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Abstract

Dysregulation of genes perpetuates cancer progression. During carcinogenesis, cancer cells 

acquire dependency of aberrant transcriptional programs (known as “transcription addiction”) 

to meet the high demands for uncontrolled proliferation. The needs for particular transcription 

programs for cancer growth could be cancer-type-selective. The dependencies of certain 

transcription regulators could be exploited for therapeutic benefits. Anaplastic thyroid cancer 

(ATC) is an extremely aggressive human cancer for which new treatment modalities are urgently 

needed. Its resistance to conventional treatments and the lack of therapeutic options for improving 

survival might have been attributed to extensive genetic heterogeneity due to subsequent evolving 

genetic alterations and clonal selections during carcinogenesis. Despite this genetic complexity, 

mounting evidence has revealed a characteristic transcriptional addiction of ATC cells resulting 

in evolving diverse oncogenic signaling for cancer cell survival. The transcriptional addiction has 

presented a huge challenge for effective targeting as shown by the failure of previous targeted 

therapies. However, an emerging notion is that many different oncogenic signaling pathways 

activated by multiple upstream driver mutations might ultimately converge on the transcriptional 

responses, which would provide an opportunity to target transcriptional regulators for treatment of 

ATC. Here, we review the current understanding of how genetic alterations in cancer distorted the 

transcription program, leading to acquisition of transcriptional addiction. We also highlight recent 
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findings from studies aiming to exploit the opportunity for targeting transcription regulators as 

potential therapeutics for ATC.
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INTRODUCTION

A prominent hallmark of cancer is gene dysregulation, leading to initiation of tumor 

development, distant metastasis, and therapeutic resistance[1]. Unlike normal cells, cancer 

cells require high levels of active transcription to develop various survival programs 

and maintain uncontrolled growth[2]. The need for high transcription to propel cancer 

proliferation is supported by observations of over-expressed components in transcriptional 

machinery in diverse cancers[1,3–5]. In particular, the development of aggressive and 

therapeutically recalcitrant tumors such as anaplastic thyroid cancer (ATC) is known to rely 

on characteristic patterns of gene expression (known as transcriptional addiction), despite a 

high level of genetic heterogeneity[6,7]. This transcriptional dependency requires perpetually 

active transcription, relying on input from transcriptional key players including chromatin 

regulators. Such a higher activity exhibited by transcription regulators has presented an 

opportunity for therapeutic intervention[6–10].

ATC is a rare malignancy, but it is one of the most aggressive human solid cancers[11], 

accounting for 1%−2% of all thyroid cancers, which are the most common endocrine 

malignancy[12,13]. ATC is extremely fast-growing and invasive, and thus most cases present 

as stage IV disease with distant metastasis, making most patients ineligible for surgery[14,15]. 

ATC is highly resistant to conventional therapy, and the median survival of ATC patients 

is less than 6 months after diagnosis[11,16]. Currently there are no established therapeutic 

options to improve overall survival of these patients[17,18]. American Thyroid Association 

guidelines and the National Comprehensive Cancer Network Clinical Practice Guidelines for 

ATC recommend combination therapy including surgery, chemotherapy, and/or radiotherapy 

to maximize clinical benefits[16,19]. Several new tyrosine kinase inhibitors (TKIs) are 

currently under evaluation in phase II clinical trials for ATC. So far only a combination 

therapy of dabrafenib with trametinib has been approved by the United States Food and 

Drug Administration for BRAF-mutated ATC, which was based on the limited results from 

a phase II clinical trial without definite evidence of benefits on survival[20]. Therefore, 

development of new effective therapeutic modalities is urgently needed.

One explanation to account for the difficulties in developing effective therapeutics for 

ATC is the lack of well-defined driver mutations as well as clearly elucidated molecular 

mechanisms underlying the carcinogenesis. ATC exhibits more genetic alterations and 

more extensive heterogeneity than other types of thyroid cancers[21–23]. The high degree 

of intra- or inter-tumor heterogeneity[24,25] presents a huge challenge in identifying effective 

therapeutic targets for ATC. Nevertheless, despite this genetic complexity, in a subset of 

ATC, a characteristic transcriptional program frequently associated with super-enhancers 
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emerges, resulting in constitutive activation of some oncogenes[6,8–10,26]. Moreover, the 

expression of the oncogenes that are driven by the super-enhancers has been shown to 

be particularly vulnerable to the effect of transcriptional inhibitors as found in other 

cancers[27–31]. Thus, the molecular modulators of these transcriptional programs, especially 

proteins that are important for the transcriptional control, have emerged as attractive targets 

for aggressive cancers such as ATC. In this review, we will briefly review the transcriptional 

machinery process and what is known about dysregulation of transcription in cancer 

development. We will then discuss how the inhibitors which could disrupt transcription 

could impede cancer cell survival and proliferation. We will also examine the challenges to 

be overcome before these inhibitors could be used for therapeutics for patients.

General transcriptional machinery and its main regulators

Transcription starts from the assembly of the pre-initiation complex (PIC), a complex 

of about 100 proteins that binds to the transcription start sites of genes and promotes 

DNA entry to the active site of RNA Polymerase II (RNA Pol II) for transcription 

initiation[32] [Figure 1]. The PIC formation requires the recruitment of several general 

transcription factors (GTFs), which include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and 

TFIIH[33]. Promoters typically have a TATA box [TATA(A/T)A(A/T)(A/G)] located 25 base 

pairs upstream of the transcription start site[34].

TATA binding protein (TBP), which is a subunit of TFIID, binds to the TATA box in 

the promoter of DNA. Subsequent recruitment of TFIIA and TFIIB stabilizes this TBP­

promoter complex. TFIIB recruits RNA polymerase II and TFIIF to the promoter complex. 

This binding further stabilizes the RNA Pol II complex and other initiation factors on 

the promoter to confirm that the transcription initiation by the RNA Pol II occurs at the 

appropriate location[32,35].

The mediator complex, which is a 23-subunit assembly, cooperatively binds with RNA 

Pol II and a subset of transcription factors (TFs) during the process of the PIC formation 

despite not binding directly to DNA sequence-specifically[36]. The mediator complex is 

recruited to promoter-enhancer regions by TFs and functions to signal the messages from 

the TFs to RNA Pol II, thereby enabling TF-dependent regulation of gene expression. 

Such communication is indispensable for transforming biological inputs from TFs to 

physiological responses through changes in gene expression[37].

The final GTF to be recruited to the PIC is TFIIH, consisting of multiple subunits, including 

MAT1, cyclin-dependent kinase 7 (CDK7), its paired cyclin H, and ATP-dependent helicases 

(XPB and XPD)[38]. Following recruitment, XPB enables promoter opening for transcription 

to occur[39], whereas CDK7-mediated phosphorylation of C-terminal domain (CTD) of 

RPB1, which is the largest subunit of RNA Pol II, at serine 5 induces dissociation of 

the mediator from the PIC, thereby leading to binding of mRNA capping enzymes that 

catalyze addition of the methyl-guanosine cap structure to the 5` end of nascent mRNA 

transcript[40]. CDK7 also phosphorylates TFIIE that facilitates activities of TFIIH as an 

ATPase and a kinase, and its phosphorylation drives the transition from transcription 

initiation to elongation[41].
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Elongation of RNA Pol II pauses 30–50 nucleotides downstream of the transcription start 

site. This transcriptional pause enables rapid and synchronous transcriptional activation 

upon release of RNA Pol II from the paused state and also functions as a check point for 

mRNA quality control[42]. The positive transcription elongation factor b (P-TEFb)/CDK9 

complex is then recruited to the paused RNA Pol II and cooperates with bromodomain­

containing protein 4 (BRD4) and the super elongation complex to release RNA Pol II 

for active transcription. While CDK7 is important for driving the initial stages of RNA 

Pol II elongation, CDK9 produces a fully matured elongation complex that can engage in 

mRNA slicing, termination, and co-transcriptionally modifying the chromatin structure[43]. 

In addition, the P-TEFb promotes the CTD phosphorylation at serine 2, a conserved 

marker of elongating RNA Pol II in promoting recruitment of the 3`-end processing and 

splicing factors for mRNA maturation[44]. CDK12 and CDK13 also directly contribute to the 

CTD phosphorylation at serine 2, transcription elongation[45], splicing of pre-mRNA, and 

transcriptional termination[46].

Mechanisms of transcriptional dysregulation in cancer

In normal cells, cell identity is largely controlled by the action of TFs that interact with 

specific regions in the genome to regulate gene expression. The TFs deregulated in cancer 

can be subdivided into three major groups: (1) master/lineage TFs involved in organization 

of cell identity; (2) proliferation control TFs that can amplify transcriptional output to meet 

cellular demands; and (3) signaling TFs that regulate a series of machineries driven by 

extracellular signals. Examples of master/lineage TFs are the pluripotent OCT4, SOX2, 

and Nanog regulators. They function to change core regulatory circuitries and induce 

transcriptional activation of additional genes that are normally expressed in more embryonic 

states. Prime examples of proliferation control TFs are MYC and TP53, the most frequently 

mutated genes in human cancer. Notably, MYC can have extensive effects by amplifying 

the entire gene expression program[4,47,48]. Examples of signaling TFs are nuclear receptors 

including thyroid receptor (TR)[49,50] and estrogen receptor (ER), STAT3, β-catenin, and 

NOTCH. Dysregulated signaling TFs can significantly alter the transcriptional program by 

binding to enhancers occupied by master TFs[51,52] or aberrantly promoting super-enhancer 

formation[48].

Besides these TFs, several cofactors play key roles in the transcriptional process. There are 

two classes of cofactors: the mediator complex and chromatin regulators. Mediators act as a 

messenger to relay signals from the TFs to chromatin regulators such as p300/CBP, MLL1–

4, BRD4, JARID1A, and SWI/SNF chromatin remodeling complex. Genetic alterations of 

the mediator complex are frequently observed in many cancers[53–55]. Interestingly, few 

cancer-associated genetic alterations in the core RNA Pol II complex itself have been 

identified, suggesting that coordinated alterations of transcriptional signals upstream of RNA 

Pol II are more important for the neoplastic state[56]. Chromatin regulators are important 

for efficient delivery of transcriptional signals from enhancers to promoters. They function 

globally, and thus their dysregulation can profoundly affect the gene expression program of 

cancer cells[56].
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Recent studies have demonstrated that specific chromosomal structures play critical roles 

for gene regulation. The term insulated neighborhoods was coined to indicate that genes 

and their regulatory elements are typically regulated together within specific DNA loop 

structures. These chromosomal loop structures are bound by the CTCF protein and are 

co-bound with the cohesin complex[57]. These chromosomal structures produce specific 

enhancer-gene interactions that are necessary for gene activation and repression[58–60]. 

Therefore, mutations of proteins in the chromosome loop structures can profoundly affect 

overall gene expression. According to recent cancer genome sequencing studies, somatic 

mutations in the CTCF protein and the cohesion complex are frequently developed in 

various solid tumors, and these mutations can modify the insulated neighborhoods all 

over the genome, thereby rendering chromatin more accessible to oncogenic transcriptional 

signaling for carcinogenesis[61,62].

There are classes of cis-regulatory elements that have significant roles in cancer biology: 

super-enhancers and insulators that form the insulated neighborhoods. Super-enhancers 

are regions of the genome comprising multiple enhancers and bind to high densities of 

transcriptional components to drive genes involved in maintaining specific cell identities. 

Cancer cells attain super-enhancers for driving the expression of oncogenes through 

various mechanisms[29,63,64], including DNA translocation[63], focal amplification[65], small 

insertions and deletions[66], and epigenomic mechanisms[67]. Somatic mutations in loop 

anchors of insulated neighborhoods around oncogenes also frequently occur in diverse 

cancers. Of note, DNA-binding motif of the CTCF protein in loop anchor regions is one of 

the most frequently altered TF-binding sequences in human cancer[68].

In addition, transcriptional dysregulations are known to be tightly linked to epigenetic 

alterations, contributing to pervasive gene expression changes in cancer[69–71]. Epigenetic 

alterations are heritable and a dynamic process, altering the phenotypes by dysregulating 

gene expression without changes in DNA sequences. Epigenetic changes include DNA 

methylation, histone modifications, and the regulation of non-coding RNA[72]. These 

changes could lead to chromatin remodeling, resulting in profound changes of gene 

expression profiles in cancer[72]. This epigenetic regulation allows the genome-wide 

transcriptional dysregulation independent of genetic change in cancer. Interestingly, the 

chromatin features of cell-of-origin are known to be strong predictors for cancer mutation 

profiles[73], suggesting chromatin alterations as critical drivers for cancer development.

Transcriptional Regulation for Maintaining Cancer Stem Cells

For effective targeting of transcription regulators for treatment of ATC, emerging knowledge 

about the roles of cancer stem cells (CSCs) should be considered. The prevailing hypothesis 

has been that CSCs are responsible for treatment resistance and tumor relapse in aggressive 

cancers including ATC. CSCs are a subpopulation of cancer cells having features similar 

to normal embryonic stem cells (ESCs), such as self-renewal ability and pluripotency[74]. 

CSCs are endowed with the ability for self-renewal and for initiating tumors at low cell 

density. They can also enable a considerable portion of tumor cells to be differentiated 

according to tumor microenvironment. CSCs are more resistant than non-CSCs to anti­
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cancer therapy. Such resistance enables CSCs to evolve in the clonal selection for aggressive 

phenotype[75,76].

Numerous studies have indicated transcriptional regulation is essential for maintaining ESC 

status. This transcriptional regulation is mainly mediated by pluripotency TFs such as 

Oct4, Sox2, Nanog, and MYC. Chromatin immunoprecipitation studies revealed extensive 

co-binding of Oct4, Sox2, and Nanog at many active and silent genomic target regions in 

ESC, indicating their role in activating other pluripotency-related factors and simultaneously 

suppressing lineage-specific genes[77,78]. While Oct4, Sox2 and Nanog cooperate with 

the mediator complex to recruit RNA Pol II for gene transcription[79], MYC controls the 

transcriptional pause release of RNA Pol II through p-TEFb[80] and induces the stem cell­

like state by epigenetic reprograming[81]. Interestingly, ESC-specific genes including the 

pluripotency TFs and their activation targets are preferentially and frequently overexpressed 

in poorly differentiated aggressive human cancers[82–84]. Furthermore, this ESC-like gene 

signature is associated with poor clinical outcomes in those cancers, supporting existence 

of CSCs and their clinical significance[82]. More importantly, the genome of ESC is 

transcriptionally and globally hyperactive and undergoes large-scale silencing during 

differentiation. This transcriptional hyperactivity in ESCs is mediated by aberrant expression 

of the general transcriptional machinery and chromatin remodeling genes, indicating the 

global hyperactive transcription as a hallmark of pluripotent ESC and CSC, contributing 

to their plasticity[85–89]. Therefore, targeting transcriptional regulators would have clinical 

benefits for CSC depletion and re-differentiation in the treatment of ATC.

POTENTIAL OF TRANSCRIPTIONAL REGULATORS AS BIOMARKERS AND 

THERAPEUTIC TARGETS IN ATC

Thyroid hormone nuclear receptors

Thyroid hormone nuclear receptors (TRs) are members of the nuclear receptor superfamily. 

They are important signaling TFs to mediate biological actions of the thyroid hormone 

(T3) for development, growth, and metabolic homeostasis[50,90]. TRs generally act as 

ligand-dependent TFs by binding to thyroid hormone response elements (TREs) located 

in regulatory sites of their target genes[91], but they can also control the expression of 

target genes that do not possess a TRE by interacting with other TFs[92,93]. Over the past 

decades, there have been major advances in understanding the physiological functions of 

TRs at the molecular level and, recently, their role in cancer biology. Previous studies 

have demonstrated that loss of heterozygosity, deletion, and reduced expression of the 

THRB gene are associated with development of diverse human cancers[94]. In addition, the 

THRB gene is frequently silenced through hypermethylation of its promotor region[95–101] 

or via microRNA-mediated mechanisms[102] in various cancers including thyroid cancer. 

These findings collectively suggest TR as a tumor suppressor. Surprisingly, a dominant­

negative C-terminal frameshift mutation of TRβPV (ThrbPV/PV mice) drives tumorigenesis 

in thyroid[103], mammary[104], and pituitary[105] gland. These deleterious effects due to the 

loss of functional TRβ were clearly evident in that TRβPV/− mice[106] and Thrα1−/−Thrb−/− 

mice spontaneously developed metastatic follicular thyroid cancer[107]. That the loss of 

functional TRβ led to cancer development suggested that TRs broadly control transcriptional 
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programs to suppress oncogenesis, raising the possibility that TRβ could be targeted for 

treatment of thyroid cancer.

This therapeutic potential of TRβ was tested in human differentiated thyroid cancer 

(DTC) cells. Evaluation of thyroid cancer specimens of patients and cancer cell lines 

showed that the expression of the THRB gene was suppressed through its promoter 

hypermethylation[101]. Further, the promoter hypermethylation level of the THRB gene 

was positively correlated with thyroid cancer progression. When human thyroid cancer 

cell lines in which the THRB gene was silenced through its promoter hypermethylation 

were treated with demethylation agents, the THRB gene expression was reactivated, which 

suppressed cancer cell proliferation and migration, and in vivo tumor growth in a xenograft 

model. These actions of the reactivated THRB gene occurred through suppression of the 

β-catenin signaling pathway in thyroid cancer cell lines[101]. These findings led to the 

direct demonstration that the exogenous expression of the THRB gene could suppress 

tumor cell proliferation and growth[100]. Indeed, exogenous expression of THRB in human 

follicular thyroid cancer (FTC) cells (FTC-133 and FTC-236) reduced cell proliferation and 

impaired cell migration through inhibition of the PI3K-AKT-mTOR pathway. Further, in 

xenograft tumors, the re-expressed THRB inhibited tumor growth and angiogenesis through 

suppression of vascular endothelial growth factor (VEGF) signaling pathway[100]. In these 

studies, how TRβ acted to converge these upstream signals to the nuclear transcription was 

not clear. The elucidation of the underlying mechanisms awaits further in-depth analysis. 

Nonetheless, these findings hold high promise that TRβ could be a potential therapeutic 

target for thyroid cancer.

MYC and bromodomain and extra-terminal domain proteins

MYC is a master regulator of many fundamental processes such as cell cycle entry and 

progression, ribosome biogenesis, and metabolism. In cancer, the MYC transcriptional 

network is frequently overactivated through various mechanisms such as gene duplications, 

somatic mutations and chromosomal translocations, which increase MYC stability, thereby 

allowing tumor initiation and progression. MYC is overexpressed in more than half of 

all tumors and therefore has been regarded as one of the most important oncogenes in 

cancer[108].

Uncontrolled expression of the MYC gene has been known to be responsible for the 

development and progression of ATC[109,110]. MYC protein is frequently upregulated in 

ATC tumor tissues[110], and its high expression has been associated with poor clinical 

outcome[111,112]. In a mouse model of ATC, high expression of the MYC gene was related 

to thyroid cancer progression as indicated by the loss of differentiation[113]. In a mouse 

model of lung cancer, systemic inhibition of the MYC gene using a dominant negative MYC 
mutant resulted in complete eradication of the lung cancers[114]. However, so far, there has 

been no effective approach to directly controlling the functions of the MYC protein itself.

Chromatin remodeling through histone acetylation plays a crucial role for the transcriptional 

control[115]. The bromodomain and extra-terminal domain (BET) family of proteins, such 

as bromodomain-containing protein 4 (BRD4), interacts with the acetylated histones to 

recruit transcription activators and co-activators, and chromatin complexes to particular 
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promoter regions[116]. Small-molecule inhibitors such as JQ1 selectively targeting this 

interaction between BET proteins and acetylated histones have been shown to potently 

inhibit the MYC-mediated transcriptional program by attenuating super-enhancers in diverse 

cancers[117–122].

In thyroid cancer, JQ1 decreased MYC expression, induced cell cycle arrest, and suppressed 

tumor growth in a xenograft mouse model[123,124]. In a preclinical mouse model of ATC 

(ThrbPV/PVKrasG12D)[125], JQ1 was found to effectively suppress MYC expression and 

attenuate MYC-mediated transcriptional programs, thereby inhibiting tumor growth and 

finally prolonging mice survival[125]. The efficacy of JQ1 was further tested in four cell lines 

originated from human ATC patients[110]. JQ1 markedly inhibited tumor cell proliferation 

through G0/G1 cell cycle arrest by suppressing MYC and inducing p21, p27, and RB 

dephosphorylation. JQ1 also could impair cancer cell invasion through attenuation of 

epithelial-mesenchymal transition (EMT) program. These in vitro findings were further 

confirmed by xenograft studies showing that JQ1 inhibited the size and growth rate of 

tumor by suppressing p21-Cyclins/CDKs-Rb-E2F signaling axis[110]. All these findings 

collectively suggested that epigenetic action of JQ1 blocking the interaction of BRD4 with 

histone acetyl-lysine sites across chromatin could suppress MYC transcription, thereby 

interrupting ATC progression.

Despite JQ1’s effective inhibition of tumor growth via suppression of MYC transcription, it 

showed no apparent inhibitory effects on tumor invasion and metastasis. This suggested 

that there were other oncogenic events to drive invasion and metastasis for the ATC 

progression. The MAPK-MEK signaling pathway is frequently upregulated in human 

ATC and is related to the ATC progression[126–128]. An MEK inhibitor, trametinib, was 

therefore used as a combined treatment with JQ1 to test this hypothesis in two human 

ATC cells, THJ-11T and −16T[129]. Remarkably, although either JQ1 alone or trametinib 

alone showed only partial effects, the combined treatment totally blocked proliferation 

of the ATC cells. Combined treatment downregulated MYC expression much more than 

each single treatment did, leading to suppression of pro-survival regulators and induction 

of pro-apoptotic regulators to cooperatively induce apoptosis. In xenograft studies, while 

each single treatment only partially inhibited growth of either THJ-11T or −16T-induced 

tumors, the combined treatment near completely (> 90%) blocked the tumor growth. This 

dramatic inhibition of tumor growth by the combined treatment occurred through synergistic 

suppression of MYC, which induced apoptotic regulators thereby markedly promoting 

tumor apoptosis. The underlying mechanism that the combined treatment synergistically 

suppressed MYC expression was further studied. Chromatin immunoprecipitation (ChIP) 

assay was used to probe the effects of JQ1 and trametinib on the binding of BRD4 to 

the MYC promoter in THJ-11T and −16T cells. As shown in Figure 2, JQ1, trametinib, 

and the combined treatment inhibited the BRD4 binding to the MYC promoter by 55%, 

42%, and 69%, respectively, compared to the control (vehicle-treated cells), in THJ-11T 

cells [Figure 2C-i]. Similar efficacy profiles of the three treatments in the BRD4 binding 

suppression were observed in THJ-16T cells (46%, 36%, and 64% by JQ1, trametinib, 

and the combined treatment, respectively, Figure 2C-ii). These data indicated that JQ1 and 

trametinib functioned, at least in part, to inhibit the BRD4 binding to histone acetyl-lysine 
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sites across the chromatin. Further, these two inhibitors could synergistically suppress MYC 
transcription via cooperative actions on chromatic modifications [Figure 2A and B].

The efficacy of combined treatment with BET and MEK inhibitors was further demonstrated 

by using the second generation of a BET inhibitor. A new BET inhibitor PLX51107 

(PLX) has demonstrated more favorable pharmacokinetic profiles than JQ1 and other BET 

inhibitors[130]. It has been under clinical trials for various solid tumors and hematological 

malignancies. PD0325901 (PD) is a MEK inhibitor that has also been evaluated in clinical 

trials for several cancers[131]. PLX and PD individually could suppress proliferation of both 

THJ-11T and −16T cells, but together exhibited synergistic inhibition. In mouse xenografts 

derived from the ATC cells, the combined treatment nearly completely blocked in vivo 
tumor growth. PD effectively reduced MEK-ERK signaling, and this inhibition was further 

augmented by the combined treatment with PLX in the ATC cells and tumors. Notably, PLX 

and PD synergistically attenuate MYC transcription to induce p27 for the tumor suppression. 

They also cooperated to activate pro-apoptotic regulators to induce apoptosis. These data 

indicated cooperation of PLX and PD that block BRD4 binding to histone acetyl-lysine sites 

on the promoter of the MYC gene. These collaborative actions could converge to induce 

epigenetic modifications to suppress MYC transcription. The efficacy of combined treatment 

was clearly demonstrated by using two different sets of BET and MEK inhibitors. These 

findings clearly demonstrated that epigenetic modifications on chromatin is a viable and 

effective approach for the treatment of ATC.

Steroid hormone nuclear receptor coactivators

The steroid hormone nuclear receptor coactivators (SRCs: SRC-1, SRC-2, and SRC-3) 

are important transcriptional coactivators discovered initially for the regulation of the 

transcriptional activity of the nuclear receptor superfamily. Subsequently, other transcription 

factors - including STATs, P53, RB, E2F1, hypoxia inducible factor-1 (HIF-1), Smads, 

and nuclear factor-κB (NF-κB) - were also found to be modulated by SRCs[132]. Upon 

ligand (hormone) binding, the ligand-bound nuclear receptors (NRs) open their coactivator­

binding motifs in their ligand-binding domains and recruit SRCs to the enhancer sites 

of NR-target genes. SRCs further recruit other common transcriptional coactivators such 

as CBP/p300 and CBP/p300-associated factor (PCAF), coactivator-associated arginine 

methyltransferase 1 (CARM1), and protein arginine N-methyltransferase 1 (PRMT1) to the 

chromatin to form a NR-driven transcriptional activation complex. This protein complex 

uses its acetyltransferase and methyltransferase activities for chromatin remodeling to 

facilitate the assembly of the GTFs and RNA Pol II on the promoter for the transcriptional 

activation[133–138] [Figure 1].

Among the SRCs, SRC-3 is the most well-studied in cancer biology. SRC-3 was initially 

identified as a transcriptional coactivator amplified in estrogen receptor (ER)-positive breast 

and ovarian cancer[139]. Its amplification and/or overexpression were subsequently found 

in diverse hormone-independent as well as - dependent cancers[140,141], supporting its role 

for transcriptional activation of oncogenes. Supporting this notion, mice overexpressing 

SRC-3 developed malignant breast, pituitary, and uterine tumors through activation of the 

PI3K/AKT and insulin growth factor 1 (IGF-1) signaling pathway[142]. As mentioned in 
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the earlier sections of this review, we generated a knock-in mutant mouse harboring a 

dominant negative mutant thyroid hormone receptor β mutant (ThrbPV/PV mice). ThrbPV/PV 

mice spontaneously develop aggressive FTC[103]. Interestingly, ThrbPV/PV mice deficient in 

SRC-3 (ThrbPV/PVSrc-3−/−) exhibit impeded thyroid cancer growth, progression and distant 

metastasis with a significantly increased survival, compared to ThrbPV/PV mice with normal 

SRC-3 function (ThrbPV/PVSrc-3+/+)[143]. These findings suggest SRC-3 as an oncogene and 

thus a potential therapeutic target in thyroid cancer.

Although transcriptional coactivators are difficult to target because of their large size and 

disordered structures[144], a new generation SRC-3 inhibitor-2 (SI-2) was developed through 

cellular function-based high-throughput screening. SI-2 selectively targeted breast cancer 

cells through inhibition of SRC-3 transcriptional activities[145]. On the basis of known 

complex transcriptional oncogenic changes observed in ATC[22,23,146] and the critical role 

of SRC-3 for transcriptional regulation, the expression of SRC-3 was examined during 

human thyroid cancer progression from normal, through DTC (FTC and PTC), to ATC[147]. 

Comparison of the SRC-3 protein abundance among human normal thyroid tissue [Figure 

3A-I-a], FTC [Figure 3A-I-b], papillary thyroid cancer (PTC) [Figure 3A-I-c], and ATC 

[Figure 3A-I-d–f] shows that SRC-3 is clearly higher in ATCs than in normal thyroid 

tissues, FTC, and PTC [Figure 3A-II]. Quantitative analysis shows that 54.6% of ATC cells 

were positive for SRC-3 vs. only 18.6% of PTC cells, 13.9% of FTC cells, and 18.3% 

of normal thyroid cells [Figure 3A-III]. Of note, further investigation for co-expression of 

SRC-3 and Ki-67 (a proliferation marker), clearly demonstrated a strong positive correlation 

(r = 0.8447, P < 0.0001) between SRC-3 and Ki-67 expression in human ATC tissues, 

suggesting that hyperactive transcriptional responses through aberrant expression of SRC-3 

are responsible for uncontrolled proliferation of human ATC [Figure 3B-I and II].

The fact that SRC-3 was both highly elevated and associated with increased proliferation 

provided the basis to test the efficacy of SI-2 in the treatment of ATC[147]. SI-2 treatment 

of cultured human ATC cell lines (THJ-11T and −16T) markedly suppressed tumor cell 

proliferation by inducing apoptosis and impeding cell cycle progression. Remarkably, 

growth of tumors derived from THJ-11T [Figure 4A-I] or −16T [Figure 4A-II] cells was 

inhibited by SI-2. The mean tumor weight was reduced by 76% and 70%, respectively, in 

the SI-2-treated group, compared to the vehicle-treated control group [Figure 4B-I and -II]. 

The inhibition of tumor growth by SI-2 was due to induction of apoptosis as evidenced by 

the detection of high levels of cleaved caspase 3 and pro-apoptotic regulators such as Bim in 

the xenograft tumors. In addition, proliferation of tumor cells was reduced as evidenced by 

reduced levels of Ki-67 and cyclin D1. Moreover, SI-2 blocked the activity of CSCs through 

inhibition of aldehyde dehydrogenase activity and expression. This observation suggested 

that a global transcriptional program through SRC-3 is critical for maintaining CSCs in 

ATC.

Finally, in-depth gene set enrichment analysis (GSEA) using The Cancer Genome Atlas 

Program-Thyroid Cancer (TCGA-THCA) data confirmed extensive involvement of SRC-3 

in the activation of multiple oncogenic signaling pathways. The coordinated activation of 

48 cancer-driver genes through SRC-3 signals poor clinical outcome in human thyroid 

cancer. The GSEA further indicated that this involvement of SRC-3 occurred through 
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enrichment of genetic regions occupied by oncogenic transcription factors such as the 

MYC/MAX complex, NF-κB, E2F1, and ETS1[147]. These findings suggest that many 

different oncogenic signaling pathways driven by multiple upstream driver mutations 

assembled on the transcription responses. SRC-3 would have a critical role in the final 

manifestation of oncogenic transcription responses, and therefore the identification of small­

molecule inhibitors such as SI-2 to target SRC-3 is a promising strategy for effective ATC 

treatment.

Transcription-associated cyclin-dependent kinases

The cyclin-dependent kinases (CDKs) are the families of serine/threonine kinases that 

mediate fundamental cellular processes such as cell proliferation and survival. They can 

generally be classified into two major groups: cell cycle-related CDKs (CDK1, CDK2, 

CDK4, and CDK6) and transcription-associated CDKs (CDK7, CDK8, CDK9, CDK12, and 

CDK13). Each CDK is bound to a specific cyclin partner that guides the CDK activity. 

Because of their important role in cancer cell survival and growth, they have been regarded 

as promising therapeutic targets. Recently, CDK4/6 inhibitors have been shown to be 

effective in preclinical studies of multiple cancer types[148–150], and impressive clinical 

outcomes have been demonstrated in hormone-positive breast cancer[151,152]. Development 

of small-molecule inhibitors targeting the transcription-associated CDKs has been slow, and 

few have entered into clinical use. Still, growing numbers of studies have shown strong 

efficacy of these inhibitors, particularly in a subset of cancers that exhibit the transcriptional 

addiction, including small cell lung cancer[10], ovarian cancer[8], and triple-negative breast 

cancer[6], and T-cell acute lymphoblastic leukemia[9] [Figure 1].

The efficacy of targeting the transcription-associated CDKs has also been shown in 

aggressive medullary thyroid cancer (MTC) and ATC. The development and progression of 

MTC are known to be driven by the gain of function mutations of the RET proto-oncogene. 

A super-enhancer in the intron 1 of the RET gene provides the sensitivity to be targeted 

by CDK9 inhibitors alone or with a RET kinase inhibitor[153]. ATC cells that exhibit 

super-enhancers-mediated transcription addiction were shown to be sensitive to transcription 

inhibition by the CDK7[26] or CDK12 inhibitor[154]. However, intriguingly, MYC was 

not found in the list of the super-enhancer-mediated or THZ1 (CDK7 inhibitor)-sensitive 

cancer genes in these studies. Of note, previous findings reported that ATC cells heavily 

rely on MYC-driven transcriptional addiction[110,125,155] and that the CDK7 inhibitor led 

to massive suppression of MYC-driven global transcriptional amplification[8,10,156]. One 

possible explanation for these differences among studies could be the use of different 

experimental models. Therefore, it would be important to develop additional experimental 

models that could be comprehensively analyzed and validated. Furthermore, in view of the 

importance of CSCs in chemoresistance and recurrence of ATC, the potential effects of 

inhibitors targeting the transcription-associated CDKs on CSC activity should be evaluated 

and its underlying molecular mechanisms elucidated. The fruitful outcome of such studies 

will broaden the availability of urgently needed therapeutic targets for ATC.
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CONCLUSION AND FUTURE PERSPECTIVES

ATC’s complex and heterogeneous genetic profiles with high transcriptional output enable 

continuous development of survival programs in the face of current targeted therapies. 

Early studies showed multiple upstream driver mutations to initiate carcinogenesis. More 

recent studies indicated that such driver mutations initiated upstream could converge to 

trigger transcriptional responses as evidenced by global genomic analyses. Mutations in 

transcriptional regulators such as components of SWI/SNF chromatin remodeling complex, 

histone methyltransferases, and EIF1AX (a key component of the translational preinitiation 

complex) were identified in ATC[22,23,146], supporting the potential of transcriptional 

regulators as therapeutic targets for ATC treatment.

Indeed, as presented in this review, our studies have provided the rationale for potential 

clinical trials using small-molecule inhibitors such as JQ1 (BET inhibitor), PLX51107 

(BET inhibitor), and SI-2 (SRC-3 inhibitor) to target the transcriptional regulators in 

ATC patients. Targeting other key components of the transcriptional machinery, such as 

chromatin regulators, the mediator, and other transcriptional coactivators, would also have 

profound effects on the final manifestation of oncogenic transcriptional responses. Thus, 

the identification of small-molecule inhibitors targeting them (or activators for TRs) is a 

promising strategy for effective ATC treatment.

Several important questions require further investigations to bridge the gap between 

preclinical studies and clinical application. Therapeutic windows for each inhibitor would 

have to be assessed in clinical trials because the transcriptional inhibition can affect normal 

as well as cancer cells. Defining the therapeutic windows for selectively targeting the cancer 

transcription program could avoid side effects thereby enhancing the well-being of the 

patients. Further, identification of transcription inhibitors which could deplete CSCs in ATC 

could minimize chemoresistance and recurrence. The elucidation of how the key players 

regulating the transcription programs lead to depleting of CSCs would certainly expand the 

choice of therapeutic targets for ATC to further benefit patients.
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Figure 1. 
Converging of multiple oncogenic signals initiated from various upstream driver mutations 

in eliciting transcriptional responses. General transcription factors, mediators and RNA 

polymerase II assemble to form preinitiation complex to initiate transcription. The process 

of RNA elongation and termination is regulated by various cyclin-dependent kinases. Blue, 

yellow, and red circles indicate phosphorylation of the C-terminal domain of RNA Pol 

II at Ser 5, Ser 7, and Ser 2, respectively, by CDK7 or CDK9. Bromodomain and extra­

terminal domain proteins (BET proteins; e.g., BRD4) interact with acetyl-lysines on the 

chromatin to activate transcription. Nuclear receptors bind to the hormone response element 

of target genes. Hormone/ligand-bound HRs recruit steroid hormone receptor coactivators 

(e.g., SRC-3) and other activators such as CBP/p300 and PCAF and together with mediator 

to form large complexes to further activate transcription. Mutational oncogenic upstream 

signals relay to converge on the transcription process to alter gene transcription output of 

proliferation- and differentiation-regulators to promote cancer progression. The expression 

of critical cancer stem cell transcription factors such as Oct4, Sox2, Nanog and MYC 

is known to be driven by super-enhancers on the chromatin. Sites in the transcription 

machinery that could be targeted by inhibitors are shown. NR: nuclear receptor; SRC: 

steroid hormone nuclear receptor coactivator; HRE: hormone response element; PCAF: 

CBP/p300-associated factor; PIC: pre-initiation complex; GTFs: general transcription 

factors; Pol II: polymerase II; CDK7: cyclin-dependent kinase 7; CDK9: cyclin-dependent 

kinase 9.
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Figure 2. 
JQ1 and trametinib synergistically decrease mRNA expression of the MYC gene by 

attenuating recruitment of BRD4 to the MYC promoter in ATC cells and tumors. (A, B) The 

mRNA levels of the MYC gene in THJ-11T cells (A-i), −16T cells (B-i), and −11T (A-ii) 

and −16T xenograft tumors (B-ii). (C) Chromatin immunoprecipitation assays show BRD4 

binding on the MYC promoter in THJ-11T (i) and −16T cells (ii). Significant differences 

were indicated by asterisks (*P < 0.05, **P < 0.01, and ***P < 0.001)[129]. (Permission 

from the authors).
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Figure 3. 
Elevated expression of SRC-3 in human ATC. (A) Immunohistochemistry (IHC) images 

for SRC-3 (I), their magnified images (×2) showing nuclear staining of SRC-3 (II), and 

quantitative analysis for the IHC results (III) in different stages of human thyroid cancer. (B) 

IHC images for Ki-67 (I) in normal thyroid, PTC, and ATC, and correlation plot showing 

strong positive relationship between SRC-3 and Ki-67 expression in ATC (II). Significant 

differences were indicated by asterisks (****P < 0.0001). Scale bars represent 50 μm. 

ATC: Anaplastic thyroid cancer; FTC: follicular thyroid cancer; PTC: papillary thyroid 

cancer[147]. (Permission from the authors).
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Figure 4. 
Therapeutic efficacy of SI-2 in ATC xenograft mice models. (A, B) Growth curves (A) and 

weight (B) of THJ-11T (I) and −16T (II) xenograft tumors treated with vehicle or SI-2. 

Significant differences are indicated by asterisks (**P < 0.01 and ****P < 0.0001). Data 

represent the mean ± SD[147].
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