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Abstract

The DNA Damage Response (DDR) signalling network is an essential system that

protects the genome’s integrity. The DDRprot database presented here is a resource that

integrates manually curated information on the human DDR network and its sub-

pathways. For each particular DDR protein, we present detailed information about its

function. If involved in post-translational modifications (PTMs) with each other, we depict

the position of the modified residue/s in the three-dimensional structures, when resolved

structures are available for the proteins. All this information is linked to the original publi-

cation from where it was obtained. Phylogenetic information is also shown, including

time of emergence and conservation across 47 selected species, family trees and se-

quence alignments of homologues. The DDRprot database can be queried by different

criteria: pathways, species, evolutionary age or involvement in (PTM). Sequence

searches using hidden Markov models can be also used.

Database URL: http://ddr.cbbio.es.

Introduction

The DNA Damage Response (DDR) is a crucial signalling

network that maintains the integrity of the genome (1, 2).

This network is the final result of a complex assembly of

different sub-networks, delicately integrated according to

the type of damage inflicted on DNA. This response

requires the action of different proteins acting in concert,

and it is highly dynamic. Due to its essential role in com-

bating genome instability and therefore, its central influ-

ence on disease (3, 4), DDR pathways have been used as

therapeutic targets (5), with molecules like PARP (Poly

ADP-Ribose polymerase) inhibitors (6, 7) or more recently

ATR (Ataxia telangiectasia and Rad3 related) inhibitors
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(8–10) seen to have potentially beneficial effects. However,

despite the importance of this DDR network, information

about its components, their interactions and its evolution

as well as emergence has rarely been compiled (11), per-

haps with the exception of DNA repair for which some re-

sources are available (http://sciencepark.mdanderson.org/

labs/wood/DNA_Repair_Genes.html).

This prompted us to conduct a comprehensive analysis of

the DDR network and its sub-pathways (27), completing and

updating the work carried out previously (11). In this previ-

ous work, we collected curated information about human

proteins involved in most of the pathways and classified them

into four sub-networks to facilitate further studies: global re-

pair; checkpoints; responses at replication forks; and response

at double strand breaks. We also assigned them to one or

more of four functional classes: ‘sensors’ that identify and lo-

cate the damage produced by chemical alterations or by

strand breaks; ‘transducers’ that label damaged sites and trig-

ger a localized signalling response; ‘mediators’ that activate

checkpoints or serve as protein/protein interactions plat-

forms; and ‘effectors’ that ultimately lead to death or repair

(12). This four-tier classification has been proposed previ-

ously and it is widely employed in the DDR field (12–14).

Being post-translational modifications (PTMs) a hallmark of

DDR regulation, we manually collected evidences from the

existing literature, including phosphorylations, by far the

most studied modification, and other essential modifications

that control the DDR including ubiquitination, sumoylation

and acetylation (15, 16). While some relevant evolutionary

studies have been carried out in the past decade (17, 18), few

have focused on the network as a whole, with studies often

restricted to just a few protein families or with particular em-

phasis on chromatin modulators (19) and repair enzymes,

and often confronted with the additional difficulties due to

the miss-assignation of orthology based on functional ana-

logy, a common error in the field of cell biology that emerges

when extracting information from the literature (20) and

skews the interpretation of evolutionary data. To fill this void

and overcome these problems, we assigned evolutionary ages

to these proteins in order to infer when these pathways

emerged, we scored the presence or absence of these proteins

in model organisms, and computed probabilistic-based phy-

logenies (21). Among other findings, we highlighted the ab-

sence of entire modules within pathways in model organisms,

and even complete pathways (21), indicating the existence of

specific lineage expansions (22), as well as the poor conserva-

tion of important pathway modules that have been used as

therapeutic targets (e.g., the BRCA1 [Breast cancer type 1

susceptibility protein] complex).

Since these data could be of interest to the scientific

community working on DDR, we have created a structured

database and the corresponding web interface to aid the

exploration of this resource.

Methods summary

The implementation of the DDRprot database was divided

into two steps: (i) in the first step information was obtained

for humans and their homologous proteins in 46 species,

whereby the information from different sources is inte-

grated into a relational database and a Perl script down-

loads; (ii) a user friendly web interface that displays the

data in a graphical format that enables DDR proteins

emergence during evolution to be visualized, as well as its

function and the sites of PTM in 3D structures.

Protein sequences and other information where obtained

from the Energy’s Joint Genome Institute (http://genome.jgi-

psf.org/, Assembly 1.0: Ciona intestinalis, Capitella teleta,

Emiliania huxleyi, Monosiga brevicollis. Branchiostoma flor-

idae, Naegleria gruberi, Nematostella vectensis and

Trichoplax adhaerens; Assembly 1.1: Physcomitrella patens

subsp. Patens; Assembly 2.0: Chlamydomonas reinhardtii,

Phaeodactylum tricornutum (strain CCAP 1055/1);

Assembly 4.1: Xenopus tropicalis), NCBI (RefSeq Release

68), Uniprot (release 2014_10), Ensembl (Ensembl 77),

WormBase ParaSite(version 2.0). Available structures for

human DDR proteins were obtained from Uniprot. Mapping

of amino acid residues into structures is done using SIFTS

(23) (https://www.ebi.ac.uk/pdbe/docs/sifts/). Detailed infor-

mation on how orthologues where inferred [using Inparanoid

(v4.1) (24)], gene age was calculated [using Count (25)] and

trees where compiled [using MAFFT (Version 7) (26) and

MrBayes (3.2.5) (27)], can be found at Ref. (21). Searches

based on sequence similarity are performed using the

phmmer program from HMMER3 (v3.1b2) (28)

The DDRprot database is a relational database developed

in MYSQL (version 5.5.40). The front end is comprised of a

website designed in PHP (version 5.3.10), CSS3 and with a

JQuery JavaScript library, and for PDB structures visualiza-

tion, it uses the BioJS (http://biojs.io/d/bio-pv) protein viewer

at WebGL capable browsers and JSmol (http://wiki.jmol.org/

index.php/JSmol) at others. The PTMs interactions are shown

using an arc-plot inspired on Daniel Gaston’s ‘arcdiagram’

(https://github.com/gastonstat/arcdiagram) and use the D3

JavaScript library. Sequence alignments visualizations use the

JavaScript Sequence Alignment Viewer (JSAV, https://github.

com/AndrewCRMartin/JSAV).

Database description

The DDRprot database contains comprehensive information

about 129 human proteins involved in the DDR network.
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This set includes proteins demonstrated to be involved in

DDR functions via accurate bibliographic information avoid-

ing automatic extension, which in turn may lead to mislead-

ing function assignment. For each protein we provide a

functional role, links to sequence databases, a list of syno-

nyms, a list of the PTMs it undergoes and those that it exerts

over other DDR components (within the DDR database).

Links pointing to PhosphositePlus (http://www.phosphosite.

org) and iPTMnet (http://research.bioinformatics.udel.edu/

iptmnet/) are provided for DDR proteins that are modified by

other proteins in alternative contexts. Finally, we provide the

list of known 3D structures of human DDR proteins in our

database. Regarding evolutionary information, we provide

conservation profiles and links to orthologues in 46 add-

itional species that represent key points in evolutionary his-

tory. These profiles were used for the construction of protein

sequence alignments, as well as phylogenetic trees, which are

also provided in both text and graphic formats. All this infor-

mation is available in the download section of the web site in

three separate files: one SQL dump of the database (the data-

base schema is also available), a fasta-format file containing

all human DDR protein sequences and their orthologues in

the 46 selected representative species, and a compressed direc-

tory containing for each protein family, the phylogenetic tree

in text format and the multiple sequence alignment in both

fasta and nexus format. Commands to compute the phylo-

genetic tree with Mr. Bayes (27) are indicated inside the nexus

format. A workflow diagram is presented (Figure 1).

Web interface

Main views

The DDRprot site contains detailed information about

how to use the site, with a video help and documents, as

well as contact information. These features can be found at

the very top of every page, where an additional search tool

is also included for fast access. The site is accessible to dif-

ferent devices and at different resolutions.

The home page is dominated by a clickable map of the

network, the ‘Network view panel’ (Figure 2). This image

can be zoomed and panned to the desired proteins/

Figure 1. DDRprot Workflow. This diagram depicts the workflow of input/output data in DDRprot.
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pathways. A colour-based scheme depicts the different

sub-networks, facilitating their visual organization, which

can be changed to evolutionary conservation. This map en-

hances the context-based exploration of the network (i.e.

accounting for neighbouring proteins, etc.) while highlight-

ing either its modular structure or its evolutionary past. It

contains links to the bibliographic references supporting

all the interactions shown (numbers in the map), and click-

ing in protein nodes leads the user to the specific protein

display page. The map can also be downloaded in ‘SVG’

(Scalable Vector Graphics) format.

At the protein display page (Figure 3), the upper section

contains a general description of the protein, synonyms,

the network/s and the pathway/s with which it is associ-

ated, its functional assignations according to the four-tier

classification (12). Links to Uniprot and Ensembl are also

provided, allowing easy access to protein features and gen-

omics context. Below, the pattern of protein presence/ab-

sence in the 46 representative species is presented, allowing

a rapid perusal of evolutionary conservation and emer-

gence (21).

The remaining information is distributed in different tabs,

including the ‘Pathways’ tab that provides a zoomed version

of the DDR clickable interaction map where a detailed view

about the context and neighbouring proteins is shown. As all

other visual maps in the DDRprot website, this detailed view

can be downloaded as a ‘SVG’ file. The ‘Structures and

PTMS’ tab (Figure 4) shows the repertoire of DDR proteins

subjected to PTM within the context of the DDR (import-

antly, this information is extracted from the literature), as

well as the precise residues or regions involved in the different

modifications. It also provides structural coverage of the se-

lected protein and its modified residues when possible. The

interactions within proteins in DDRprot are shown using an

arc-plot, where proteins can be ordered according to different

criteria (gene age, gene name or pathway). Links pointing to

PhosphositePlus and iPTMnet are provided to explore PTMs

outside the DDR context.

Figure 2. Homepage view. This picture shows a partial view of the homepage depicting available searching modules at DDRprot. From top to bottom

and left to right, the ‘free text’ mode, the ‘selection tool’ by type of network, type of organism, evolutionary age of proteins, and post-translational

modifications (PTMs). The ‘sequence search’ module uses phmmer from HMMER3, and searches can be restricted to the human proteins or human

plus orthologues. The ‘search by clickable image’ module enables graphical searching, where proteins can be ordered by pathway or by evolutionary

age. Numbers in the interactions are clickable and point to the PubMed reference describing the relationship. When a protein belongs to more than

one pathway, this is indicated by vertical coloured bars. This schema is downloadable.
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The ‘Phylogeny’ tab shows evolutionary information,

where both multiple sequence alignments and phylogenetic

trees are available and can be downloaded in different for-

mats (Figure 5). The raw ‘fasta’ alignments of homologous

proteins [MAFTT-generated using the slow and accurate

version (26)] are also available to visualize and/or down-

load. Those are the direct program outputs that can be ob-

tained without further editing so that the user can visualize

these and select regions of interest. The ‘Nexus alignment

& MrBayes commands’ format contains the alignment

used to draw up the phylogenetic trees and in each file, the

commands used to run MrBayes (27) are also specified at

the end of the alignment block. In addition to the ‘SVG’

graphics, it is also possible to download the consensus

phylogenetic trees in the classic ‘Newick’ raw format, and

also to directly upload the tree in iTOL site (29) to enable

custom visualization.

Querying the database

There are two ways to access the data in DDRprot, using

different panels adapted to the distinct search strategies:

free text search, or through a selection tool (Figure 2). The

free text form provides a quick and flexible means to

search specific proteins in our database using identifiers or

keywords. With the selection tool users can search for pro-

teins involved in a particular pathway or network, present

in particular species, or with a given gene age.

When the DDRprot is searched using these selection

tools (i.e. pathways, species or evolutionary age), results

are shown both in a clickable table (Figure 6) and in a

downloadable map (Figure 7). In the ‘Map’ tab, it is pos-

sible to change the colouring pattern to highlight the pre-

cise pathways including the selected proteins or their

evolutionary conservation. In the ‘Table’ tab, each row

Figure 3. Protein results page, ‘Pathways tab’. The query is the protein XPA. A general description of the query protein is depicted with clickable links.

The evolutionary emergence box shows the phylogenetic profile of the protein in 47 species, where orange squares indicate its presence and gray in-

dicate absences (orthologue not found or missing). Species are named using a three-code naming convention (available in the help menu) although

rolling over will display full names. The squares are clickable and point to the source of the protein. This emergence box appears constant in all the

remaining tabs when selected. In the ‘Pathways’ tab, XPA, is highlighted in red and its location within the pathway is zoomed in, whereas the rest of

the proteins are coloured in gray.
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represents a protein where general information is provided.

The set of proteins found can be downloaded as a tab-

separated-values text file, and fields included in the file can

be selected at will. Clicking in the ‘Gene’ identifier will dir-

ect the user to the protein display page.

Alternatively, the user can select to visualize a par-

ticular set of PTMs within the DDR proteins. In this

case, the system will provide an interaction arc-plot.

Genes in this plot are ordered by gene-name but can be

dynamically re-ordered by different criteria (network or

gene-age) highlighting the intra- or inter-class network

of the interactions. The plot is clickable and checking

on protein names will direct the user to the protein dis-

play page.

Figure 4. Protein results page, ‘Structure and PTMS’ tab. It provides information regarding Post-translational modifications described in the literature

as well as the protein interaction map formalized as an arc-plot within DDR proteins. This map can be ordered by different criteria (gene name, gene

age or network), and it will reorder dynamically when changed. The map is clickable and can be zoomed in/out. Links to PTM repositories are pro-

vided for the modified protein. If the protein has structural data, PDB structures are shown and PTMs are mapped to these structures if possible using

SIFTS. A schematic representation of the protein over the structure indicates the length of the protein sequence (light blue line), the positions of the

residues, which are modified (solid vertical bars), whereas the lower gray bar indicates the protein coverage of the selected structure. Clicking on the

gray line will point to the PDB structure page. Menus at the left indicate position and type of modifications, and whether the protein is a modifier and/

or is modified. Clicking in the modification type directs to the PubMed entry describing the modification.
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Sequence searches

The DDRprot site enables the database to be searched

based on sequence similarity (Figure 2). By pasting a fasta

sequence file, users can find homologues of their query

protein sequence. For the search, the DDRprot database

implements a probabilistic tool based on hidden Markov

models to identify similar sequences [phmmer from the

HMMERV.3 suite (28)].

Figure 5. Protein results page, ‘Phylogeny’ tab. This module shows evolutionary information. It displays the consensus probabilistic-based phylogen-

etic tree of homologous proteins to the query protein. In the tree, the name of the protein (in our case, XPA) is shown for Homo sapiens, while the

rest are named by our three-code letter species naming (available in the help section, the same found in the emergence tab) where the nodes are col-

oured according to the main groups widely used in the evolutionary field for visualization purposes. A species/taxonomy tree is provided also from

this page, to check for agreement. The multiple sequence alignments displayed are the unprocessed alignments of homologous sequences as gener-

ated by MAFFT (see main text) and can also be exported as ‘fasta’. Both the ‘Nexus alignment with MrBayes commands’ and ‘Trees in Newick format’

files can be downloaded. The former includes an explicit definition of excluded regions and also includes MrBayes running commands to compute

the tree, while the latter is the consensus tree in standard ‘Newick’. It is possible to send the tree to the iTOL site for customized visualization.
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Users can search against all orthologous DDR proteins

(including all species), or restrict the searches to human

DDR proteins. In the latter case, results are shown in the

standard tabular and graphical formats obtained with any

other search methods, but with the addition of the

HMMER search scores and E-values (note that E-values in

these searches are inflated due to the small database size).

If the user selects the orthologues set, the results table also

Figure 6. Results page, ‘Table’ view. The query was by ‘Check point sub-network’. The ‘Table’ tab shows the results in a tabular format, which can be

ordered by any column. The user can select which information to download from the table. Clicking in gene names will direct the user to the Gene

page results display.

Figure 7. Results page. Results page, ‘Map’ view. The query was by ‘Check point sub-network’. The ‘Map’ tab depicts the proteins belonging to this

query within the DDR network to provide context. The selection can be coloured by either pathway or by evolutionary age of the pathway. The

schema is downloadable as SVG format file.
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contains links to the original databases, as well as to the

orthologous human gene page at DDRprot. In both cases,

results are shown in both tabular and map formats

(Figures 5 and 6). In addition, the user can download the

original HMMER output in text format.

Discussion

The DDR is a very complex network that is comprised of

several pathways, each of which is involved in much cross-

talk both within the network and with other signalling sys-

tems. One of the main limitations when studying the DDR

is the absence of a comprehensive set of proteins identified

by manual curation, which constitutes a trustable bona

fide DDR catalogue. Along these lines, we have established

a dataset of human proteins (21) and although such infor-

mation was available in the literature, its fragmented na-

ture made exploring these data difficult. For this reason,

we created a web-based resource that aims to be useful and

usable.

We believe that this resource will be very useful in sev-

eral ways. It enables the DDR network to be explored in a

graphic manner, where a rational classification of its sub-

networks allows particular pathways to be easily ex-

tracted. This is potentially useful to design ad-hoc libraries

in order to guide directed screenings of certain protein sub-

sets (e.g. repair proteins, effectors or older, more conserved

proteins). In this sense, it also allows orthologues in other

organisms to be identified that could be useful as models.

Although other DDR-related proteins, mainly paralogues,

were not included (i.e. including paralogues of certain pro-

teins would affect the results of emergence analyses) we be-

lieve the selected core protein set represents fairly the DDR

network as they are experimentally confirmed. Other pro-

teins, like P53 (a transcriptional regulator also involved in

many other events) were excluded in purpose, to avoid the

inclusion of noise (although the protein is represented in

the schema to provide context) as the main focus of our

work is to establish a well-curated dataset of DDR pro-

teins. We did not include proteins extended by network

analyses, as the focus was to keep a trustable literature-

based and manually curated core set of proteins.

Multiple sequence alignments of homologues are drawn

up using state-of-the-art methods (30) and as generated,

they can be focused on particular regions that might be

critical in the design of effector molecules. In addition, we

indicate the regions that are excluded/included in the com-

putation of the phylogenies in the ‘nexus’ format versions

of the same alignments, along with the corresponding com-

mands to run the phylogenetic analyses in MrBayes (27).

Finally, information about PTMs within the context of

structural data can also be of great help in structure/

function studies when assessing regions of therapeutic

interest. It is noteworthy that all the data included in the

database are linked to its source publication in PubMed,

making it easy to retrieve detailed information.

On top of the tools described above, it is also possible

to search our database using sequences generated in-house,

for which we have included a sequence search module

based on HMMER that uses our custom databases (of

small size) enabling for a quick search of custom se-

quences. The new version of HMMER (28) enables do-

mains to be confidently identified reasonably quickly, as

well as identifying orthologous proteins. Future improve-

ments of the database will include updating the informa-

tion available in literature on these proteins, to include

protein domains assignations, to enhance the searching

module using HMMER for larger queries, and to include

any relevant pharmacological data.

To summarize, the DDRprot database is the first data-

base devoted to a set of manually curated DNA Damage

Response proteins. It is presented within an evolutionary

framework that allows many features to be explored and

as such, we believe it will be very useful to researchers in

the field.
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