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Atherosclerosis (AS) is a chronic vascular inflammatory disease, in which the lipid

accumulation in the intima of the arteries shows yellow atheromatous appearance,

which is the pathological basis of many diseases, such as coronary artery disease,

peripheral artery disease and cerebrovascular disease. In recent years, it has become

the main cause of death in the global aging society, which seriously endangers human

health. As a result, research on AS is increasing. Lesions of atherosclerosis contain

macrophages, T cells and other cells of the immune response, together with cholesterol

that infiltrates from the blood. Recent studies have shown that chronic stress plays

an important role in the occurrence and development of AS. From the etiology of

disease, social, environmental and genetic factors jointly determine the occurrence of

disease. Atherosclerotic cardio-cerebrovascular disease (ASCVD) is often caused by

chronic stress (CS). If it cannot be effectively prevented, there will be biological changes

in the body environment successively, and then the morphological changes of the

corresponding organs. If the patient has a genetic predisposition and a combination

of environmental factors triggers the pathogenesis, then chronic stress can eventually

lead to AS. Therefore, this paper discusses the influence of chronic stress on AS in the

aspects of inflammation, lipid metabolism, endothelial dysfunction, hemodynamics and

blood pressure, plaque stability, autophagy, ferroptosis, and cholesterol efflux.
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INTRODUCTION

Atherosclerosis (AS) is considered as a non-specific inflammatory disease, mainly involving the
intima andmedial layer of the arterial wall, which is the pathological basis of various cardiovascular
and cerebrovascular diseases (1, 2). Cardiovascular disease is still the leading cause of death
worldwide, with an increasing prevalence in developing countries (3). In recent years, the rapid
economic development in China has led to the change of lifestyle and the aggravation of population
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aging (4). The incidence and prevalence of chronic non-
communicable diseases, such as hypertension, hyperlipidemia,
diabetes, hyperuricemia, and chronic psychological stress, are
increasing year by year, and the AS caused by these diseases is
also becoming more and more serious (5–9). AS is the main
cause of atherosclerotic cardiovascular disease (ASCVD), which
is the leading cause of disability and death among urban and
rural residents in China (10). In China, cardiovascular diseases
account for about 45% of the deaths of the population, causing
a serious medical burden and becoming a major public health
problem (11). What’s more, the incidence of ASCVD in China
continues to rise. As is the main cause of ASCVD (12). The
pathophysiological development of AS is closely related to the
mutation and abnormal expression of genes, including fms-
like tyrosine kinase-1 (Flt-1), tumor necrosis factor-α (TNF-
α), apolipoprotein A-I (apo A-I), Vascular Endothelial Growth
Factor (VEGF), and Angiogenin (ANG). Previous studies have
shown that low expression of Flt-1 could predict the development
of endothelial injury, which leads to the development of AS (13).
In addition, the stronger the proliferative ability of endothelial
progenitor cells (EPCs), the lower the vulnerability of vascular
endothelium. Thus, TNF-α overexpression damages the vascular
endothelium by disrupting the proliferation process of EPCs (14).
The mutation of the anti-atherosclerosis gene, apo A-I, could
accelerate the apoptosis of vascular endothelial cells by down-
regulating the levels of endothelial nitric oxide synthase (eNOS)
and heme oxygenase-1, and eventually lead to the formation
of atherosclerotic plaque (15). The expression of VEGF and
ANG could promote the regeneration of vascular endothelial
cells (16, 17). Therefore, the abnormal expression of VEGF
and ANG might play an important role in the occurrence
and development of AS (18–20). The up-regulation of “VEGF
and ANG” plays a significant role in the development of AS.
Compared with the normal artery tissues, the expression of
“VEGF and ANG” were higher in the AS tissues. The main
biological function of ANG is to promote angiogenesis, which
promotes plaque instability (21). VEGF is the strongest known
factor promoting angiogenesis, which could promote endothelial
cell mitosis and proliferation, increase vascular permeability
and promote endothelial cell migration (22). Furthermore,
VEGF could promote intimal hyperplasia and aggravate AS
by promoting monocyte activation, adhesion, and migration
and increasing permeability of endothelial cells (23). However,

Abbreviations: AS, Atherosclerosis; ASCVD, Atherosclerotic cardio-
cerebrovascular disease; Flt-1, fms-like tyrosine kinase-1; TNF-α, tumor necrosis
factor-α; apo A-I, apolipoprotein A-I; VEGF, Vascular Endothelial Growth Factor;
ANG, Angiogenin; EPCs, endothelial progenitor cells; eNOS, endothelial nitric
oxide synthase; CVD, cardiovascular disease; ICAM-1, intercellular adhesion
molecule-1; CRP, C-reactive protein; ApoE, apolipoprotein E; SNS, Sympathetic
Nervous System; NE, noradrenaline; NPY, Nerve Peptide Y; ET, endothelin;
MAPKs, mitogen activated protein kinases; HMGB1, High Mobility Group Box 1;
DPP4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; APN, adiponectin;
LDLC, low density lipoprotein cholesterol; VLDLC, very low density lipoprotein
cholesterol; NPY, Neuropeptide Y; CRH, corticosteroid releasinghormone; AVP,
vasopressin; RCT, Reverse cholesterol transport; HDL, high-density lipoprotein;
ROS, Reactive oxygen species; EPC, endothelial progenitor cell; SP1, Sp1
Transcription Factor; HDL, high-density lipoprotein; ABCA1, ATP-binding
cassette transporters A1; ABCG1, ATP-binding cassette transporters G1.

one of the important reasons for the current inability to
effectively control the occurrence and recurrence of ASCVD
is that the occurrence and progress of atherosclerotic stenosis
and vulnerable plaques cannot be detected in time, dynamically
monitored, and effectively controlled, which is also the main
research field for ASCVD in China and abroad (24–26). So it
is imperative to explore the risk factors for the occurrence and
development of atherosclerosis for the early diagnosis and precise
treatment of ASCVD (27).

Chronic stress induces changes in organisms that increase
the risk of atherosclerotic diseases, including heart disease,
stroke, and transient ischemic attack (8, 28). The report shows
that stress increases the risk of cardiovascular disease (29). A
large amount of evidence confirms that chronic stress plays a
significant role in the occurrence and development of AS, but
the specific mechanism is still unclear (30–33). The purpose of
this paper is to provide a comprehensive review of studies on
the effects of chronic stress in healthy individuals and patients
with cardiovascular disease (CVD). This study focuses on the
research progress of the relationship between chronic stress and
AS in the aspects of inflammation, lipid metabolism, endothelial
dysfunction, hemodynamics and blood pressure, plaque stability,
autophagy, ferroptosis, and cholesterol efflux.

METHODS

Our systematic review is a new method of literature synthesis.
It systematically and comprehensively collects the published
and unpublished studies on a specific clinical problem, and
uses the principles and methods of strict evaluation of
clinical epidemiology to select the literatures that meet the
quality standards for qualitative combination, so as to draw
reliable comprehensive conclusions. This systematic review was
conducted in accordance with the Preferred Reporting Items
for Systematic Reviews statement guidelines. A protocol was
developed prior to commencing this review on PROSPERO.
The procedure of searching the references in the databases was
manifested in the flow diagram (Figure 1; Table 1).

Search Strategy
This systematic review focused on the period 2011–2021.
Main focus of this paper is on basic medical research about
the AS and chronic stress. Researches included in this paper
were screened by keyword searches in PubMed, MEDLINE,
EMBASE, and Cochrane Library databases. These databases
were searched using a combination of subject headings
(such as MeSH) and filters (such as Time) when available.
We reviewed references of included studies to identify
pertinent studies. We imposed no language restriction.
The keywords included “chronic stress,” “atherosclerosis,”
“inflammation,” “lipid metabolism,” “endothelial function,” and
“plaque stability.” And the strings of terms were “(chronic
stress[Title/Abstract]) AND (atherosclerosis[Title/Abstract]),”
“(Atherosclerosis[Title/Abstract]) AND (plaque stability
[Title/Abstract]),” “(Atherosclerosis[Title/Abstract]) AND
(inflammation[Title/Abstract]),” “(Atherosclerosis[Title/
Abstract]) AND (lipid metabolism[Title/Abstract]),”
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FIGURE 1 | Flow diagram showing the procedure of searching the references in the databases.

“(Atherosclerosis[Title/Abstract]) AND (endothelial
function[Title/Abstract]),” “(Atherosclerosis[Title/Abstract])
AND (autophagy [Title/Abstract]),” “(Atherosclerosis[Title/
Abstract]) AND (ferroptosis [Title/Abstract]),”
“(Atherosclerosis[Title/Abstract]) AND (cholesterol efflux [Title/
Abstract]).”

Inclusion and Exclusion Criteria
Two reviewers independently assessed records identified from
the search for eligibility. Any discrepancies were resolved by
consensus. We included any studies referring to chronic stress

and atherosclerosis. The researches mainly included the basic
medical study with molecular exploration. Outcomes must be
objectively measured “atherosclerosis.” We accepted 2011–2021
duration of intervention.

We excluded studies with confounding chronic
conditions such as “ventricular remodeling, arrhythmia,
Peripheral hemangitis.”

Study Quality
Study quality was assessed by two reviewers based on the
seven domains defined by the Cochrane Collaboration’s tool for
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TABLE 1 | Literature search tracking sheet.

Date of

search

Database Years searched Search terms Strings of terms #HITS

20/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Chronic stress None used 52888

22/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Chronic stress;

atherosclerosis

(chronic stress[Title/Abstract]) AND

(atherosclerosis[Title/Abstract])

182

23/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Atherosclerosis; plaque

stability

(Atherosclerosis[Title/Abstract]) AND

(plaque stability[Title/Abstract])

655

24/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Atherosclerosis;

inflammation

(Atherosclerosis[Title/Abstract]) AND

(inflammation[Title/Abstract])

12619

25/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Atherosclerosis; lipid

metabolism

(Atherosclerosis[Title/Abstract]) AND

(lipid metabolism[Title/Abstract])

1706

25/05/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–01/2021 Atherosclerosis;

endothelial function

(Atherosclerosis[Title/Abstract]) AND

(endothelial function[Title/Abstract])

1898

20/10/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–10/2021 Atherosclerosis;

autophagy

(Atherosclerosis[Title/Abstract]) AND

(autophagy[Title/Abstract])

956

20/10/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–10/2021 Atherosclerosis;

ferroptosis

(Atherosclerosis[Title/Abstract]) AND

(ferroptosis[Title/Abstract])

68

20/10/21 PubMed, MEDLINE,MBASE, and

Cochrane Library

2011–10/2021 Atherosclerosis;

cholesterol efflux

(Atherosclerosis[Title/Abstract]) AND

(cholesterol efflux[Title/Abstract])

1325

assessing risk of bias. Namely, (1) random sequence generation;
(2) allocation concealment; (3) blinding of participants and
personnel; (4) blinding of outcome assessment; (5) incomplete
outcome data; (6) selective reporting; and (7) other biases,
including baseline imbalance, early stopping and bias due to
vested financial interest or academic bias.

Potential publication bias across studies was assessed using a
funnel plot.

Data Extraction
One author extracted all the data, and two authors reviewed
the data for accuracy. The following data was collected:
all papers about the association between “chronic stress”
and “atherosclerosis.”

RESULTS AND DISCUSSION

Chronic Stress Accelerating
Atherosclerosis via Inflammation
Although the specific biological mechanisms by which chronic
stress increases cardiovascular disease risk remain unclear (34).
However, chronic low-grade inflammatory load appears as a
possible link because chronic stress exacerbates this load and
leads to early progression of atherosclerosis and thrombotic
complications (35–37). Inflammation plays a key role in the
overall atherosclerotic step, involving the accumulation of foam
cells, the formation of fatty stripe tissue and fibrous plaques,
the rupture of acute plaques, and the formation of thrombus
(38–40). Persistence of inflammation is necessary for plaque
development and instability, and plays a decisive role in the
pathogenesis and progression of coronary artery disease (41–44).
Animal experiments have shown that the levels of intercellular
adhesion molecule-1 (ICAM-1), the reactant C-reactive protein
(CRP) in the acute phase, and the pro-inflammatory cytokine

are significantly increased in apolipoprotein E (ApoE) knockout
mice preconditioned by chronic stress (45, 46). Plenty of evidence
shows that chronic stress could activate inflammation in the
brain and surrounding areas (47, 48). Some researchers believe
that stress might activate the Sympathetic Nervous System
(SNS) to release noradrenaline (NE) and Nerve Peptide Y
(NPY), and these two stress hormones further promote the
phosphorylation of mitogen activated protein kinases (MAPKs)
or the release of High Mobility Group Box 1 (HMGB1), thereby
inducing systemic inflammation to accelerate the development
of CVD (49). Chronic stress alters the dynamic balance of the
sympathetic and vagal nervous systems. Decrease of vagal tone
could promote inflammation. It has been found that chronic
stress could enhance the activity of dipeptidyl peptidase-4 (DPP4)
in plasma and reduce plasma glucagon-like peptide-1 (GLP-
1) and adiponectin (APN) concentrations, thus promoting the
development of inflammation (50–52). However, whether it is
possible to reduce the promoting effect of chronic stress on
atherosclerosis through the targeted inhibition of some cellular
inflammatory factors remains to be further studied.

It has been proved that chronic stress and its related diseases
anxiety and depression interact with inflammatory response
(53). IL-6 is an important inflammatory factor, and its changes
represent the body’s defense response to chronic stress and help
the body adapt to the environment (54). And IL-6 is a kind of
polypeptide cytokines with immunomodulatory effects, mainly
produced by mononuclear macrophages and T lymphocytes. In
the central nervous system, both neurons and glial cells produce
this factor (55). Study has shown that IL-6 is involved in the
occurrence and development of atherosclerosis in hypertensive
patients, and the size of cerebral infarction is positively correlated
with the level of serum IL-6 (56). At the same time, IL-6
might promote the progression of atherosclerosis. Studies have
shown that IL-6, a pro-inflammatory factor, is elevated in the
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serum of patients with chronic stress (57). Serum IL-6 increased
significantly after chronic stress, and the increase was more
obvious in the high-fat diet group. Cortisol acts as an anti-
inflammatory, and as IL-6 levels rise in the body, so do cortisol
levels. Studies have shown that chronic stress can promote the
development of AS through high levels of cortisol mediated
by IL-6 (58). IL-6 could promote platelet activation, accelerate
the coagulation process, cause endothelial and smooth muscle
cell necrosis, and accelerate the formation of AS. IL-6 could
damage the vascular endothelium and interfere with uptake of
low-density lipoprotein (LDL) by macrophages, resulting in lipid
accumulation in the vascular wall and leading to AS (59).

Disorder of Lipid Metabolism in
Atherosclerosis Under Chronic Stress
Studies have shown that chronic stress-induced hyperlipidemia
and oxidative damage can contribute to the development of
atherosclerosis (60). Although atherosclerosis is a chronic
inflammatory disease, currently, more and more evidence
manifested that atherosclerosis is a complex systematic
pathology, and hyperlipidemia is a major risk factor for changes
in intimal and media thickness during atherosclerosis (41).
Experiments have found that compared with the control group,
the high concentrations of serum total cholesterol, triglyceride,
low density lipoprotein cholesterol (LDLC), and very low
density lipoprotein cholesterol (VLDLC) could increase the
atherosclerosis index in the chronic stress group, while the
concentration of high density lipoprotein cholesterol did not
change significantly (61–65). Chronic stress caused by long-
term social pressure leads to obesity to some extent. Obesity
is the result of excessive accumulation of fat (66). Scientific
studies have shown that obesity can increase the incidence of
cardiovascular and cerebrovascular diseases (67, 68). However,
the accumulation of subcutaneous fat was not associated with an
increased risk of cardiovascular disease. One study found that
chronic stress promoted the accumulation of visceral fat, which
in turn led to atherosclerosis and cardiovascular events, rather
than the accumulation of subcutaneous fat (69). The chronic
stress might stimulate the production of glucocorticoid, which
can promote visceral obesity, and accompanied by a series of
metabolic disorders, including dyslipidemia, impaired glucose
tolerance and insulin resistance, unstable or elevated blood
pressure (70–73). These factors will be harmful to the arteries,
and promote the development of atherosclerosis (67, 74). Other
studies have found that Neuropeptide Y (NPY) is a mediator
of vascular lipid metabolism disorder under chronic stress and
a risk factor for stress-induced lipid metabolic syndrome and
atherosclerosis (75–78). Understanding how neuropeptide Y
and its homologous receptors regulate lipid metabolism may
provide new ideas for the study of the mechanism and treatment
of atherosclerosis (79, 80). A large number of studies have shown
that hyperlipidemia, induced by chronic stress, is closely related
to atherosclerosis (60, 81–83). Therefore, the understanding
of lipid metabolism under stress state has important guiding
significance for the study of the relationship between chronic
stress and atherosclerosis.

Effect of Chronic Stress on Endothelial
Dysfunction in Atherosclerosis
Studies have shown that stress is a risk factor for cardiovascular
disease (CVD) (84–86). However, the underlying mechanism
is not clear. Studies have shown that mental stress activates
the sympathetic nervous system (87), which might cause a
range of adverse cardiovascular effects, including increased blood
pressure, increased heart rate, and endothelial dysfunction. The
endothelial dysfunction represent an important link between
chronic stress and cardiovascular disease (CVD) risk (46, 88).
Recent data from human and animal stress model studies
highlight the critical role of endothelial dysfunction in stress-
induced cardiovascular disease (89). It was found that under
chronic stress, thoracic aortic rings exhibited high sensitivity
to vasoconstrictors by inhibiting nitric oxide synthase activity
or removing endothelial cells (90–92). Chronic stress could
reduce NO production and induce physiological and biological
changes of blood vessels, leading to endothelial dysfunction
and the progression of atherosclerotic plaques (93, 94). One
study examined the effect of vascular endothelial dysfunction on
subclinical atherosclerotic plaques bymeasuring arterial elasticity
by observing changes in the percentage of intima-media. The
results showed that the loss of endothelial cells could affect the
percentage of intima-media and induce atherosclerosis. It has
also been found that poor vascular endothelial function will
increase the incidence of atherosclerosis (95, 96). Endothelial
dysfunction is an important cause of atherosclerosis. Stress can
directly inhibit the vasodilator function of endothelial cells.
Patients with long-term chronic psychological stress may develop
impaired vascular endothelial function. Maintaining homeostasis
is a new way to prevent and treat atherosclerosis.

Variation of Hemodynamics and Blood
Pressure Under Chronic Stress
Chronic stress is associated with increased cardiovascular
risk, including increased incidence of atherosclerosis,
myocardial ischemia, coronary heart disease, and death.
The association between stress and cardiovascular dysfunction
represents an important node for therapeutic interventions
for cardiovascular disease, especially in the aging population,
where hypertension is a well-known risk factor (97). Chronic
stress plays a very important role in the development of
hypertension, and its mechanisms are known to involve
long-term abnormal neurological and endocrine activity, such
as significantly elevated levels of corticosteroids, cortisol,
epinephrine, norepinephrine, and angiotensin. Initially, the
sympathetic nerve-adrenal medulla system is an important
factor in the development of hypertension. Under chronic
stress, plasma adrenaline, norepinephrine, and dopamine
increase rapidly (98). It is now clear that in hypertension,
the sympathetic nervous system activity is increased, and
sympathetic excitation causes small arteriovenous contractions,
leading to an increase in diastolic/systolic blood pressure
(99–101). Catecholamine is an important humoral factor in
the sympathetic adrenal myeloid system, which can cause
constriction of peripheral blood vessels and increase diastolic
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pressure. The renin-angiotensin-aldosterone system also plays
an important role in chronic stress by inducing increased
angiotensin levels, regulating catecholamine secretion, and
increasing blood pressure (102–105). Sympathetic excitation
is known to increase angiotensin II production by stimulating
proximal cells and beta receptors in local tissues to promote renin
secretion. Finally, on the hypothalamic-pituitary-adrenal axis
(106, 107), chronic psychological stress stimulates the secretion
of corticosteroid releasinghormone (CRH) and vasopressin
(AVP) in the hypothalamus, which promotes the secretion of
corticotropic hormone. Glucocorticoids are important factors
in maintaining the normal response of the circulatory system
to catecholamines. Glucocorticoid deficiency was associated
with significantly reduced response, decreased myocardial
contractibility, decreased output, and decreased blood pressure
(108). In addition, endothelin (ET) was also an important factor
regulating cardiovascular function, and plays an important
role in maintaining vascular tension and cardiovascular system
homeostasis. As endodermal vascular active factors, endothelin
has the strongest and most lasting effect among the endogenous
vasoconstrictor peptides. The endothelium could contract
vessels and promote endothelial cell proliferation by releasing
endothelin. Hypertension and diabetes could lead to endothelial
dysfunction and promote release of endothelin (109). The levels
of endothelin in patients with diabetes and coronary heart disease
were higher than those in control group. The level of endothelin
increased significantly in diabetic patients with coronary heart
disease. These results demonstrate that endothelin is a good
response to vascular endothelial disease regardless of the primary
etiology. One study suggests that plasma endothelin levels
in atherosclerotic patients are proportional to the severity of
atherosclerotic vascular lesions. The more damaged vessels,
the higher the endothelin level (110). Endothelin might be an
independent risk factor for atherosclerosis. Endothelin causes
coronary artery dysfunction, promotes coronary artery wall
remodeling, platelet activation, and aggregation (111).

Reduced Plaque Stability by Chronic Stress
Chronic stress could reduce the intimal mediators of
atherosclerosis and accelerate plaque instability by promoting
apoptosis and neovascularization (28). In our current study,
chronic stress increased plaque vulnerability, characterized
by thinning of the fibrous cap, larger lipid nuclei, increased
macrophages and neovascularization, but fewer smooth muscle
cells and elastic fibers (112–114). Thus, chronic stress may
not induce larger plaque areas, but rather lead to advanced
atherosclerotic lesions. So, how does chronic stress affect the
stability of atherosclerotic plaque? Levels of inflammation and
oxidative stress, which can be exacerbated by chronic stress,
have been shown to be associated with atherosclerotic plaque
instability (115, 116).

The Effect of Chronic Stress on
Atherosclerosis via Autophagy
Autophagy is a self-protective cellular catabolic pathway
involved in protein and organelle degradation (117, 118).

Autophagy plays an important role in inhibiting inflammation
and apoptosis, and in promoting efferocytosis and cholesterol
efflux, and in maintaining cellular metabolic homeostasis.
Autophagy is related to oxidative stress, inflammation, and foam
cell formation, further promoting atherosclerosis. Therefore,
autophagic homeostasis is essential for the development
and outcome of atherosclerosis (119). Atherosclerotic lesions
are continuously challenged by stressful insults such as
DNA damaging molecules, ROS, oxidized lipids, inflammatory
cytokines, hypoxia, etc. and will respond in three different
ways: either fight (autophagy), adapt (senescence), or die
(apoptosis/necrosis). All the three pathways are interconnected
and negatively control each other. Atherosclerosis is the
progressive buildup of plaque in the arterial wall ultimately
resulting in rupture and thrombosis manifesting (120). Moderate
activation of autophagy prevents macrophages and vascular
smooth muscle cells (VSMCs) from forming foam cells and
preventing the progression of atherosclerotic plaques (121, 122).
Stimulation of autophagy suppresses vascular smooth muscle
cell senescence, whereas inhibition of autophagy promotes
it (123). Autophagy is an evolutionarily conserved process
in eukaryotes that processes the turnover of intracellular
substances. In patients, excessive autophagy activation leads
to cell death, plaque instability, or even plaque rupture
(119, 124). Abnormal autophagy regulation may lead to
atherosclerosis (125).

The Relationship Between Atherosclerosis
and Ferroptosis
Ferroptosis is a newly identified form of regulated cell death
characterized by the iron-dependent accumulation of lipid
hydroperoxides to lethal levels (126), this type of cell death
was found to have molecular characteristics distinct from
other forms of regulated cell death (127), which exhibits
distinct features from apoptosis, necrosis and autophagy
in morphology, biochemistry, and genetics (128, 129).
Ferroptosis is a type of autophagy-dependent cell death
(130). Emerging mechanisms of ferroptosis is related to disease
(131). Ferroptosis is closely related to atherosclerosis, and
might occur during the initiation and development of AS
(129). Apoptosis, necrosis and autophagy-dependent cell
death are the three major types of cell death. Traditionally,
necrosis is thought as a passive and unregulated form of cell
death. However, certain necrosis can also occur in a highly
regulated manner, referring to regulated necrosis. Depending
on the signaling pathways, regulated necrosis can be further
classified as necroptosis, pyroptosis, ferroptosis, parthanatos,
and CypD-mediated necrosis. endothelial progenitor cell (EPC)-
EVs transferred miR-199a-3p to inhibit Sp1 Transcription
Factor (SP1), thus repressing ferroptosis of endothelial
cells and retarding the occurrence of AS (132). Inhibition
of ferroptosis could alleviate AS through attenuating lipid
peroxidation and endothelial dysfunction in AECs (129, 133).
Therefore, ferroptosis as a central gene in human coronary
atherosclerosis (134).
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FIGURE 2 | The overview map presenting the effect of chronic stress on atherosclerosis. SNS, Sympathetic Nervous System; NE, noradrenaline; NPY, Nerve Peptide

Y; MAPKS, mitogen activated protein kinases; HMGB1, High Mobility Group Box 1; CRP, C-reactive protein; IL-6, interleukin; DPP4, dipeptidyl peptidase-4; GLP-1,

glucagon-like peptide-1; APN, adiponectin; LDLC, low density lipoprotein cholesterol; VLDLC, very low density lipoprotein cholesterol; Flt-1, fms-like tyrosine kinase-1;

TNF-α, tumor necrosis factor-α; eNOS, endothelial nitric oxide synthase; HO-1, Hemeoxygenase-1; VEGF, Vascular Endothelial Growth Factor; ANG, Angiogenin;

CRH, corticosteroid releasinghormone; AVP, vasopressin; ET, endothelin; ROS, Reactive oxygen species; EPC, endothelial progenitor cell; SP1, Sp1 Transcription

Factor; HDL, high-density lipoprotein; ABCA1, ATP-binding cassette transporters A1; ABCG1, ATP-binding cassette transporters G1.

Aggregating Atherosclerosis via
Cholesterol Efflux Under the Chronic
Stress
Cholesterol is an important lipid for maintaining cell membrane
fluidity and generation of various hormones and bile acids.
Thus, it is critical to maintain cholesterol homeostasis including
absorption, trafficking, biosynthesis, and efflux. Dysregulation

of cholesterol homeostasis may lead to human disorders (135).
The phenomena of lipid accumulation, inflammation, oxidative
stress, hypoxia, and insulin resistance commonly associated
with AS lesions can regulate the expression of cholesterol
transporter, and then regulate intracellular cholesterol efflux,
affecting the occurrence, and development of As. Cholesterol
efflux is a key step in cholesterol reverse transport (136). The
reverse cholesterol transport, a process that removes excess
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cholesterol from peripheral tissues/cells including macrophages
to circulating HDL, is one of the main mechanisms responsible
for anti-atherogenic properties of HDL. Reverse cholesterol
transport (RCT) may counteract the pathogenic events leading to
the formation and development of atheroma, by promoting the
high-density lipoprotein (HDL)-mediated removal of cholesterol
from the artery wall (137, 138). The key proteins of reverse
cholesterol transport-ATP-binding cassette transporters A1
(ABCA1) and G1 (ABCG1)-mediate the cholesterol efflux from
macrophages and prevent their transformation into foam cells
(139). The formation of foam cells is a typical pathological feature
of early atherosclerosis, the imbalance of cholesterol metabolism
homeostasis of macrophages runs through the whole process of
foam cell formation.

Atherosclerosis is characterized by significant aggregation
of macrophage foam cells in atherosclerotic plaques and
associated pro-inflammatory responses in pathological cells.
Results from animal and human studies suggest that in these
cells, especially in diseased macrophages, dyshomeostasis plays a
key role in the pro-inflammatory response. The cholesterol efflux
pathway also inhibits the accumulation of cholesterol esters in
macrophages, namely the formation of macrophage foam cells
(140). Cholesterol efflux is a key link in regulating the cholesterol
dynamic balance of macrophages, which is of great significance in
reducing intracellular cholesterol accumulation, preventing the
formation of foam cells and the occurrence of As. Cholesterol
efflux pathways exert anti-inflammatory and anti-atherogenic
effects by suppressing proliferation of hematopoietic stem and
progenitor cells, and inflammation and inflammasome activation
in macrophages. Therefore, atherosclerosis can be prevented by
promoting cholesterol efflux from macrophages (141, 142).

In summary, the overview map presented the effect of chronic
stress on atherosclerosis (Figure 2).

CONCLUSION

Chronic stress is the cause of atherosclerotic cardiovascular
and cerebrovascular diseases. If it cannot be effectively
prevented, biological changes in the body environment will

occur successively, such as inflammation, lipid metabolism,
endothelial function, hemodynamics and other changes, and
then morphologic changes of the corresponding organs will
appear. If the patient has a genetic predisposition, and at the
same time the environmental factors work together to activate
the pathogenic mechanism, then the chronic stress factors
will eventually lead to the development of atherosclerotic
cardiovascular disease.
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