
royalsocietypublishing.org/journal/rspb
Research
Cite this article: Arshamian A et al. 2021

Human sickness detection is not dependent on

cultural experience. Proc. R. Soc. B 288:
20210922.

https://doi.org/10.1098/rspb.2021.0922
Received: 20 April 2021

Accepted: 23 June 2021
Subject Category:
Behaviour

Subject Areas:
behaviour, cognition

Keywords:
hunter-gatherer, cross-cultural, infectious

disease, facial sickness detection,

disease avoidance, out-group
Authors for correspondence:
Artin Arshamian

e-mail: artin.arshamian@ki.se

Asifa Majid

e-mail: asifa.majid@york.ac.uk
© 2021 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†Equal contribution.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.5494715.
Human sickness detection is not
dependent on cultural experience

Artin Arshamian1, Tina Sundelin1,2, Ewelina Wnuk3, Carolyn O’Meara4,
Niclas Burenhult5,6, Gabriela Garrido Rodriguez7, Mats Lekander1,2,
Mats J. Olsson1, Julie Lasselin1,2, John Axelsson1,2,† and Asifa Majid8,†

1Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
2Stress Research Institute, Stockholm University, Stockholm, Sweden
3Department of Anthropology, University College London, London, UK
4Instituto de Investigaciones Filológicas, National Autonomous University of Mexico in Mexico City, Mexico
5Centre for Languages and Literature, and 6Lund University Humanities Laboratory, Lund University, Sweden
7School of Languages and Linguistics, CoEDL, The University of Melbourne, Australia
8Department of Psychology, University of York, York, UK

AA, 0000-0003-2282-5903; TS, 0000-0002-7590-0826; EW, 0000-0001-6683-2908;
CO, 0000-0003-2878-8795; MJO, 0000-0001-5592-3759; JL, 0000-0001-8323-0714;
JA, 0000-0003-3932-7310; AM, 0000-0003-0132-216X

Animals across phyla can detect early cues of infection in conspecifics,
thereby reducing the risk of contamination. It is unknown, however, if
humans can detect cues of sickness in people belonging to communities
with whom they have limited or no experience. To test this, we presented
Western faces photographed 2 h after the experimental induction of an
acute immune response to one Western and five non-Western communities,
including small-scale hunter–gatherer and large urban-dwelling commu-
nities. All communities could detect sick individuals. There were group
differences in performance but Western participants, who observed faces
from their own community, were not systematically better than all non-
Western participants. At odds with the common belief that sickness
detection of an out-group member should be biased to err on the side of
caution, the majority of non-Western communities were unbiased. Our
results show that subtle cues of a general immune response are recognized
across cultures and may aid in detecting infectious threats.
1. Introduction
Infectious diseases have exerted a heavy selection pressure on most species,
greatly shaping their evolution and their ability to combat infections [1–3].
Most significant diseases throughout human history give rise to salient facial
and bodily cues of illness (e.g. ulcers following plague or rashes from smallpox)
[4]. However, contagious diseases can spread between people long before full
symptom manifestation, and in many cases—such as the one observed in the
pandemic following SARS-CoV2—even before any symptom onset [5].

It has been suggested that the ability to detect cues of infection at an early
stage, and at a safe distance from a sick individual, has been honed so as to
avoid contamination. This ability may be part of a behavioural defence—
often referred to as the behavioural immune system—that enables organisms
to protect themselves against potential pathogens [6–12]. Accordingly, detection
of sick conspecifics is common in the animal kingdom, particularly in group-
living species where infectious diseases can spread quickly [13,14]. In social
insects such as ants, for example, a parasite outbreak initiates the relocation
of the group from the old nest, leaving infected individuals behind [13].
Similarly, chimpanzees shun peers displaying motoric cues of infection [15].
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As an ultra-social species [16], humans probably benefit
from the ability to detect cues of an infection in others early
on, particularly if related to contagious pathogens, and so it
has been claimed that the detection of sickness cues from indi-
viduals—and, importantly, from strangers—is a fixed
phenotype in the metapopulation [17,18]. Although two
large online studies have shown that urban dwellers from sev-
eral cultural regions display similar levels of disgust to
photographs of salient bodily skin lesions and computer-gen-
erated facial rashes [19,20], little is known about sickness
detection per se, and nothing about the universality of such
an ability. There is some evidence that people can detect sick-
ness from body odours [18,21], bodily motion [22] and faces
[23] when they belong to the same homogeneous group, but
cross-cultural data is necessary to uphold claims of universal-
ity [24–28]. To address this issue, it is necessary to test sickness
detection in (i) small-scale populations that have minimal or
no access to technologies in order to mitigate physical or vir-
tual experience with the out-group of interest, and (ii) use
natural cues of the initial stages of immune response (i.e. acti-
vation of the host defence system).

Today, ease of travel means interaction between groups is
rampant, and likewise, contagious diseases spread fast. This
can place populations with previously limited exposure to the
outside world—and therefore also immune systems naïve to
pathogens evolved among visitors—particularly under threat.
In the past, this has resulted in the decimation of thriving
societies [29]. Data from contemporary societies also demon-
strate that infectious disease is the major cause of death in
hunter–gatherer and other small-scale populations, in contrast
with Western groups who are more likely to die of age-related
concerns [30]. Despite this, the current biomedical literature
focuses primarily onWestern populations, making them a stag-
gering 37 timesmore likely than non-Westerns to be included in
health-related studies. This is extremely problematic asWestern
populations only account for 11% of the global population [30].
The focus on Western populations is also true regarding
research on the detection of sickness. It is therefore critical to
ask whether people from diverse backgrounds can detect
subtle sickness cues in an infected individual, especially when
that infected individual is from an out-group.

To address this, we tested facial sickness detection of
Western faces in six different communities across the
globe, including people from small-scale indigenous hunter–
gatherer societies and large, urban communities. We hypoth-
esized that all non-Western groups would be able to detect a
sick face that belonged to a Western out-group and that this
would be true even in groups with whom the non-Western
group has no or minimal contact. Besides the main aim of the
study, we also explored if there were group differences in sick-
ness detection. If sickness detection depends at least partially
on experience with particular sickness cues, this would predict
that the Western in-group should perform better than all non-
Western groups. Furthermore, it has been argued that the strat-
egies for disease-avoidance are a function of information
uncertainty, where a higher contamination risk is assigned to
out-group over in-group members [10,17]. This ‘smoke-detec-
tion principle’ towards strangers, i.e. a lowered decision
criterion for what is perceived as a sickness cue, would reduce
the risk for exposure to novel pathogens [10]. Given this, we
also assessed whether the same type of heuristic was used
across the six groups when they made inferences about the
health status of Western faces.
2. Material and methods
(a) Participants
To maximize the social and geographical diversity of test
participants, we collected data from three hunter–gatherer and
three industrial and post-industrial urban-dwelling communities
(figure 1d; for group and culture characteristics, see the electronic
supplementary material, text S3). Our first sample of participants
came from Stockholm, Sweden (n = 53), from the same population
as our photograph models. In addition, we tested five non-Western
communities. Two came from bustling cities outside of Europe—
Ubon, Thailand (n = 27), and Mexico City, Mexico (n = 35). These
are comparable to Stockholm, being large residential units with
access to modern technologies, such as television and internet. In
addition, we tested three traditionally hunter–gatherer commu-
nities, including the forest-dwelling hunter–gatherers Maniq (n =
18) and Jahai (n = 11) from the equatorial rainforests in the interior
of the Malay Peninsula (Thailand and Malaysia), and the hunter–
gatherer-fisher Seri (n = 25) from the Sonoran coastal desert in
northwestern Mexico. These hunter–gatherer communities still live
in small groups with limited or extremely limited experience of
new faces and infrequent access to television or internet, if at all.
Thus, all groups—except the Swedish—made inferences about
others’health basedon information fromanout-group.We collected
as many participants as practically possible for the non-Western
communities, given that some of these populations are very small.
For example, the forest-dwelling Maniq live in groups of 25–35
and have a population of 300, which means that we tested 6% of
the total population. No analyses were conducted before data
from all participants had been collected (i.e. we did not implement
an optional stopping rule, but used a Bayesian approach to
address sample size; see Data processing and analysis).
(b) Acquisition of photos
We used a stimulus set of photographs depicting 13 individuals
(Swedish descent) injected under clinical supervision with either
Escherichia coli (E. coli) lipopolysaccharide (LPS; 2.0 ng kg−1 bw)
or a placebo (saline) (figure 1a; for full procedure see the elec-
tronic supplementary material, text S1). LPS activates the
innate immune system and induces a distinct—but transient—
systemic inflammatory response with symptoms of sickness
(e.g. fatigue, headache) [31]. Approximately 2 h after injections,
facial photographs were taken. Critically, participants had not
reached full symptom manifestation at this point: both body
temperature (tympanic) and heart rate reached their peak at
approximately 4 h after injection (figure 2). The photographs
thus capture the initial phase of infection (figure 1b).
(c) Procedure
We developed two computer-based rating tasks (figure 1c; elec-
tronic supplementary material, text S2) using two photographs
each (LPS and placebo) of the 13 participants. In the first task,
which was a detection task, participants had to decide whether
the person in the photograph was sick or healthy following a
yes–no procedure. Each photograph was shown one-by-one and
participants were asked in their native language: ‘Is this person
healthy or sick?’ with the response options ‘sick’ and ‘healthy’.
This first task is demanding; should participants fail at this they
might nevertheless be able to discriminate between a sick versus
healthy face when comparing the two directly. To test this, in the
second task, the same participants were again shown the facial
photos that were used in the first task, but this time with the LPS
and placebo photographs of the same individual side-by-side.
Participants were asked to indicate which face looked sicker,
using a two-alternative forced-choice (2AFC) paradigm.
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Figure 1. Stimulus creation, experimental paradigm and cross-cultural sample. (a) Healthy volunteers were injected with either LPS (E. coli endotoxin) or placebo
(saline) on two different occasions in a counter-balanced order. (b) Around 2 h after injection, facial photographs were taken. Participants wore a white t-shirt, no
makeup, had their hair away from their face and were told to sit comfortably, look straight into the camera and relax their face. Faces depicted here are average
faces for the saline (i) and LPS (ii) conditions. (c) Faces were used in two tasks, a yes–no detection task (i) and a two-alternative forced-choice discrimination task (ii).
(d ) Six communities were tested with these photographs—three from (post-)industrial, urban settings and three traditional hunter–gatherer communities who live in
small-scale groups. The Swedish group constituted the in-group (i.e. making judgements about faces from their own community), while all others were making judge-
ments about out-group faces. (Online version in colour.)
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(d) Data processing and analysis
For the yes–no detection task, we used signal detection theory
(SDT), with the unbiased sensitivity measure d-prime (d’) as a
measure of sickness detection [33], where d’ is defined as the
difference between z-transformed hit (H) and false alarm rate
(FA), d’ = z(H)−z(FA). Hit and false alarm rates of 1 and 0 were
adjusted to 1–1/(2N) and 1/(2N), respectively, where N is the
number of targets/lures (i.e. 13). Values of d’ above 0 indicate
an ability to detect a signal, 0 indicates performance on the
chance level. Negative d’ can arise from random distributions
or from systematic error but to avoid inflated effects, we did
not exclude any participant, even if they had negative d’. Accord-
ing to an SDT perspective, participants evaluate targets and
distractors on a dimension of signal strength on which the par-
ticipant set a decision criterion (c), or response bias, which
indicates the degree of strength that has to be exceeded for an
item to be accepted as a cue of sickness. The criterion is a stan-
dard deviation unit measuring the level of preference for
answering ‘yes’ (this person is sick) or ‘no’ (this person is not
sick) and is defined as c = - 1/2 [z(H) + z(FA)]. Negative values
of c indicate a liberal response bias with a tendency to respond
‘yes’, whereas positive values indicate a conservative response
bias with a tendency to respond ‘no’, and zero indicates a neu-
tral, unbiased response [33]. For the 2AFC discrimination
paradigm, proportion correct (Pc) was used, which in this case
is the sum of hits and correct rejections divided by the total
number of trials.

We used a Bayesian inference approach for estimating d’, c
and Pc across groups where there is no need to prespecify the
sample size [34]. Specifically, for our main contrast of interest
(i.e. if people can detect a sick face), we used Bayesian one-
sample t-tests that the population mean was greater than
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Figure 2. Effect of LPS versus placebo (saline) administration on (a) body temperature, (b) heart rate, (c) subjective sickness symptoms, and (d ) interleukin-6
concentrations. Photos were taken 2 h post injection (dashed horizontal line). Solid red line = LPS administration, mean ± s.e., each individual is shown as a
grey dashed line. Dashed blue line = saline, mean ± s.e. The 13 participants participated in both conditions. SicknessQ = sickness questionnaire [32]. (Online version
in colour.)
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chance (0 for d’ and 0.5 for Pc) using a Cauchy prior = 0.707
(1/sqrt(2)) [35–37]. In addition to this prior, we also conducted a
Bayes factor (BF) robustness check with a wide range of priors
and conducted sequential hypothesis testing to estimate how
many participants we needed to reach a conclusion about the
presence or absence of an effect. This type of analysis typically
needs 50–70% smaller samples compared with optimal null
hypothesis significance testing [38]. We also controlled for the
effect of individual stimuli by calculating the probability that a
sick face was categorized as sick compared to the probability that
a healthy face was categorized as sick for both the yes–no and the
2AFC task. We did this for both tasks using generalized linear
mixed-effects models with a binomial error structure and cross-
classified random factors, allowing for random intercepts for rater
and facial stimuli (electronic supplementary material, text S4 and
tables S11 and S12).

We usedBayesianANOVAswith the prior r scale fixed effects =
0.5; r scale random effects = 1 andwith t-tests using aCauchy 0, r =
1/sqrt(2) prior for the follow-up for individual comparisons
[39,40]. The priors used in our analyses place mass in realistic
ranges without being overcommitted to any one point. Also, they
have been shown to fit a large set of psychological data with mod-
erate effect sizes and convey a minimum degree of information
without being uninformative [37,39,41]. The BF depicts an odds
ratio, i.e. the probability of the data under one hypothesis relative
to another hypothesis. For instance, BF = 4 for H1 indicates that
the data are four times more likely under H1 than under H0. The
interpretation of the BF followed the standard recommendations
[35,42]. These state that BF between 1 and 3 should be considered
to imply no evidence to anecdotal evidence, 3–10 as moderate
(with some caveats; a p of 0.05 roughly corresponds to a BF of 3
in a null hypothesis significance testing framework), 10–30 as
strong, 31–100 as very strong, and BFs from 100 and above as
extreme and decisive evidence with no need to conduct further
studies on the subject of matter. The analyses and figures were con-
ducted in R [43], Stata 12.1. and in the JASP software package (JASP
Team [44]).
3. Results
To answer whether people can universally detect sickness from
faces, we analysed data from the first (yes–no) task using signal
detection with d-prime (d’) as our measure of sensitivity. This
demonstrated that all groups could detect a sick face above
chance (Bayesian one-sample t-test against chance level (0) for
each group separately, with BF supporting the alternative
hypothesis): Swedish, BF = 7.07 × 1015; Mexican, BF = 1.55 ×
1011; Thai, BF = 1.23 × 108; Seri, BF = 2484.77, Maniq, BF = 8.36;
Jahai, BF = 263.00 (figure 3a; electronic supplementarymaterial,
tables S1 and S2). BF robustness check demonstrated that the
BFs were stable across a wide range of prior distributions,
demonstrating the results were robust. Moreover, sequential
Bayesian analysis demonstrated that decisive evidence for
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sickness detection (i.e. H1 > 100 times more probable than H0;
BFs > 100) was reached with 10 participants or less for all
groups except the Maniq who reached moderate evidence
with 10 participants (electronic supplementary material,
figure S1). Next, for the 2AFC task, we used Pc and again all
groups could discriminate between a sick and healthy face
(Bayesian one-sample t-test against chance level (0.5) for each
group separately, with BF supporting the alternative hypoth-
esis): Swedish, BF = 3.91 × 1027; Mexican, BF = 2.20 × 1015;
Thai, BF = 2.50 × 1015; Seri, BF = 1.30 × 107; Maniq, BF = 59.56;
Jahai, BF = 31309.70 (figure 3b; electronic supplementary
material, tables S3 and S4). Importantly, a control analysis
showed that our results were not driven by individual stimuli
or individual raters (electronic supplementary material, text
S4, tables S11 and S12). This indicates that the observed effects
would probably generalize to new facial stimuli and speaks to
the reliability of the present results. Taken together, the results
overwhelmingly favour the hypothesis that across all groups,
people can detect and discriminate sick individuals only 2 h
after an immune challenge, even if they have little or no
experience with that group.

The prediction that the Swedish would be better than all
non-Western groups did not hold. Bayesian ANOVA showed
decisive evidence that there was a main effect of group, BF =
260.9. However, post hoc tests with corrected posterior odds
showed that while there was some variation in absolute sen-
sitivity (d’) between groups, the critical prediction (in-group
advantage) was not upheld. In fact, the posterior odds
showed there was strong evidence for the null hypothesis
that the Thai and Mexican did not differ in sickness detection
from the Swedish, and inconclusive evidence for the null
when comparing the Swedish group to the Jahai and Seri
(electronic supplementary material, tables S5 and S6). How-
ever, there was very strong evidence for the alternative
hypothesis that the Maniq differed from the Swedish group.
The 2AFC task showed a similar pattern. Bayesian ANOVA
showed decisive evidence for the model with a main effect
of group on discrimination between sick and healthy faces,
BF = 5.14 × 107. However, Swedish participants were not
uniformly better than other groups. Post hoc tests with cor-
rected posterior odds showed strong evidence for the null
hypothesis that the Thai and Swedish participants did not
differ. There was inconclusive evidence that the Swedish
participants differed from the Mexican and Jahai (electronic
supplementary material, table S7 and S8). However, the
Swedish group did better than the hunter–gatherer Seri
(strong evidence) and Maniq (conclusive evidence).

Next, to understand the basis of the judgements in more
detail, we analysed whether the same type of heuristic was
usedacross the six communities in thedetection task.According
to the ‘smoke-detection principle’, the yes–no task in the five
non-Western groups should have a response criterion biased
toward sick responses over healthy. Swedish participants
rating faces from their own community, on the other hand,
should display an unbiased, neutral decision criterion. Bayesian
one-sample t-tests against unbiased criterion (0) for each group
separately showed as expected that Swedish participants made
unbiased judgements (moderate evidence for the null, BFnull =
6.208), but so too did the hunter–gatherer Maniq (BFnull =
3.24), while the Jahai (BFnull = 0.59) as well as the urban-dwell-
ing Mexicans (BFnull = 1.72) showed inconclusive evidence for
an unbiased response criterion. By contrast, both the Seri
(strong evidence, BF = 38.7) and Thai (conclusive evidence,
BF = 112.4) had a biased response criterionwithmore restrained
thresholds for what they accepted as healthy (electronic sup-
plementary material figure S2 and tables S9 and S10). Overall,
then, while there were some cross-cultural differences in the
ability to detect and discriminate a sick face, there was not uni-
versal support for the claim of a lowered decision criterion for
what is perceived as sickness in out-group members.
4. Discussion
The observation that non-Western groups can detect a sickWes-
tern face soon after the initiation of an immune response and do
this with similar sensitivity to a Western group is striking, and
points to an unexpectedly robust ability in the metapopulation.
If our testing had, for example, focused only on Swedish and
Maniq, this may have led to the erroneous conclusion that
there is a general in-group advantage. However, the fact that
Thai and Mexican participants did not differ from Swedish
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ones suggests there is no universal in-group advantage for
detecting a sick face. In fact, across the two tasks, the Thai
were nominally the best.

Taken together, this suggests that sickness detection is based
on deciphering infection cues that are shared across people.
Although this study does not address what these cues are or
whether sickness cues in White-presenting faces may be more
discernible than in faces from other communities, recent data
from Swedish participants studying the same faces indicate
that low-level features like pale skin and droopy eyelids were
the most reliable estimates of sickness [23]. Interestingly, post-
experimental debriefing with Seri and Mexican participants in
the current study suggests droopy eyelids were particularly
informative for them as well, indicating that partially similar
cues were used. These results are also in line with Tybur et al.
[45] who found that most inferences people make about disfig-
ured faces are based on low-level features like coloration. Future
studies could manipulate various low-level features and con-
duct in-depth debriefing to better determine what facial
features are particularly diagnostic across communities [46].

The variation in response bias between the non-Western
groups is surprising and goes against the ‘smoke-detection
principle’ to always err on the side of caution when evaluating
the health of out-group members. However, our findings are
consistent with recent theoretical and cross-cultural studies
that have challenged the notion of a specific ‘smoke-detection
principle’ for out-group members [12,20,47,48]. Although our
data does not address the question of avoidance specifically,
the unbiased ratings from most out-groups indirectly support
the idea that avoidance is primarily coupled to disease, rather
than group status [12,20,47,48]. Moreover, larger social net-
works have been shown to increase the risk of infectious
diseases [49], but the observed variation in response bias
between groups did not seem to be a function of group size.
In fact, if we use ‘residential unit’ as a proxy for social network
size, the groups with the smallest—Maniq (N = 25–35) and
Jahai (N = 60–70)—and largest—Mexican from Mexico City
(N = 8.9 million in the inner city) and Swedish from Stockholm
(N = 950 000 in the inner city)—were either clearly unbiased or
did not show any evidence of being biased.

Avoidance of unfamiliar and sick conspecifics is common
in the animal kingdom, but carer strategies are also widely
found [50]. In other words, it is not a given that humans
avoid interacting with potentially sick out-group members
[51]. In fact, recent mathematical modelling of the evolution
of hominin sociality has demonstrated a clear fitness advan-
tage for a carer strategy over sickness avoidance as a
method of decreasing disease outbreaks and population
crashes [52]. Modelling also shows that although carer strat-
egies emerge at the kin level, once established they spread
widely to the broader community [53]. Elaborate caring is
something that is evident in traditional hunter–gatherer
societies [53]. For example, both the Maniq and Jahai have
rich repertoires of rituals targeting disease prevention with-
out an explicit avoidance of sick people [54–56].
Furthermore, both the Maniq and Jahai attribute illness to
external factors such as punishment from supernatural
forces, unpleasant smells and unusual atmospheric phenom-
ena [54–56]. This kind of reasoning has clear parallels to the
history of medicine in the West where infectious diseases
were embedded in religious or magical explanations [57].
The notion that sickness is transmitted between humans is
thus a relatively modern concept [57].
That being said, as with non-human animals, human dis-
ease detection could operate without a disease concept per se.
Importantly, even if caring rather than avoidance is more effi-
cient as a strategy, it necessarily relies on recognition of
disease cues to preclude infection from one person to another.
It should be noted that there was large individual variation in
both detection rates and response bias within as well as
between groups. Interestingly, Kurves & Wolf [58] also
showed higher than expected variation in detection perform-
ance for facial sickness with substantially high numbers of
expert performers. They also showed large individual variation
in response bias for facial sickness detection. Moreover, when
they simulated potential social-learning strategies, they found
individuals using a ‘follow-the-best-member’ rule would
increase both sensitivity and specificity with increasing group
size, but an individual using a ‘follow-the-majority’ rule
would only increase specificity. Unfortunately, we do not
know the specific learning strategies participants in our study
used. Nevertheless, we believe the mechanisms shaping detec-
tion and response bias are multidimensional, including both
micro, e.g. inter-personal values [45], as well as macro-level fac-
tors, e.g. imitation [59] and culture-specific beliefs [54–56].

The main finding that all groups were able to detect
facial sickness is incontrovertible, but some limitations of
the current study still need to be addressed. Only White-
presenting faces were used as stimuli, which means that any
conclusions regarding in-group and out-group sickness
detection are confounded by this. Although three different com-
munities (Swedish, Seri and Mexican) reported using similar
cues (i.e. droopy eyelids), we do not know if the same features
generalize to phenotypically diverse faces. The protocol used
to produce the stimuli of sick faces in this study involved inject-
ing Swedish participants with E. coli LPS under medical
supervision, but this was not possible to implement in the
other global communities tested in this study. Future studies
could sample diverse individuals within the West to explore
such differences. Moreover, the generalizability of our results
is limited by the fact that only 13 individuals contributed to
the stimulus set. Although it is reasonable to assume most
people’s faces would reveal they are sick, it could be the case
that some people’s facial appearance does not change. Future
studies would benefit from a larger and more diverse set of
facial stimuli with equally high ecological validity. Importantly,
although we had a relatively modest set of facial stimuli, a con-
trol analysis demonstrated that our results generalized over
them. Specifically, looking at the probability that a sick face
was categorized as sick compared to the probability that a
healthy face was categorized as sick robustly demonstrated
that our results were consistent across stimuli (electronic
supplementarymaterial, text S4). Finally, the statistical compari-
son between groups is naturally affected by the smaller samples
from hunter–gatherer communities, which could explain some
of the observed group differences. Still, it should be noted that
we sampled a rather large contingent of each hunter–gatherer
community, which increases the probability that they are more
representative of their population as a whole.

To conclude, humans from different parts of the world,
whether living in small-scale societies with traditional life-
styles or dwelling in large urban communities with modern
technologies, share a common ability to detect cues of sick-
ness based on a general immune response in strangers. The
variation found across the five non-Western groups in the
heuristics applied to sickness detection indicates that simple
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concepts of in-group and out-group alone do not shape
decision thresholds for human sickness detection. Instead,
being able to detect cues of sickness is likely a robust ability
of humans inhabiting diverse cultural contexts.
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