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Abstract

In this work, the fractional mathematical model of an unsteady rotational flow of Xanthan

gum (XG) between two cylinders in the presence of a transverse magnetic field has been

studied. This model consists of two fractional parameters α and β representing thermome-

chanical effects. The Laplace transform is used to obtain the numerical solutions. The frac-

tional parameter influence has been discussed graphically for the functions field distribution

(temperature, velocity, stress and electric current distributions). The relationship between

the rotation of both cylinders and the fractional parameters has been discussed on the func-

tions field distribution for small and large values of time.

Introduction

In many engineering fields such as electrical, mechanical, and nuclear engineering, the study

of the fluid flow coupled with heat transfer in rotating annuli has great importance in applica-

tions [1]. The rotating flow is applied in several industrial applications such as turbo-machines,

thermal motors and especially in turbines. The inner rotating flow is used in revolving jets and

devices of combustion in order to increase the mixture between the reagents, as well as to sta-

bilize the flame or to obtain advantages of better mixing [2]. A non-Newtonian fluid has many

models that are applied in order to discuss the behavior of different materials; such as, drilling

mud, certain oils, greases, and blood [3]–[5]. The oil industry has a great attention to the flow

of fluids in annular spaces, both in drilling, and the artificial lifting of oil [6]. The second grade

fluids are the common non-Newtonian viscoelastic fluids in industrial fields, such as polymer

solutions [7, 8]. Laplace transform has widely used to obtain the exact solution of unsteady

Magneto-hydro-dynamics (MHD) for different types of flow [9]–[17]. Thermo-electric mag-

neto-hydro-dynamics (TEMHD) theory was originally developed by Shercliff for direct appli-

cation in a fusion environment [18]. The thermoelectric effect develops the current between a

liquid metal and a container wall when there is a temperature gradient along the interface

between them [19, 20].

Recently, fractional calculus has encountered a great success in the description of viscoelas-

ticity [21]–[23]. This was achieved by replacing the time derivative of an integer order by its

fractional one. This process now allows one to define precisely the non-integer order deriva-

tives. The Generalized second-order fluid with fractional anomalous diffusion studied by Xu
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et al. [24], while the fractional derivative to the constitutive relationship models of Maxwell vis-

coelastic fluid and second grade fluid had been studied by Wenchang et al. [25, 26]. Fractional

Maxwell fluid was examined for unsteady Couette flow by Athar et al. [27]. The oscillating

flows in a generalized second grade fluid was studied by Jamil et al. [28]. The second grade

fluid flow between two cylinders was studied differently, considering the flow of such fluid [29,

30]. Sherief et al. derived the fractional order theory of thermoelasticity by using fractional cal-

culus [31]. Sherief and Abd El Latief have solved 1D problems [32, 33], and 2D [34] in the con-

text of this modified fractional theory. They also studied the effect of the fractional derivative

parameter on fractional thermoelastic material with variable thermal conductivity [35]. Abd

El-Latief and Khader applied this theory to a 1D problem for a half-space overlaid by a thick

layer of a different materials [36]. Ezzat [37, 38] constructed a mathematical model of the

TEMHD in the context of the fractional heat conduction equation by using the Taylor series

expansion of time fractional order developed by Jumarie [39]. Hamza et al. [40] modified the

generalized theory of thermoelasticity with two relaxation times to be of fractional order

derivative.

Here, we will introduce a fractional thermomechanical model with two parameters α and β
for an unsteady rotational flow of thermoelectric fluids in the presence of a transverse mag-

netic field. Numerical solutions are obtained in the Laplace transform domain. The solutions

in the physical domain are obtained numerically by using the Laplace inversion process based

on a Fourier-series expansion. The Numerical results for the functions field distribution are

represented graphically for different values of α and β with small and large values of time t.
These graphs are analyzed for the counter direction rotation of two cylinders from which we

can observe the physical behavior of these thermomechanical fractional parameters.

Formulation of the problem

Consider an unsteady laminar flow of an incompressible thermoelectric generalized second

grade viscoelastic fluid situated in the annular region between two infinite coaxial isolated cir-

cular cylinders of radii R1 and R2 (R2 > R1). Then the cylinders suddenly begin to rotate, about

their common axis r = 0 in different directions with a thermal shock that is a function of time.

The surfaces of the cylinders are taken to be traction free where a constant magnetic field of

strengthH0 acts axially in z-direction. The magnetic Reynolds number is assumed to be so

small that the induced magnetic field is neglected. Due to the formulation of the problem with

cylindrical coordinates (r, ϕ, z), all variables field depend on r and t only in ϕ-direction; as

illustrated in Fig 1.

Fig 1. The geometry of the problem.

doi:10.1371/journal.pone.0168530.g001
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To clarify the physical applications of the graph, the assumptions [41] are required in cylin-

drical coordinate as follow:

1. The fluid between the cylinders moves gradually with velocity V = (0, v(r, t), 0) while the

constitutive equation of generalized second grade fluid, corresponding to this motion is

given by [7]

tðr; tÞ ¼ ðmþ a1Db
t Þ

@

@r
�

1

r

� �

vðr; tÞ; ð1Þ

where τ(r, t) = Trϕ is the non-zero shear stress, μ is the viscosity, α1 is the first normal mate-

rial modulus.

2. The modified Fourier law defined by Shercliff [18] for thermoelectric medium is extended

using the Taylor series expansion of time fractional order would take the form [38]

1þ
ta

0

a!
Da

t

� �

q ¼ � krT þ p0J; ð2Þ

where κ is thermal conductivity, τ0 is thermal relaxation time, q is heat conduction vector,

T is the temperature and J is the current density vector given by the modified Ohm’s law as

follows;

J ¼ sðE þ V � B � k0rTÞ ð3Þ

π0 is the Peltier coefficient, k0 is the Seebeck coefficient at reference temperature T0 and σ is

electrical conductivity. The electric intensity vector and the magnetic induction vector are

E, B respectively, where B has one constant non-vanishing component Bz which has the

form;

Bz ¼ m0H0 ¼ B0 ð4Þ

3. The Lorentz force F = J × B, according to the above equations, has one component in ϕ-

direction of the form:

F� ¼ � sB2
0
v þ sk0B0

@T
@r

ð5Þ

In the above assumptions, Da
t ;D

b
t are Caputo fractional time derivative operators of order

α, β such that 0< α, β� 1. Under these assumptions in the absence of polarization voltage, vis-

cous dissipation, as well as heat source, and pressure gradient in the flow direction; the govern-

ing equations for such flow will take the form:

The energy equation

rcp
@

@t
1þ

ta
0

a!
Da

t

� �

T ¼ ðkþ sp0k0Þr
2T � sp0B0

1

r
@

@r
ðrvÞ

� �

ð6Þ

where ρ is density, cp is specific heat at constant pressure andr2 is Laplace operator given by

r2 ¼ @2

@r2 þ
1

r
@

@r.

The balance of the linear momentum leads to the relevant equation

r
@vðr; tÞ
@t

¼
@

@r
þ

2

r

� �

tðr; tÞ þ F� ð7Þ
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Eliminating τ(r, t) between Eqs (1) and (7), we get

@v
@t
¼ nþ

a1

r
Db

t

� �
@

2

@r2
þ

1

r
@

@r
�

1

r2

� �

v �
sB2

0

r
v þ

sk0B0

r

@T
@r

ð8Þ

The boundary conditions are written as:

Tðr; tÞ ¼ T1HðtÞ; vðr; tÞ ¼
n

R1

f ðtÞ t > 0; r ¼ R1

Tðr; tÞ ¼ T2HðtÞ; vðr; tÞ ¼
n

R1

gðtÞ t > 0; r ¼ R2

ð9Þ

whereH(t) is the Heaviside unit step function.

Let us introduce dimensionless variables.

v� ¼
R1

n
v; r� ¼

r
R1

; t� ¼
n

R2
1

t; t�
0
¼

n

R2
1

t0; y ¼
T � T0

T0

a�
1
¼

R2
1

n

� �1� b

a1; J� ¼
R1

nsB0

J; t� ¼
R2

1

nm
t

ð10Þ

where n ¼ m

r
is the kinematic viscosity.

Therefore, Eqs (6) and (8) are reduced to the non-dimensional forms (dropping the asterisk

for convenience)

Pr
@

@t
1þ

ta
0

a!
Da

t

� �

y ¼ ð1þ ZT0Þr
2y � P0

1

r
@

@r
ðrvÞ

� �

ð11Þ

@v
@t
¼ ð1þ ZDb

t Þ r
2 �

1

r2

� �

v � M2v þ K0

@y

@r
ð12Þ

where; Pr ¼
cpm

k
;M2 ¼

sB2
0
R2

1

m
; Z ¼

a1

rR2
1

;K0 ¼
sk0B0T0R2

1

mn
, P0 ¼

p0nsB0

kT0
;ZT0 ¼

k2
0

s

k
T0

Pr,M2, η are Prandtl number, Hartmann number and Viscoelastic parameter and ZT0 is

thermoelectric figure-of-merit [19]

Hence, the boundary condition in non-dimensional form will be

yðr; tÞ ¼ c1HðtÞ; vðr; tÞ ¼ f ðtÞ t > 0; r ¼ 1

yðr; tÞ ¼ c2HðtÞ; vðr; tÞ ¼ gðtÞ t > 0; r ¼ ‘
ð13Þ

where c1 ¼
T1

T0
; c2 ¼

T2

T0
and ‘ ¼

R2

R1
> 1.

Now consider the potential function F which is defined by [42]

v ¼
@F

@r
ð14Þ

Substitute from Eq (14) into Eqs (11) and (12) and use the relation r2 � 1

r2

� �
@f
@r ¼

@

@rr
2f ðrÞ, we
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get

Pr
@

@t
1þ

ta
0

a!
Da

t

� �

y ¼ ð1þ ZT0Þr
2y � P0r

2F ð15Þ

@F

@t
¼ ð1þ ZDb

t Þr
2F � M2Fþ K0y ð16Þ

Applying the Laplace transform with parameter s for both sides of Eqs (15) and (16) and

using the homogenous initial condition [43], we obtain

Prs 1þ
ta

0

a!
sa

� �

�y ¼ ð1þ ZT0Þr
2�y � P0r

2 �F ð17Þ

ðsþM2Þ�F ¼ ð1þ ZsbÞr2 �F þ K0
�y ð18Þ

The boundary conditions take the form

�yðr; sÞ ¼
c1

s
;
@ �F

@r
¼ FðsÞ r ¼ 1

�yðr; sÞ ¼
c2

s
;
@ �F

@r
¼ GðsÞ r ¼ ‘

ð19Þ

Now, we can rewrite Eqs (17) and (18) in the form

ðr2 � a1Þ
�y ¼ a2r

2 �F ð20Þ

ðr2 � b1Þ
�F ¼ � b2

�y ð21Þ

where a1 ¼
pr s

1þZT0
1þ

ta
0

a!
sa

� �
; a2 ¼

P0

1þZT0
; b1 ¼

sþM2

1þZsb and b2 ¼
K0

1þZsb

Eliminating �y between Eqs (20) and (21), we obtain the following fourth order differential

equation satisfied by �F

½r4 � ða1 þ b1 � a2b2Þr
2 þ a1b1�

�F ¼ 0 ð22Þ

Eq (22) can be factorized as

ðr2 � k2
1
Þðr2 � k2

2
Þ�F ¼ 0 ð23Þ

where both k2
1

and k2
2

are the roots of the characteristic equation

k4 � ða1 þ b1 � a2b2Þk2 þ a1b1 ¼ 0 ð24Þ

The solution of Eq (23) can be written as

�F ¼
X2

i¼1

�F i ð25Þ

where �F i is the solution of equation

ðr2 � k2
i Þ

�F ¼ 0; i ¼ 1; 2 ð26Þ
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Thus the general solution of Eq (23) has the form

�F ¼
X2

i¼1

½AiðsÞI0ðkirÞ þ BiðsÞK0ðkirÞ� ð27Þ

where Ai(s) and Bi(s), i = 1, 2 are parameters to be determined from the boundary conditions

while I0(kir) and K0(kir) are the modified Bessel functions of the first and second kinds, respec-

tively. By the same manner, we get

�y ¼
X2

i¼1

½CiðsÞI0ðkirÞ þ NiðsÞK0ðkirÞ� ð28Þ

where Ci(s) and Ni(s), i = 1, 2 are parameters to be determined from the boundary conditions.

The compatibility between Eqs (27), (28) and (21) gives

Ci ¼ �
k2
i � b1

b2

Ai ð29Þ

Ni ¼ �
k2
i � b1

b2

Bi ð30Þ

Substituting from Eqs (29) and (30) into Eq (28), we get

�y ¼ �
1

b2

X2

i¼1

½Aiðk
2

i � b1ÞI0ðkirÞ þ Biðk
2

i � b1ÞK0ðkirÞ� ð31Þ

Using Eq (27) to determine the velocity, Eq (14), will take the form

�v ¼
X2

i¼1

½AikiI1ðkirÞ � BikiK1ðkirÞ� ð32Þ

Applying the Laplace transform for the non-dimensional form of Eq (1), we get

�t ¼ ð1þ ZsbÞ
@

@r
�

1

r

� �

�v ð33Þ

Using Eq (32) we obtain

�t ¼ ð1þ ZsbÞ
X2

i¼1

Ai k
2

i I0ðkirÞ �
2ki
r
I1ðkirÞ

� �

þ Bi k
2

i K0ðkirÞ þ
2ki
r
K1ðkirÞ

� �� �

ð34Þ

The Laplace transform of the non-dimensional form of Eq (3) is given by

�J ¼ �v � Kc
@�y

@r
ð35Þ

After substituting from Eqs (31) and (32) into Eq (35) and doing some manipulations, we

obtain

�J ¼
X2

i¼1

ki 1þ
Kc
b2

ðk2

i � b1Þ

� �

½AiI1ðkirÞ � BiK1ðkirÞ�
� �

ð36Þ

where Kc ¼
k0T0

nB0

Fractional Model of TEMHD Rotational Flow

PLOS ONE | DOI:10.1371/journal.pone.0168530 January 3, 2017 6 / 17



Using the boundary conditions Eq (19), we get

�
1

b2

X2

i¼1

½Aiðk
2

i � b1ÞI0ðkiÞ þ Biðk
2

i � b1ÞK0ðkiÞ� ¼
c1

s
ð37Þ

�
1

b2

X2

i¼1

½Aiðk
2

i � b1ÞI0ðki‘Þ þ Biðk
2

i � b1ÞK0ðki‘Þ� ¼
c2

s
ð38Þ

X2

i¼1

½AikiI1ðkiÞ � BikiK1ðkiÞ� ¼ FðsÞ ð39Þ

X2

i¼1

½AikiI1ðki‘Þ � BikiK1ðki‘Þ� ¼ GðsÞ ð40Þ

By solving the above system, the solution of the problem in the transformed domain could

be obtained.

Inversion of the Laplace transforms

In order to invert the Laplace transform, we adopt a numerical inversion method based on a

Fourier series expansion. By this method the Laplace inverse of the function �f ðsÞ is approxi-

mated by [44]

f ðtÞ ¼
exp ðctÞ
t1

1

2
�f ðcÞ þ Re

XN

k¼1

�f cþ
ikp
t1

� �

exp
ikpt
t1

� �" #

; 0 < t < 2t1

where i ¼
ffiffiffiffi
�
p

1, N is a sufficiently large integer representing the number of terms in the trun-

cated Fourier series, chosen such that

exp ðctÞRe �f cþ
iNp

t1

� �

exp
iNpt
t1

� �� �

� �1

where �1 is a prescribed small positive number that corresponds to the degree of accuracy

required. The parameter c is a positive free parameter that must be greater than the real part of

all the singularities of �f ðcÞ. The optimal choice of c was obtained according to the criteria

described in [44].

Numerical results and discussion

The polymer fluid chosen for purposes of numerical evaluations is 0.2% Xanthan Gum (XG)

[45, 46]. XG solution has been used extensively in the oil industry for different applications

due to its unique rheological properties. The experimental results indicate that fines generated

during the drilling process form an external filter cake which in combination with XG results

in considerable fluid loss reduction. The damage due to XG is small and limited to a narrow

thickness around the wellbore [47]. The constants of the problem are shown in Table 1.

The computations were carried out for chosen functions f(t) = −g(t) =H(t). The tempera-

ture, the velocity, the stress, and current density are calculated numerically using the inversion

of Laplace transform outlined above. The FORTRAN programming language is used to solve

the problem. The accuracy maintained is 6 digits in the numerical program.
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Figs (2–4) represent the variables field distributions namely, the temperature, the velocity

and the stress, respectively. Each Figure split into four subfigures, part(a) describe the variation

of the functions field with small times, namely, t = 0.01, 0.09, 0.15, 0.2 when α = β = 1 while in

part(b) the calculation is done for large values of time, namely, t = 10, 20, 30, 40 when α = β =

1. Part(c), (d) illustrate the influence of the fractional parameters α, β respectively when t = 0.2.

We notice that the magnitude of temperature, velocity and stress were increased with the

increasing time [30]. Also from Fig 2 Part(a) for the smallest value of time, the generalized the-

ory with one relaxation time (G- theory) is prominent. This is in agreement with [48].

The rotation of the two cylinders divides the fluid region into two parts according to the

direction of rotation. The first one is denoted by Rin in which the fluid rotates in the same

direction as the inner cylinder while the second part is Rout due to the outer cylinder rotation.

It is observed from Fig 3 Part(a) that as the time increases, the value of Rin and the peak of

velocity increases, as shown in Table 2.

From Figs (2–4) part(b) it can be noticed that the functions field unchanging at large time

t = 10, 20, 30, 40. This means that the steady state is achieved. For the steady state analysis, see

S1 Text.

Figs (2–4) part(c) it is noticed that the magnitude of the fields distribution increases with

the increase of α. Fig 3 Part(c) shows the α influence on Rin is insignificant while the peak of

the velocity increases when α increases as shown in Table 3.

Figs (2–4) part(d) it is noticed that the magnitude of the temperature, the velocity, and the

stress increase with the increasing of β. Fig 3 Part(d) shows the β influence on Rin and the peak

are prominent but for viscous fluid (β = 0) the peak disappears (see Table 4).

From Fig 3 Part(a), (d) it has been observed that for small value of time the influences of the

time t and the fractional parameter β on Rin are prominent. This region extended by increasing

both of them until the interaction between Rin and Rout occurs (see S1 Video). Later the inner

region returns back towards the inner cylinder (see S2 Video). This is due to the reaction of

the fluid particles in the outer region on the inner region. Fig 4 Part(a), (c), (d) show the behav-

ior of the stress distribution at small value of time which is compatible with recent work [30].

Fig 5(a)–5(d) depicts the variations of the temperature θ, the velocity v, the stress τ, and the

current density J, respectively, at large values of time (t = 20, t = 30) for both Newtonian (η =

0) and non-Newtonian fluids (η = 0.805) at α = β = 1.

It has been observed that for large times all the functions field are the same for the Newto-

nian and non-Newtonian fluids. This result is compatible with the physical phenomena that

for a large time the steady state is achieved due to the viscosity of the fluid. Now, there is a

question arises here; Is the change of the fraction parameters effect on the functions field dis-

tribution in the case of large values of time? The answer is obtained from Fig 6(a)–6(d).

This figure shows the functions field for large value of time, t = 20 as well as for different

large values of α, β. It is noticed that the fractional parameters have no effect on all functions

field. Hence mulling over Figs 5 and 6 we conclude that when steady state occurs the fractional

parameters have no effect on all functions field (see S3 Video).

Table 1. The constants of the problem.

η = 0.805 M2 = 0.25 Π0 = 0.8 K0 = 2

τ0 = 0.015 Pr = 0.71 Kc = 8 ZT0 = 1

c1 = 1 c2 = 1 ℓ = 2

doi:10.1371/journal.pone.0168530.t001
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The influences of the physical parameters on all functions field at small and large value of

times, namely, t = 0.2 and t = 20 are shown in S1–S8 Figs.

It is observed from S1 Fig that, for small values of time, the effect of increasing Prandtl

number Pr is to decrease the values of the temperature, the velocity and the current. On the

other hand the increase Prandtl number Pr tends to increase the value of the stress. The physi-

cal explanation of the above observation is that increasing Pr tends to decrease the thermal

conductivity of the fluid resulting on a lower temperature. Also, increasing Pr increases the vis-

cosity of the fluid producing higher stress values and slower speed [12]. We note that for large

values of time (shown in S2 Fig) the Prandtl number Pr has no effect on all the functions. This

result is compatible with the equations of the steady state which are independent of Pr.
From S3 Fig we conclude that increasing the thermoelectric parameter ZT0 results in

increasing the values of the velocity while decreasing the temperature and the stress. This is

because increasing ZT0 decreases the thermal conductivity and increases the Seebeck coeffi-

cient and electric conductivity. For large values of time (shown in S4 Fig) the effect of ZT0 on

Fig 2. Temperature distribution θ. Part(a): For different values of small time, namely, t = 0.01, 0.09, 0.15,

0.2 when α = β = 1. Part(b): For different values of large time, namely, t = 10, 20, 30, 40 when α = β = 1. Part

(c): For different values of α, namely, α = 0, 0.8, 0.9, 1 when t = 0.2, β = 1. Part(d): For different values of β,

namely, β = 0, 0.8, 0.9, 1 when t = 0.2, α = 1.

doi:10.1371/journal.pone.0168530.g002
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the stress and on the current is most prominent while it has a small effect on the temperature

and a very small effect on the velocity. The increase of ZT0 decreases the values of the velocity

while increasing the values of both the temperature and the stress. The effect on the current is

not consistent due to the rotation of parts of the fluid in opposite directions.

We see from S5 Fig that the increase of the Hartmann numberM2 results in the increase of

the values of the stress and a decrease in the values of both the temperature and the velocity.

As before, the rotation of the fluid affects the current in different ways according to the direc-

tion of the rotating fluid. S6 Fig shows that for large values of time, the effect of the Hartmann

numberM2 on the temperature, the velocity and the stress is the same (with different values)

as in S5 Fig. The graph of the current shows that: it increases consistently with the increase of

the Hartmann number. S7 and S8 Figs show that for small or large values of time, the parame-

ter Kc, as expected from Eq (35), affects the current only and has no effect on the other

functions.

Fig 3. Velocity distribution v. Part(a): For different values of small time, namely, t = 0.01, 0.09, 0.15, 0.2

when α = β = 1. Part(b): For different values of large time, namely, t = 10, 20, 30, 40 when α = β = 1. Part(c):

For different values of α, namely, α = 0, 0.8, 0.9, 1 when t = 0.2, β = 1. Part(d): For different values of β,

namely, β = 0, 0.8, 0.9, 1 when t = 0.2, α = 1.

doi:10.1371/journal.pone.0168530.g003
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Conclusions

The present study describes the fractional mathematical model of an unsteady rotational flow

of Xanthan gum (XG) between two cylinders in the presence of a transverse magnetic field.

The cylinders rotate in a counter direction and affected with thermal shock that is function of

time.

Fig 4. The stress distribution τ. Part(a): For different values of small time, namely, t = 0.01, 0.09, 0.15, 0.2

when α = β = 1. Part(b): For different values of large time, namely, t = 10, 20, 30, 40 when α = β = 1. Part(c):

For different values of α, namely, α = 0, 0.8, 0.9, 1 when t = 0.2, β = 1. Part(d): For different values of β,

namely, β = 0, 0.8, 0.9, 1 when t = 0.2, α = 1.

doi:10.1371/journal.pone.0168530.g004

Table 2. The influence of the inner region Rin and peak on the velocity at α = β = 1 for different time t.

t Rin peak

0.01 1.898990 (1.424242, 1.988389)

0.09 1.909091 (1.444444, 2.331563)

0.15 1.929293 (1.464646, 2.907461)

0.2 1.939394 (1.484848, 3.809927)

doi:10.1371/journal.pone.0168530.t002
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Table 3. The peak on the velocity at β = 1 and t = 0.2 for different fractional parameter α.

α peak

0.0 (1.474747, 3.270884)

0.8 (1.474747, 3.665751)

0.9 (1.474747, 3.737811)

1 (1.474747, 3.809938)

doi:10.1371/journal.pone.0168530.t003

Table 4. The influence of the inner region Rin and peak on the velocity at α = 1, t = 0.2 for different frac-

tional parameter β.

β Rin peak

0.0 1.434343 Non

0.8 1.848485 (1.323232, 1.350466)

0.9 1.88889 (1.404040, 1.911008)

1 1.939394 (1.484848, 3.809927)

doi:10.1371/journal.pone.0168530.t004

Fig 5. The functions field θ, v, τ, J at large time t = 20, t = 30 for both Newtonian (η = 0) and non-

Newtonian fluid (η = 0.805) when α = β = 1.

doi:10.1371/journal.pone.0168530.g005
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The summary of this study for different time intervals are as follow:

For small values of time

• In all related figures, it is noticed that the thermomechanical fractional parameters α and β
have a significant effect on all fields.

• The fractional parameter β controls the rotation of the inner region Rin while the fractional

parameter α has nuance effect on this region.

• The inner rotated region Rin extended by the time, as the fractional parameter β increases.

• In the presence of the applied magnetic field, the fluid motion is directly affected by the rota-

tion of the inner cylinder more than the rotation of the outer cylinder.

• It has been found that; this model for small values of time, the temperature profile is in

agreement with generalized theory of one relaxation time.

Fig 6. The functions field θ, v, τ, J at large time t = 20 and different large values of α, β = 0.97, 0.98,

0.99, 1.

doi:10.1371/journal.pone.0168530.g006
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For large values of time

• Strong non-Newtonian effect is present for small value of time while for large times it

becomes weak and behaves like a Newtonian fluid.

• The change of the fractional parameters α, β has no considerable effect on the functions

field.

Supporting Information

S1 Video. 3D simulation of the fractional parameter effects on the two coaxial rotating cyl-

inders for small value of time. This video explains the movement of the inner fluid region Rin
where its boundary is represented by a moving blue cylinder for different values of the frac-

tional parameter β. It is observed that after a certain duration of time, this region is extended

towards the outer cylinder as the fractional parameters increase.

(AVI)

S2 Video. 3D simulation of the time effects on the two coaxial rotating cylinders after

interaction occurs. After the interaction of the fluid regions occur, the inner flow returns back

towards the inner cylinder. This is due to the reaction of the fluid particles in the outer region

on the particles in the inner region.

(AVI)

S3 Video. 3D simulation of the time effects on the two coaxial rotating cylinders for large

value of time. In this case, the steady state occurs and the Non-Newtonian fluid behaves like

Newtonian one whatever the value of α and β.

(AVI)

S1 Text. Steady state analysis. This text contains some more detailed information about the

functions field at large value of time t where the steady state is achieved.

(DOC)

S1 Fig. The influence of Pr on all functions field at small value of time. The functions field

θ, v, τ, J at small time t = 0.2 and different values of Prandtl number Pr = 0.5, 0.6, 0.71, 0.8.

(PDF)

S2 Fig. The influence of Pr on all functions field at large value of time. The functions field θ,

v, τ, J at large time t = 20 and different values of Prandtl number Pr = 0.5, 0.6, 0.71, 0.8.

(PDF)

S3 Fig. The influence of ZT0 on all functions field at small value of time. The functions field

θ, v, τ, J at small time t = 0.2 and different values of Thermoelectric figure-of-merit ZT0 = 1,

1.5, 1.7, 2.

(PDF)

S4 Fig. The influence of ZT0 on all functions field at large value of time. The functions field

θ, v, τ, J at large time t = 20 and different values of Thermoelectric figure-of-merit ZT0 = 1, 1.5,

1.7, 2.

(PDF)

S5 Fig. The influence of M2 on all functions field at small value of time. The functions field

θ, v, τ, J at small time t = 0.2 and different values of Hartmann numberM2 = 0, 0.25, 0.5, 1.

(PDF)
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S6 Fig. The influence of M2 on all functions field at large value of time. The functions field

θ, v, τ, J at large time t = 20 and different values of Hartmann numberM2 = 0, 0.25, 0.5, 1.

(PDF)

S7 Fig. The influence of Kc on all functions field at small value of time. The functions field

θ, v, τ, J at small time t = 0.2 and different values of Kc, namely, Kc = 0.2, 0.8, 2, 8.

(PDF)

S8 Fig. The influence of Kc on all functions field at large value of time. The functions field θ,

v, τ, J at large time t = 20 and different values of Kc, namely, Kc = 0.2, 0.8, 2, 8.

(PDF)
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