodium 
chloride as vehicle control; Sigma–Aldrich, Schnelldorf, 
Germany; 24 h), nuclear factor kappa-light-chain enhancer 
of activated B-cells (NFκB) inhibitors withaferin A (Tocris; 
500 nM, 24 h) or wogonin (Sigma; 100 µM, 24 h), or with 

vehicle only. Withaferin A and wogonin are potent inhibi-
tors of NFκB signaling [55–57] that is a major enhancer of 
Fgf23 gene expression [58]. In further series of experiments, 
UMR106 cells were treated with 22.8 mM formic acid (Carl 
Roth, Karlsruhe, Germany), 10 mM acetic acid (Carl Roth), 
or water for 24 h and, pH of supernatants was measured.

Quantitative real‑time PCR

Total RNA from UMR106 cells was extracted by means of 
RNA-Solv reagent (Omega Bio-Tek, Norcross, GA, USA). 
CDNA synthesis was performed with 1.2 µg RNA, random 
primers, and the GoScript™ Reverse Transcription System 
(Promega, Walldorf, Germany; 25 °C for 5 min, 42 °C for 
1 h, and 70 °C for 15 min). Fgf23 expression was determined 
by qRT-PCR on a CFX Connect™ Real-Time System (Bio-
Rad, Feldkirchen, Germany) using GoTaq qPCR Master Mix 
(Promega). QRT-PCR conditions were 95 °C for 2 min, 40 
cycles of 95 °C for 10 s, 57 °C for 30 s, and 72 °C for 25 s 
(2 μl cDNA, 0.25 μM (Fgf23) or 0.5 µM (TATA box-binding 
protein, Tbp) of each primer, 10 μl GoTaq® Green Master 
Mix (Promega) and RNAse-free water up to a total volume 
of 20 μl). Fgf23 mRNA expression levels were referred to 
the expression levels of Tbp.

The following primers were used:

Rat Fgf23

Forward (5ʹ → 3ʹ):TAG AGC CTA TTC AGA CAC TTC.
Reverse (3ʹ → 5ʹ): CAT CAG GGC ACT GTA GAT AG.

Rat Tbp

Forward (5ʹ → 3ʹ): ACT CCT GCC ACA CCA GCC .
Reverse (3ʹ → 5ʹ): GGT CAA GTT TAC AGC CAA GAT 
TCA .

ELISA

To determine FGF23 in the supernatant of UMR106 cells 
vivaspin 6 centrifugal concentrators (Sartorius, Göttingen, 
Germany) were used. C-terminal FGF23 was determined by 
ELISA (Immutopics, San Clemente, CA, USA) according to 
the manufacturer’s protocol. This ELISA exhibits a sensitiv-
ity of 4 pg/ml, an intra-assay precision coefficient of varia-
tion of 4.5–6.2%, and an inter-assay precision coefficient of 
variation of 4.4–5.9% according to the manufacturer. With 
regard to the binding region of the antibodies used, homol-
ogy with rat amounts to 95% (capture antibody) and 90% 
(detection antibody) according to the manufacturer.
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Statistics

All data provided are arithmetic means ± standard error of 
mean (SEM), and n represents the number of independent 
experiments. Normality was examined with Shapiro–Wilk 
test. To determine statistical significance, data passing nor-
mality test were compared by paired t-test. For more than 
two groups, one-way analysis of variance (ANOVA) fol-
lowed by Bonferroni correction was applied. Data that failed 
Bartlett’s test of homogeneity of variances were analyzed 
using Welch’s ANOVA test followed by Dunnett’s T3 cor-
rection. If Shapiro–Wilk showed p < 0.05 for comparison of 
more than two groups, nonparametric Kruskal–Wallis test 
with Dunn’s correction was used for statistical analysis. Test 
results with p < 0.05 were considered statistically significant. 
Statistical analysis was performed using GraphPad Prism 9 
(Version 9.2.0; GraphPad Software Inc., San Diego, CA, 
USA).

Results

Lactic acid induces FGF23 production in UMR106 
cells

We utilized UMR106 osteoblast-like cells to study Fgf23 
gene expression and FGF23 protein production. In a first 
series of experiments, these cells were treated with differ-
ent concentrations of lactic acid for 24 h, and subsequently 
Fgf23 gene expression was determined by qRT-PCR. Lac-
tic acid dose-dependently up-regulated the abundance of 
Fgf23 mRNA (Fig. 1) pointing to a stimulation of Fgf23 
gene expression.

Next, we aimed to study whether the stimulatory effect 
of lactic acid on Fgf23 gene expression also translates into 
enhanced FGF23 protein secretion into the cell culture 
supernatant. To this end, we determined C-terminal FGF23 
by ELISA. A 24 h treatment with 25 mM lactic acid signifi-
cantly increased the concentration of C-terminal FGF23 in 
the cell culture supernatant of UMR106 cells (Fig. 2).

Sodium lactate induces Fgf23 expression in UMR106 
cells

Lactic acid is a weak acid. We carried out pH measurements 
in the cell culture supernatant of UMR106 cells upon incu-
bation without or with lactic acid or with other compara-
ble weak acids, formic acid and acetic acid. As a result, a 
24 h incubation of UMR106 cells without additional acid 
resulted in a supernatant pH of 7.44 ± 0.02 (n = 6), a value 
significantly different from the pH in the supernatant of cells 
incubated in the presence of 25 mM lactic acid (7.23 ± 0.04; 
n = 6; p < 0.001) or 22.8 mM formic acid (7.04 ± 0.03; n = 6; 

p < 0.001). In another series of experiments, a 24 h incuba-
tion without 10 mM acetic acid resulted in a supernatant 
pH of 7.45 ± 0.02 (n = 5), a value significantly different 
from the supernatant pH upon incubation with 10 mM ace-
tic acid (7.37 ± 0.01; n = 5; p < 0.001). Since acidosis is a 

Fig. 1  Lactic acid induces fibroblast growth factor 23 (Fgf23) gene 
expression in UMR106 cells. Arithmetic means ± SEM (n = 6) of 
relative Fgf23 mRNA abundance normalized to TATA box-binding 
protein (Tbp) expression in UMR106 cells incubated without or with 
lactic acid at the indicated concentration. ***p < 0.001; *p < 0.05 
(Kruskal–Wallis test)

Fig. 2  Lactic acid enhances FGF23 production in UMR106 osteo-
blast-like cells. Arithmetic means ± SEM (n = 6) of the C-terminal 
FGF23 protein concentration in the supernatant of UMR106 cells 
treated with or without 25 mM lactic acid for 24 h. **p < 0.01 (paired 
t-test)
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stimulator of FGF23 production [59, 60], we performed a 
new series of experiments to test whether the comparable 
pH-lowering effects of 25 mM lactic acid and 22.8 mM for-
mic acid have similar effects on Fgf23 gene expression. As 
a result, control cells had a relative Fgf23 transcript abun-
dance of 0.027 ± 0.001 (n = 9), a value significantly lower 
than in UMR106 cells incubated with 25 mM lactic acid 
(0.092 ± 0.005; n = 9; p < 0.05) or 22.8 mM formic acid 
(0.138 ± 0.012; n = 9; p < 0.001). In another series of experi-
ments, a 24 h incubation of UMR106 cells with 10 mM ace-
tic acid resulted in a relative Fgf23 transcript abundance of 
0.021 ± 0.001 (n = 5), a value significantly higher than in 
control cells (0.013 ± 0.000; n = 5; p < 0.001). Thus, acidosis 
is likely to be a major contributor to the stimulatory effect 
of lactic acid on FGF23.

With  Na+-lactate, no acidosis can be induced. There-
fore, we performed further experiments to clarify whether 
 Na+-lactate impacts on Fgf23.  Na+-lactate also up-regulated 
Fgf23 gene expression in UMR106 cells within 24 h (Fig. 3), 
albeit to a lesser extent than lactic acid. Hence, lactate has 
the potential to stimulate Fgf23 gene expression even with-
out acidosis.

Effect of lactic acid on Fgf23 expression is blunted 
by withaferin A and wogonin

Pro-inflammatory signaling mediated by transcription fac-
tor complex NFκB potently up-regulates FGF23 produc-
tion [61], and lactic acid induces NFκB transcriptional 
activity [62]. Hence, we aimed to unravel whether NFκB 
is involved in the effect of lactic acid on FGF23. To this 

end, we treated UMR106 cells with and without lactic acid 
in the presence and absence of NFκB inhibitor withaferin 
A for 24 h. Withaferin A significantly blunted lactic acid-
induced up-regulation of Fgf23 gene expression (Fig. 4). 
The same held true for wogonin, another NFκB inhibitor 
(Fig. 5).

Fig. 3  Na+-lactate induces Fgf23 gene expression in UMR106 cells. 
Arithmetic means ± SEM (n = 5) of relative Fgf23 mRNA abundance 
normalized to Tbp expression in UMR106 cells incubated without or 
with  Na+-lactate at the indicated concentration. **p < 0.01 (one-way 
ANOVA)

Fig. 4  The effect of lactic acid on Fgf23 gene expression is blunted 
by NFκB inhibitor withaferin A. Arithmetic mean ± SEM (n = 6) of 
relative Fgf23 mRNA abundance normalized to Tbp expression in 
UMR106 cells incubated with or without 25  mM lactic acid in the 
presence or absence of 500 nM withaferin A for 24 h. **p < 0.01 indi-
cates significant difference from the absence of lactic acid (control). 
##p < 0.01 indicates significant difference from the absence of withaf-
erin A. (Welch’s ANOVA)

Fig. 5  The effect of lactic acid on Fgf23 gene expression is blunted 
by NFκB inhibitor wogonin. Arithmetic mean ± SEM (n = 9) of 
relative Fgf23 mRNA abundance normalized to Tbp expression in 
UMR106 cells incubated with or without 25  mM lactic acid in the 
presence or absence of 100  µM wogonin for 24  h. *p < 0.05 indi-
cates significant difference from the absence of lactic acid (con-
trol). ##p < 0.01 indicates significant difference from the absence of 
wogonin. (Kruskal–Wallis test)
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Discussion

According to our study, lactic acid is a potent regulator 
of FGF23. This effect was, at least in part, mediated by 
NFκB. Lactic acid not only induced Fgf23 gene expres-
sion in UMR106 osteoblast-like cells, but also C-terminal 
FGF23 protein secretion into the cell culture supernatant.

A major source of lactic acid is anaerobic glycolysis 
[63, 64]. Physical exercise stimulates anaerobic glycolysis 
and, hence, lactic acid formation in working muscle [64]. 
If the exercise remains below the anaerobic threshold, a 
steady state of lactic acid production in working muscle 
and utilization (e.g., in the liver for gluconeogenesis [65] 
or in the heart for energy production) exists with the lactic 
acid level remaining stable [66, 67]. The anaerobic thresh-
old is in the range of 4–5 mM lactate [68, 69]. Physical 
activity above the anaerobic threshold cannot be sustained 
for longer time [47]. According to our results, concentra-
tions of lactic acid and lactate above the anaerobic thresh-
old triggered enhanced FGF23 production. In line with 
this, exercise has been shown to stimulate FGF23 produc-
tion in mice [70], and it is tempting to speculate that lac-
tic acid contributes to FGF23 production during physical 
activity. In humans, one study found an increase in plasma 
FGF23 of participants of Giro d’Italia (road bicycle race) 
– no lactate values are reported [71] – while another study 
did not find an impact of submaximal or high-intensity 
exercise on FGF23 [72] although the latter study found a 
moderate increase in lactate during high-intensity exercise. 
During strenuous exercise, plasma lactate is usually in a 
range below 10 mM [64] although peak values of 25 mM 
may be reached [73]. In our study, 15 mM lactic acid and 
1 mM  Na+-lactate were necessary to significantly up-reg-
ulate Fgf23 gene expression. Definitely, further studies are 
needed to clarify whether physical exercise induces FGF23 
through lactic acid in vivo.

A wide range of pathological conditions is associated 
with enhanced lactic acid formation causing lactic acido-
sis including uncontrolled diabetes mellitus [48] or, as a 
rare but dangerous adverse effect, metformin [49]. Lactic 
acidosis is a very serious condition as illustrated by a fatal-
ity rate of 25–50% in metformin-associated lactic acidosis 
[48, 49, 74]. In the latter case, the mean lactate concentra-
tions may be 23 mM with some values as high as 35 mM 
[49, 75]. These concentrations are in the range of the 
highest lactic acid concentrations applied in our in vitro 
study. This supports the notion that lactic acid may be a 
relevant stimulator of FGF23 production also in vivo, at 
least in pathological lactic acidosis. As higher FGF23 lev-
els are associated with poorer outcome in several disorders 
including kidney and cardiovascular diseases [27], higher 
FGF23 in severe lactic acidosis may also be indicative 

of a dismal prognosis. Moreover, severe acidosis worsens 
outcome in CKD [76] and higher FGF23 levels are asso-
ciated with poorer outcome in this disorder [77]. Hence, 
normalizing plasma pH may also prove efficient in CKD 
due to the lowering of FGF23. Clearly, clinical studies are 
needed to address this question.

Acidosis is also a very common consequence of CKD 
[52]. Moreover, metformin-induced lactic acidosis typically 
affects patients with severe CKD [78]. Since FGF23 plasma 
levels go up early in CKD and predict prognosis [26, 79], 
lactic acid-induced FGF23 production may also be a mecha-
nism relevant in CKD.

Addition of lactic acid caused a small but significant 
decrease in pH. Since acidosis has already been demon-
strated to induce FGF23 production [59], we considered 
that the effect of lactic acid on FGF23 was, at least in part, 
due to acidosis. In line with this, formic acid or acetic acid 
induced a pH drop while stimulating Fgf23 gene expres-
sion. However, also  Na+-lactate, which is a weak base, was 
capable of enhancing Fgf23. Hence, cellular acidosis clearly 
contributes to lactic acid-induced FGF23 production, but 
may not fully explain it.

We could significantly blunt the stimulatory effect of lac-
tic acid on FGF23 with two different inhibitors of NFκB, 
wogonin and withaferin A, pointing to an involvement of 
NFκB. In line with this, lactate is a stimulator of NFκB 
activity [62], and on the other hand, NFκB and inflammation 
have been demonstrated to be important inducers of FGF23 
formation [39, 58].

Conclusion

Taken together, our study demonstrates that lactic acid 
induces Fgf23 gene expression and protein synthesis in vitro 
at concentrations encountered in vivo in lactic acidosis. This 
effect is, at least in part, mediated by NFκB and acidosis. 
High FGF23 concentrations in lactic acidosis may be sug-
gestive for poor prognosis, although clinical studies are 
needed for clarification.
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