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Abstract: We employ the tools of natural bond orbital (NBO) and natural resonance theory (NRT)
analysis to demonstrate the robustness, consistency, and accuracy with which Linus Pauling’s
qualitative conceptions of directional hybridization and resonance delocalization are manifested in
all known variants of modern computational quantum chemistry methodology.
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1. Introduction

The present authors proudly claim direct line of descent in the academic family tree
of Linus Pauling. Senior author FW was an academic grandson (through Doctorvater E. B.
Wilson, Jr. at Harvard University, 1963-1967), a faculty colleague (at Stanford University,
1974-1976), and a student of Pauling (in the 1975 Special Topics course on the valence
bond theory of nuclear structure). Junior author EDG’s Ph.D studies with FW on chemical
bonding [1-3] and resonance theory [4—6] at UW-Madison (1985-1991) were largely based
on classic works of Pauling and Wilson [7,8] and conducted under their watchful eyes
in photographic portraits that overlooked both the Theoretical Chemistry Institute (TCI)
Lecture Room and FW’s office.

In the quarter-century following the first applications of quantum theory to chemical
bonding [9,10], the powerful influence of Pauling’s valence bond (VB) formulation of
hybridization [11,12] and resonance [13,14] theory could hardly be overstated. However,
this influence waned as the rival molecular orbital (MO) formulation [15-17] achieved
efficient numerical implementation [18-23] in the 1960s. Traditional VB theory was further
weakened when Norbeck and Gallup [24] demonstrated that a strictly ab initio evaluation of
the VB wavefunction for benzene gave results that were variationally inferior to MO theory
and contradicted many semi-empirical VB assumptions of the time. Some limitations of the
original VB formulation were removed in the self-consistent generalized GVB formulation
of Goddard and co-workers [25,26] (and the related spin-coupled SCGVB variant [27]).
However, the self-consistent orbital mixings tend to obscure interpretation of final GVB
numerical results in terms of the VB-type initial guess. As density functional theoretic
(DFT) and other MO-based methodologies advanced [28], VB-based methods were reduced
to a niche role in quantum chemistry.

It is important to recognize that the validity of Pauling-type hybridization and reso-
nance concepts is essentially independent of whether VB/GVB-type wavefunctions are
computationally competitive. Pauling’s inspiration to “hybridize” free-atom spherical-
harmonics to achieve improved bonding orbitals and compact wavefunctions was intended
to rationalize the empirically known directionality of atomic valency (e.g., the tetrahedral
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carbon atom of van’t Hoff and LeBel [29-31]), as demanded by early structural stud-
ies [32-34]. As shown by Coulson [35], such directional hybrids (linear combinations of
directionless free-atom s,p,d, ... orbitals) can serve equally well as conceptual building
blocks in MO and VB theory. Similarly, Pauling’s motivation to combine two (or more)
Lewis-structural bonding patterns into a “resonance hybrid” was intended to rational-
ize the empirically known ambivalence of certain molecules (such as benzenoid species
or practically any molecule containing allyl or amide groups) whose properties appear
“intermediate” or “averaged” between the possible Lewis-structural bonding patterns
that might be envisioned [36—43]. Pauling’s basic resonance concept was first expressed
mathematically in terms of then-standard Heitler-London pair functions [9], which, in light
of subsequent Norbeck-Gallup [24] and Coulson-Fischer [44] studies, can be recognized as
a rather arbitrary and sub-optimal choice.

In more recent times, basic precepts of hybridization and resonance theory have been
questioned or criticized on various grounds. Specific technical criticisms of hybridization
theory are often based on uncritical application of Koopmans’-type approximations to
interpret photoionization spectroscopy or pedagogical preference for VSEPR-type ratio-
nalizations of molecular structure [45] (but see contrarian views [46-51]). Early criticisms
of resonance concepts were philosophically based on supposed conflicts with “realism”
as perceived in dialectical materialism theory [52,53]. More specific technical criticisms
of resonance (e.g., as a conceptual “unicorn” [54]) are often based on preferred use of
energy decomposition analysis (EDA) methods that require a specific choice of “refer-
ence state” [55,56] for each interacting fragment (perforce eliminating resonance-type
state-mixing in either fragment).

However, more general questioning of hybridization and resonance concepts can
be attributed to the complex mathematical forms of modern wavefunctions and density
functionals that no longer allow chemists to easily “see” the hybridization and resonance
features that appear explicitly in VB-based formulations. Ironically, even some advocates
of modern SCGVB theory have expressed skepticism about Pauling’s hybridization con-
cepts [57,58], because the final orbital shapes no longer resemble localized VB-inspired
forms. Related attempts to obtain directed hybrids of localized chemical bonding in the
MO/DFT framework by transforming canonical MOs to localized LMO form [59-63] are
similarly frustrated, because the localization procedure can be chosen rather arbitrarily
to yield a virtually unlimited variety of orbital energies and shapes, with no effect on the
calculated total energy or other measurable properties of the system.

All such conceptual dilemmas can be averted by adopting a uniform analysis of
diverse wavefunctions in a common language of localized bonding constructs. For this
purpose, we employ natural bond orbital (NBO) [64-66] and natural resonance theory
(NRT) algorithms [67,68] that are implemented in a widely used program (currently NBO
7.0[69,70]). Although NBO/NRT methods rest on mathematical foundations somewhat
beyond those usually discussed in introductory quantum chemistry, the NBO 7.0 program
is often integrated into the selfsame quantum chemistry program that generates the wave-
functions to be analyzed [71]. In other cases, the host quantum chemistry program that
performs the wavefunction calculation is able to write the “wavefunction archive” (job.47)
file that serves as input to a current NBO analysis program, either in stand-alone form or
as included in other quantum chemistry program systems. The resulting NBO analysis
allows consistent apples-to-apples comparisons of key bonding descriptors (such as atomic
s,pd, ... composition of NBO-based bonding hybrids, or the NRT bond orders between
atoms) no matter how diverse the wavefunctions to be compared.

In the present work, we employ a consistent protocol to obtain NBO/NRT descrip-
tors of hybridization and resonance for prototype chemical species described at a wide
variety of modern quantum chemistry levels, including GVB, DFT, and higher correlated
methods. The results serve not only to show how comparison hybridization and resonance
descriptors can be obtained from diverse wavefunctional forms, but also to exhibit their
remarkable overall consistency with Pauling’s original intuitions dating back nearly nine
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decades. Pauling’s hybridization and resonance conceptions thereby seem to gain increas-
ing theoretical support as the accuracy and applicability of modern quantum chemistry
methods continue to improve.

2. Computational Methods

The present overview involves comparisons of many computational levels that are
commonly identified in the arcane “method /basis” acronyms of modern computational
quantum chemistry (see [28] for additional explanations and original references). In
addition to RHF (restricted Hartree-Fock), the employed methods include B3LYP (Becke
3-parameter, Lee-Yang-Parr correlation functional variant of DFT theory), SCGVB, CAS
(complete active space self-consistent-field), MP2 (2nd-order Meller-Plesset), and CCSD
(coupled-cluster with single and double excitations). The basis set was chosen uniformly
as “aVTZ” (Dunning-type augmented correlation-consistent valence triple zeta), but many
other basis sets of higher or lower quality could be expected to give qualitatively similar
numerical results. Geometries were optimized at the BSLYP/aVTZ or MP2/aVTZ level, as
detailed below. Transition state searches and intrinsic reaction coordinate (IRC) calculations
were performed at the B3LYP/aVTZ level. All calculations were completed with Gaussian-
16 [72] except for single-point energy evaluations at the SCGVB and CAS levels [73,74],
which were completed using Molpro [75-77]. Further numerical details of optimizations,
IRC evaluation, and NRT keyword settings are described in Supplementary Materials.

3. Directional Hybridization

Hybridization of atomic orbitals is a central concept in modern chemical bonding
theory. As described by Pauling [11] and Slater [12], the mixing of valence s and p orbitals
at a tetrahedral carbon atom facilitates electron-pair bonding by forming four equivalent
hybrids that are directed toward the vertices of the regular tetrahedron. More gener-
ally, valence orbitals of any main group atom can undergo hybridization in a molecular
environment to give a set of four directed hybrids (i = 1-4)

hi = \/ﬁ(s + Vs, M

of sp’i character, where pj, is a valence p orbital aligned with direction §; and the hybridiza-
tion parameter A; can range from 0 (pure s) to oo (pure p). We assume here that mixing is
limited to orbitals of s and p symmetry only, which is typical for normal-valent main group
atoms (where d-character in these hybrids is generally less than 0.2%). Conservation of
valence s- and p-character requires that

214-/\,»:1 @
Elii/\izg’ ®)

1
where 1/(1+ A;) and A; /(1 + A;), respectively, represent the fractional s- and p-character
of the ith hybrid and the summations run over all four hybrids. These conservation
expressions are only satisfied for a mutually orthogonal set of atomic hybrids.

Before illustrating hybridization in NBO analysis, let us briefly review the procedure
that yields the “natural hybrid orbitals” (NHOs). NBO analysis begins with the first-
order reduced density matrix I' for any N-electron wavefunction ¢(1,2, ... ,N). This matrix
has elements

Tij = /x?(l) f(1[1)x; (1) d1 d1’ @
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for atom-centered basis functions {x;} and density (integral-) operator I'(1]1’),
(1) = N/l[](l, 2,...,N)y* (1,2, ..., N)d2...dN 5)

We assume here that the density matrix is represented in an orthogonal basis. If
the basis functions are instead non-orthogonal, as is usually the case, the density is first
transformed to an orthogonal “natural atomic orbital” (NAO) representation, the details
of which are described elsewhere [78]. NBO analysis then seeks the set of localized one-
and two-center orbitals, the natural bond orbitals (NBOs), that best represent the electron
density. The NHOs are the atomic components of these NBOs.

NBOs are obtained from eigenvectors of one- and two-center blocks of the density ma-
trix. The NBO search procedure initially searches one-center blocks, selecting all eigenvec-
tors having occupancies (eigenvalues) that exceed threshold (initially 1.90e, the “occupancy
threshold”). These vectors are identified as atomic core and lone pair orbitals, and the
density associated with these functions is projected from the density matrix. The procedure
next searches two-center blocks of the projected density matrix, selecting eigenvectors
that again have occupancies exceeding threshold. These two-center vectors are generally
non-orthogonal, and those vectors that overlap considerably (squared-overlap exceeding
0.70) at common centers are eliminated. The remaining vectors are orthogonalized using
an occupancy-weighted symmetry orthogonalization procedure [78]. This yields the set of
orthogonal, two-center orbitals (the bonds), each A-B bonding orbital

Qap = caha + cghp (6)

represented as a linear combination of atomic bonding hybrids, ki, hg, with polarization
coefficients ca, cg. The set of NHOs includes all one-center NBOs and all hybrids, ha, hig, of
the two-center NBOs, along with extra-valence Rydberg functions that complete the span
of the basis set. The one- and two-center NBOs together often account for over 99.9% of the
calculated electron density.

Figure 1 shows representative bonding hybrids for the central atoms of CHy, SiHy,
and GeHy. The orbitals depicted in this figure are “pre-orthogonal” because although they
are orthogonal to all other hybrids on the central atom, each can strongly overlap the 1 s
orbital of the adjacent H atom to which the hybrid is directed.

Figure 1. Pre-orthogonal bonding hybrids for CHy (left), SiH, (middle), and GeHy (right).

NHO character is found to be largely independent of the ab initio or density functional
method employed, as illustrated for the 15 main group hydrides of Table 1. The p-character
of the bonding hybrids is reported for a range of computational methods, for densities
calculated at the single-determinantal uncorrelated (RHF), multi-determinantal correlated
(SCGVB, CAS), and single-reference correlated (MP2, CCSD) levels, and with density
functional theory (B3LYP), all at fixed MP2/aVTZ optimized geometries. For each hydride,
the p-character varies weakly across the series of densities. Even for HBr, which exhibits the
largest A variation (from 6.82 at the RHF level to 7.81 for SCGVB), the percent p-character
changes by only 1.4% (from 87.2% to 88.6%). Note specifically that the SCGVB hybrid
descriptors of Table 1 are generally in line with the near-Pauling results that are found both
at higher and lower computational levels, contrary to the conclusions of [57,58]. Thus, the
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Polarization (%)

L1

Electronegativity

NBO user can be confident that the hybrid description offered at one level of theory will be
largely consistent with that obtained using nearly any other level, particularly for densities
from correlated or density functional calculations.

Table 1. Hybrid p-character (A) of X-H bonding hybrids for the first-, second-, and third-row hydrides ?.

RHF B3LYP SCGVB CAS MP2 CCSD

BH3 2.00 2.00 2.00 2.00 2.00 2.00
CHy 2.99 3.00 2.99 2.99 2.99 2.99
NH; 2.89 2.90 2.96 2.99 2.93 2.94
H,O 3.24 3.31 3.42 3.47 3.45 3.44
HF 3.69 3.86 4.05 4.09 4.10 4.08
AlHj; 1.97 1.98 1.98 1.98 1.98 1.98
SiHy 2.96 298 2.96 2.96 2.96 2.96
PH;3 5.38 5.72 5.49 5.60 5.57 5.67
H,S 5.55 5.83 5.88 6.00 5.83 593
HC1 5.79 5.93 6.46 6.55 6.17 6.24
GaHj 1.99 2.00 1.99 1.99 1.99 1.99
GeHy 2.99 3.00 2.99 2.99 2.99 2.99
AsHj3 6.14 6.91 6.37 6.47 6.54 6.64
HSe 6.43 7.11 7.00 7.05 6.95 7.06
HBr 6.82 727 7.81 7.80 7.43 7.52

® aVTZ values calculated at MP2/aVTZ optimized geometries.

Figure 2 shows the character of the X-H bonds, including bond polarization (cx?) and
hybridization (A) of the main group atom. As the electronegativity of X increases, the bond
increasingly polarizes and the bonding hybrid gains p-character, as anticipated by Bent’s
rule [79,80]. The Group 13 hydrides (XH3, X = B, Al, Ga) have trigonal planar geometries
so that the central atoms are essentially sp? hybridized (67% p), as confirmed by the NHOs.
Similarly, the Group 14 hydrides (XHy, X = C, Si, Ge) are tetrahedral with sp3-like hybrids
(75% p), consistent with Pauling’s original inferences from molecular symmetry.

HF

—o—first-row

—O—second-row

——third-row

Hybridization ()

a8

[

HBr

HCI

HF

=0 first-row

——second-row

—t—third-row

Electronegativity

Figure 2. Polarization (cx?) and hybridization (A) of the X-H bonds of normal-valent hydrides as a function of the Pauling

electronegativity of the main group atom (MP2/aVTZ).

The Group 17 hydrides reveal the highest p-character, with A =4.10 for HF, A = 6.17 for
HCl, and A = 7.43 for HBr. Elevated p-character arises as s-character shifts from the bonding
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hybrid into a lone pair, thereby stabilizing the molecule. To illustrate, consider HF. The F
atom has four valence orbitals, including the bonding hybrid and three lone pairs. Two of
the lone pairs are 7-type orbitals (unhybridized 2p) directed along vectors that are orthogo-
nal to the line-of-centers. The third lone pair is o-type, directed along the line-of-centers but
away from the H atom. The latter orbital is sp®?* hybridized (80.4% s), so by conservation
of hybrid character, only 19.6% s-character is available for the bonding hybrid (sp*1?).
The lone pair is essentially doubly occupied (1.982¢), whereas the bonding hybrid has an
occupancy (1.553e) considerably less than two electrons. HF is therefore stabilized because
the higher occupancy lone pair has enhanced s-character, leaving limited s-character for
the bonding hybrid. The bonding hybrids for the Group 15 and 16 hydrides have similarly
elevated p-character—s-character concentrates in a lone pair of the central atom [79]. More
general vertical (size-dependent) aspects of Bent’s rule are discussed elsewhere [81].
Group 15 and 16 hydrides may exhibit some bond bending if the central atom hybrids
deviate from the X-H line-of-centers. In contrast, there is no bending in the Group 13 (XHj,
Dsy), 14 (XHy, Tq), and 17 (HX, Ceov) hydrides because symmetry requires alignment with
the line-of-centers. Table 2 compares the MP2 optimized bond angles of the Group 15 and
16 hydrides with two measures of inter-hybrid angle. The first of these, & = cos~1(1/1), is
the angle between a pair of sp*-hybridized orbitals, equivalent to the angle between the
pe; orbitals [cf Equation (1)] for the hybrid pair. This measure assumes no contribution
from polarization (d, f, etc.) functions. A second measure, {3, is the angle subtended by
the line segment that connects the points of maximum amplitude for the pair of bonding
hybrids. We see in Table 2 that the inter-hybrid angles are consistently several degrees
larger than the inter-nuclear bond angle. That the o angles are particularly large is not
surprising because this measure ignores polarization effects. The 3 angles are somewhat
smaller than o because d-character (typically approximately 0.2% of the hybrid) allows for
the polarization of the hybrids, thereby shifting the amplitude maxima to somewhat more
acute angles. We find that the (3 values are usually in fairly good accord with the optimized
bond angles, except in cyclic species with appreciable ring-strain (e.g., cyclopropane).

Table 2. Bond angles (ZHXH) and inter-hybrid angles (o« and () of the Group 15 and 16 hydrides 2.

/HXH p B
NH, 106.8 110.0 107.9
H,0 104.1 106.8 104.7
PH; 93.6 100.3 98.0
H,S 92.2 99.9 95.6
AsH; 925 98.8 98.8
H,Se 91.1 98.3 96.8

2 MP2/aVTZ values in degrees.

All the foregoing results are qualitatively consistent with the intuitions that ani-
mated Pauling’s original conception of hybridization, long before the availability of re-
spectably accurate wavefunctions by current standards. Accordingly, these hybrid intu-
itions continue to warrant central focus in chemical pedagogy, contrary to the conclusions
expressed by Grushow [45].

4. Resonance Delocalization

As mentioned above, Pauling’s original formulation of the theory of resonance in
chemistry [13] was grounded in mesomerism concepts [36—43] that could be rationalized
and broadly extended in the abstract language and mathematical constructs of quantum
mechanics. However, Pauling’s powerful resonance-based intuitions were largely honed
by encyclopedic familiarity with available chemical structural data, rather than then-
available VB formulations (later shown to be significantly flawed [24]). As recounted by
Eisenberg [82], Pauling’s celebrated discovery of the a-helix was inspired by folding a
cut-out paper model of a protein chain with resonance-enforced planarity at each amide
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group, a crude “analog device” to effectively bypass numerical VB-based modeling. In
the present section, we employ NRT analysis to re-examine Pauling’s resonance-type
concepts of amide structure and reactivity in the framework of modern quantum-chemical
computations for a simple amide tautomerization reaction.

In the NRT formulation [4], resonance weightings {w} are obtained from convex-type
(wa > 0, Yo wy = 1) expansion of the electron density operator, with weightings chosen to
optimally approximate the full quantum-chemical density operator ['qc for the chosen ab
initio or density functional calculation. The corresponding resonance-type I'nrr expansion

Iner =), wa Ta @)

is expressed as a weighted sum of localized density operators [, one operator for each
idealized localized bonding pattern « contributing to the resonance hybrid. Resonance
weights, w, are variationally optimized subject to normalization and positivity constraints

Y we=1; wy >0 ®)
o

by minimizing the Frobenius norm
min|[Toc — Ingr |- )

An efficient and parallelized implementation of NRT is available in NBO 7.0 [69]. In
addition to reporting the details of the resonance hybrid (weights and structures), NRT
calculates “natural bond orders”

bAB = Z“ wabg (10)

where b%; is the integer bond order of the A-B atom pair of resonance structure .
We illustrate application of NRT by considering formamide (F)-formimidic acid (FA)
tautomerization (Figure 3). Formamide is the simplest naturally occurring molecule that
features the N-C=0O peptide bond. Its conversion to formimidic acid is catalyzed by solvent

molecules or by another formamide molecule, but we only examine here the uncatalyzed
intramolecular reaction that proceeds via a simple 1,3-proton transfer mechanism.

¥

Figure 3. Schematic bonding patterns for tautomeric isomerization of formamide (F) to formimidic
acid (FA).

Figure 4 shows the B3LYP/aVTZ energy profile for tautomerization. Formimidic
acid is 12.3 kcal/mol less stable than formamide and is separated from formamide by a
47.7 kcal /mol barrier. The barrier is consistent with the 47.4 kcal /mol estimate calculated
by Hazra and Chakraborty [83] at the MP2/6-311++G ** level.
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Figure 4. B3LYP/aVTZ energy profile for the tautomerization of formamide (F) to formimidic acid
(FA). IRC = 0 corresponds to the transition state.

NRT analysis of formamide yields the resonance hybrid of Table 3. Formamide is
well represented by just four resonance structures that collectively describe 99.3% of the
resonance expansion. The molecule is sufficiently delocalized that the dominant resonance
form (F1, the “natural Lewis structure”) only contributes 43.8% of the resonance hybrid.
The leading secondary structure, the charge-transfer form F2 at 33.7%, stems from strong
mi-type resonance as electron density from the N lone pair, ny;, delocalizes into the mco *
antibond. An image of this donor-acceptor interaction in Table 3 shows significant orbital
overlap between the C and N atoms (on the right) that lends considerable double-bond
character to the CN bond, while electron transfer into the mco * antibond (on the left)
acts to reduce CO double-bond character. These effects on bond order are consistent with
the mixing of the F2 structure into the resonance hybrid. Perturbative analysis of the
Kohn-Sham matrix suggests that the ny — 7o * interaction alone stabilizes formamide
by about 62 kcal/mol. Two additional interactions, both involving o-type delocalization
of electrons from an O lone pair are somewhat weaker (at 26.2 and 22.8 kcal/mol) and
result in smaller, although still significant, contributions to the resonance expansion from
structures F3 and F4.

Table 4 shows the corresponding analysis for formimidic acid. Like formamide,
formimidic acid is fairly well described by four resonance structures, with weights totaling
98.2%. The Lewis structure (FA1) dominates the resonance expansion at 64.2%, and the
leading charge-transfer form (FA2) at 20.2% arises from 7-type delocalization of an O lone
pair, ng, into the 7y * antibond. This charge-transfer interaction is stabilizing by about
40.4 kcal/mol. Two weaker o-type delocalizations, involving the N lone pair and NH
bond, contribute about 14% of the resonance hybrid. The resonance expansion clearly
suggests that resonance delocalization effects are somewhat weaker in formimidic acid
than in formamide, which probably accounts for the greater stability (by ~12 kcal/mol) of
the latter tautomer.

Natural bond orders for formamide and formimidic acid are shown in Figure 5, along
with the optimized bond lengths. These bond orders are weighted-averages of the integer
bond orders for the structures F1-F4 of Table 3 and FA1-FA4 of Table 4, respectively.
Ignoring the proton transfer, the principal geometry changes during tautomerization are
the lengthening of the CO bond (by 0.135 A) and shortening of the CN bond (by 0.097 A).
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These changes result from the loss of CO double-bond character (bond order decreasing
from 1.877 to 1.160) and gain of CN double-bond character (increasing from 1.223 to 1.948)
as the resonance description morphs from mostly F1 to predominantly FA1.

We examined tautomerization more fully by performing NRT analysis at geometries
across the reaction profile of Figure 4. To simplify the analysis, we limited the NRT expan-
sion to only four resonance forms, including the two dominant structures of formamide (F1
and F2) and the two dominant structures of formimidic acid (FA1 and FA2) [84]. These four
structures alone constitute the minimal set required to simultaneously describe bond break-
ing /formation during proton transfer and resonance effects in the 7 system (neglecting
weaker o-type resonance contributions). Figure 6 shows the dependence of the resonance
weights on reaction coordinate.

F — FA conversion begins with formamide electron density described by F1 and F2
in roughly 80%:20% proportion. As proton transfer begins 7t resonance strengthens as
the F2 contribution increases. Note that F2 has the same N=C-O bonding pattern as the
product Lewis structure FA1, although the latter only begins to contribute importantly to
the resonance hybrid within close proximity to the transition state (IRC = 0). The transition
state is strongly delocalized with nearly equal contributions (~28%) from F1, F2, and FA1.
When the reaction is complete, the formimidic acid is roughly 90% FA1 and 10% FA2.

Table 3. NRT resonance hybrid of formamide 2.

# Structure Weight (%) Donor-Acceptor Interaction ®
c' O.-
I H
C
F1 7 43.8
H™ ?rTJ
H
o‘ O;
|
C + H nN—7co ¥
F2 H™ \\N/ 33.7 (61.9)
I
H
S O+
Il Y
C L= no—0CN *
F3 H” N.{ 121 (262)
I
H
O+
|C|:| H .
no—0CH
F4 H ?N/ 9.7 (22.8)
I
H

J

2 B3LYP/aVTZ values. ® Donor-acceptor interactions of the natural Lewis structure (F1) that are isomorphic with
the secondary resonance structures. Values in parentheses are second-order estimates of the interaction strength
in kcal/mol. Images depict the favorable overlaps of the donor-acceptor NBO pairs.
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Table 4. NRT resonance hybrid of formimidic acid 2.

# Structure Weight (%) Donor-Acceptor Interaction ®
.é/H
-
FA1 ’ /C\\N- 64.2
|
6/
I
.. no—7eN *
FA2 H /C5N' 20.2 (40.4)
o
H
O _H
-
nN—0ocH ¥
FAs .H C\\\N+ 101 (10.7)
) [
H
-~ _H
B
o
ONH—0CO *
FA4 y /C\\\N. 3.7 (106)
H+

a B3LYP/aVTZ values. ° Donor-acceptor interactions of the natural Lewis structure (FA1) that are isomorphic
with the secondary resonance structures. Values in parentheses are second-order estimates of the interaction
strength in kcal/mol. Images depict the favorable overlaps of the donor-acceptor NBO pairs.

0.994
(0.969)

1.877

(1.211) 1.160

(1.346)

1.223
(1.357)

1.948
(1.260)

0.900
(1.104)

0.995 (1.007)

(1.004)

Figure 5. Natural bond orders and optimized bond lengths (in parentheses, in A) for formamide and

formimidic acid.
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Figure 6. Variation in resonance weights along the tautomerization IRC.

Figure 7 shows the correlation of natural bond order with bond length for geometries
across the IRC. The correlations reveal slight S-shaped curvatures, or more specifically,
near-perfect linear correlations around each integer (single dominant NLS) or half-integer
(two-state bond-shift [85]) bond order with connecting curvatures to accommodate the
slightly different slopes of different bond types, but their essential linearity is suggested
by the robust |x |2 coefficients. Such correlations strongly support the useful predictive
associations of NRT bond orders with experimentally measurable quantities, consistent
with well-known empirical relationships connecting a variety of bond properties, including
bond lengths [86-88], bond energies [89-92], IR vibration frequencies [93,94], and NMR
spin-spin coupling constants [95].
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Figure 7. Bond order—bond length correlations for CO (circles), CN (squares), OH (filled circles), and NH (filled squares)
bonds, showing the least-squares regression line and corresponding Pearson | |2 correlation coefficient for each bond type.
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Variations in the NRT weights for the four resonance structures across the IRC, as well
as concomitant changes in natural bond orders, are entirely consistent with the electron-
pushing, curly-arrow representation that the bench chemist would use to depict the reaction
mechanism (Figure 8). Red arrows correspond to the bond/lone pair rearrangement
associated with proton migration, and blue arrows represent the change in 7 electron
distribution of the peptide bond.

0.0 o

Ca \I'-I |
C >

H™ 7 >N~ H” SN

C-,J |

H H

Figure 8. Curly-arrow depiction of resonance-type electronic delocalizations in formamide tautomerization.

With this simple example, we have shown that NRT analysis provides a tool for easily
obtaining compact and chemical intuitive descriptors of molecular structure and reactivity
that are fully consistent with the prescient mesomerism/resonance insights of Pauling,
Robinson, Ingold, and other bonding pioneers, dating back to the pre-quantum mechanical
era. Similar to the hybridization results presented above, the present B3LYP/aVTZ results
are fully representative of those obtained from numerically complex quantum chemical
wavefunctions at any reasonably current computational level.

5. Summary and Conclusions

Contrary to skepticism that is sometimes expressed [45,54,58], we believe that the
present results confirm the essential correctness and usefulness of Pauling’s hybridization
and resonance concepts, as consistently found in NBO/NRT analysis of wavefunctions from
the best currently available quantum chemical methods. If anything, improved quantitative
accuracy of the wavefunction tends to enhance admiration of Pauling’s powerful intuitions,
developed long before numerically reliable solutions of Schrédinger’s equation became
routinely available.

In closing this tribute, it may be appropriate to relate that E. Bright Wilson considered
John von Neumann and Linus Pauling to be the only two authentic geniuses he ever met.
Elite company indeed!

Supplementary Materials: Supplementary Materials are available online, including (i) Gaussian
input files for all optimized geometries and the formamide—formimidic acid transition state, (ii)
all IRC geometries, and (iii) a sample Gaussian input file, with NBO/NRT input for one of the
IRC geometries.
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