
564  |   	﻿�  CPT Pharmacometrics Syst. Pharmacol. 2021;10:564–576.www.psp-journal.com

Received: 19 November 2020  |  Revised: 2 March 2021  |  Accepted: 8 March 2021

DOI: 10.1002/psp4.12614  

A R T I C L E

Nonparametric goodness-of-fit testing for parametric covariate 
models in pharmacometric analyses

Niklas Hartung1  |   Martin Wahl2  |   Abhishake Rastogi1  |   Wilhelm Huisinga1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and 
Therapeutics.

1Institute of Mathematics, Universität 
Potsdam, Potsdam, Germany
2Institute of Mathematics, Humboldt-
Universität zu Berlin, Berlin, Germany

Correspondence
Wilhelm Huisinga, Institute of 
Mathematics, Universität Potsdam, Karl-
Liebknecht-Str. 24-25, 14476 Potsdam/
Golm, Germany.
Email: huisinga@uni-potsdam.de

Funding information
Supported by the Deutsche 
Forschungsgemeinschaft (DFG) through 
grant SFB1294/1 – 318763901.

Abstract
The characterization of covariate effects on model parameters is a crucial step during 
pharmacokinetic/pharmacodynamic analyses. Although covariate selection criteria 
have been studied extensively, the choice of the functional relationship between co-
variates and parameters, however, has received much less attention. Often, a simple 
particular class of covariate-to-parameter relationships (linear, exponential, etc.) is 
chosen ad hoc or based on domain knowledge, and a statistical evaluation is limited 
to the comparison of a small number of such classes. Goodness-of-fit testing against 
a nonparametric alternative provides a more rigorous approach to covariate model 
evaluation, but no such test has been proposed so far. In this manuscript, we derive 
and evaluate nonparametric goodness-of-fit tests for parametric covariate models, the 
null hypothesis, against a kernelized Tikhonov regularized alternative, transferring 
concepts from statistical learning to the pharmacological setting. The approach is 
evaluated in a simulation study on the estimation of the age-dependent maturation 
effect on the clearance of a monoclonal antibody. Scenarios of varying data sparsity 
and residual error are considered. The goodness-of-fit test correctly identified mis-
specified parametric models with high power for relevant scenarios. The case study 
provides proof-of-concept of the feasibility of the proposed approach, which is envi-
sioned to be beneficial for applications that lack well-founded covariate models.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Identifying covariates and establishing the relationship between covariates and model 
parameters is a key step in pharmacometric analyses. Although many criteria for co-
variate selection have been developed, there is no goodness-of-fit test for critically 
challenging often assumed parametric covariate-to-parameter relationships against a 
nonparametric alternative.
WHAT QUESTION DID THIS STUDY ADDRESS?
Development of a nonparametric statistical framework for goodness-of-fit testing of 
parametric covariate models, both conceptually and implementation wise, by trans-
ferring concepts from statistical learning to pharmacometrics.
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INTRODUCTION

Pharmacokinetic/pharmacodynamic (PK/PD) models are 
used to describe drug concentrations/effects over time in a 
group of patients under treatment. Covariate models allow 
to describe the effect of patient characteristics (covariates) 
on model parameters, and play a crucial role in PK/PD 
model building. Common covariates are body weight, age, 
concentrations of important biomarkers (e.g., plasma creati-
nine), or genetic disposition (e.g., CYP450 polymorphisms). 
Additional random variability not explainable by covariates 
is accounted for through random effects.1 Typically, there is 
detailed knowledge on the model structure (often specified 
in terms of compartmental models), whereas much less is 
known on how covariates impact drug kinetics/effects via the 
model parameters.

Covariate selection criteria in pharmacometric analyses 
have been studied extensively.2–4 In contrast, the choice of the 
functional relationship between covariates and parameters has 
received less attention, and often, a particular parametric class 
of covariate-to-parameter relationships (linear, exponential, 
etc.) is chosen ad hoc.5 To evaluate the appropriateness of a 
parametric covariate model class, a choice among a few candi-
date classes is sometimes made using likelihood ratio tests6 or 
information-theoretic criteria.7,8 However, such a comparison 
depends on the classes considered and does not reveal whether 
any of these classes is compatible with the PK/PD data.

Several methods have been proposed to overcome 
these limitations of a prespecified parametric covariate-to-
parameter relationship. In the so-called two-stage approach, 
a covariate model is obtained by first estimating individual 
parameters from individual patient data, then, either choos-
ing a suitable parametric class based on graphical analysis 
or solving a nonparametric regression problem.6,9 While this 
approach is feasible if parameters can be identified from indi-
vidual data, it is not so in the more realistic scenario of phase 
III clinical trials (many individuals, few datapoints per in-
dividual), where the true covariate-to-parameter relationship 
may be masked or wrongly attributed to other parameters.10 
Covariate models using regression splines or neural networks 
have also been proposed; using a small number of quadratic 
splines at fixed quantiles of the covariate distribution (or 

similarly, a small neural network), more flexible covariate-to-
parameter relationships were derived than in the commonly 
used classes of parametric models.11 A nonparametric max-
imum likelihood algorithm was also developed and applied 
to clinical data; by estimating the joint distribution of pa-
rameters and covariates, it allowed to derive a nonparametric 
covariate-to-parameter relationship.12

Whereas parametric as well as nonparametric approaches 
have been used for the estimation problem, a nonparametric 
goodness-of-fit test for parametric covariate models is still 
lacking. For model evaluation and selection, however, a sta-
tistically sound comparison against a nonparametric alterna-
tive would be highly desirable because it allows to challenge 
the functional form of the covariate-to-parameter relationship 
more critically.

In the case of a direct covariate-to-observable relation-
ship (also called nonparametric regression, or a direct prob-
lem), goodness-of-fit testing has been extensively studied in 
the statistical literature,13,14 with applications in other fields, 
such as econometrics.15 A standard construction is based on 
a mean squared distance between a parametric and a nonpara-
metric estimator. For instance, a Nadaraya-Watson estimator 
can be used,13,14 but many other nonparametric estimators 
work as well. The direct problem, however, is not relevant to 
our context, because the structural model (i.e., the parameter-
to-observable relationship), is based on a class of models with 
established trust in the pharmacometric community; in the 
case of PK models with further support from reducing more 
detailed physiologically-based PK models.16 Consequently, 
in our setting, covariate models link to (unobservable) pa-
rameters rather than to direct observations. For the estimation 
of a covariate-to-parameter model in a nonlinear parameter-
to-observable relationship (also called nonlinear statistical 
inverse problem), a popular estimation method is Tikhonov 
regularization. Regularization methods have been studied 
in many different contexts, including inverse and ill-posed 
problems17,18 and, more recently, unsupervised learning.19–22 
In the latter context, the framework of reproducing kernel 
Hilbert spaces (RKHS) plays a central role to address both 
computational and theoretical questions.23–28

In this paper, we propose and evaluate nonparamet-
ric goodness-of-fit tests for parametric covariate models, 

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
A systematic nonparametric approach for the evaluation of parametric covariate mod-
els, which is important whenever a consensus on a covariate model is lacking, such as 
for the description of the maturation of metabolizing enzymes, which we investigated.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
The proposed framework of goodness-of-fit testing provides a more solid statistical 
ground for covariate model selection.
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transferring concepts developed in statistical learning to the 
pharmacological setting. We generalize known goodness-of-
fit tests for the direct problem (e.g., based on kernel density 
estimation13) to nonlinear statistical inverse problems and 
also present a tailored numerical approach for the required 
computation of kernelized Tikhonov regularizers. We then 
demonstrate proof-of-concept in a relevant pharmacological 
application, the estimation of an age effect on maturation of 
drug-metabolizing enzymes. As a first step, here, we focus on 
the case with observation noise, but without random effects 
on the individual level.

METHODS

Nonparametric goodness-of-fit testing

We consider the statistical model

with i.i.d. observations (xi, yi)
n
i=1

 consisting of covariates 
xi ∈  ⊂ ℝ

nx and (noisy) observations yi ∈ ℝ
q, unobserved 

parameters 𝜃i ∈ Θ ⊂ ℝ
p, a nonlinear function G:Θ ×  → ℝ

q 
called the mechanistic model, independent centered noise �i, 
and a covariate-to-parameter mapping f: → Θ.

We assume the mechanistic model G to be known, which 
might represent a component of the solution of a system of 
ordinary differential equations (ODEs), observed at differ-
ent time points t1, . . . , tq, or a transformation thereof. The 
direct dependency of G on xi allows to model individual-
ized doses, and to model only particular aspects of a covari-
ate model; this will also be used in our simulation study. 
Even for the simplest model, G depends nonlinearly on 
the parameters �. The covariate model f is assumed to be 
unknown. We assume that a particular parametric class of 
functions 

{
f𝜏 , 𝜏 ∈  ⊂ ℝ

n𝜏
}
 is given, chosen ad hoc or from 

domain knowledge, and aim to evaluate the hypothesis that 
the covariate model f belongs to this parametric class. Thus, 
we consider the test problem

The precise formulation of the considered alternative (i.e., the 
space of functions for H1) and the test statistics are still to be 
specified.

Testing against a nonparametric alternative

First, we consider a nonparametric alternative of the form 
f ∈ �

{
f� , � ∈ 

}
, with a suitably chosen vector-valued 

RKHS  of functions h: → ℝ
p. Briefly, an RKHS is 

specified via a kernel function k that is used to define a basis 
for  (see also Equation 8). Background and references on 
vector-valued RKHS are provided in Section S1.

We start by defining two natural estimators under the null 
and the alternative, namely the least squares estimator

and the Tikhonov regularized estimator19,22

with regularization parameter 𝜆 > 0, respectively.a Based on 
these estimators, we consider the test statistic T1 = T

(�)

1
, defined 

as

The statistic evaluates the estimated covariate-to-parameter re-
lationships in the space of observations (i.e., after mapping of 
G); alternatively, a test statistic could be directly based on the 
difference of the estimated covariate-to-parameter relationships 
in the space of parameters. Smoothed versions of the paramet-
ric estimate f�̂ have also been considered.13 Both variations are 
introduced in Section S3.5 and all considered statistics are com-
pared in the Discussion.

Testing against a combined parametric-
nonparametric alternative

In addition to testing against a nonparametric alternative, 
we consider a combined parametric-nonparametric al-
ternative of the form f = f� + h with (�, h) ∈  ×, but 
f ∉

{
f� : � ∈ 

}
. If f� ∈ for each � ∈  , then the two 

classes of functions considered under the nonparametric 
and combined parametric/nonparametric alternatives are 
identical. The reason we introduce this reformulation is to 
consider a different test statistic, which uses the Tikhonov-
type regularization scheme

with regularization parameter 𝜆 > 0. Based on this, we define 
the second test statistic

(1)yi = G
(
�i, xi

)
+ �i, �i = f

(
xi

)
, i ∈ {1,…, n} ,

(2)H0: f ∈
{

f� , � ∈ 
}

vs. H1: f ∉
{

f� , � ∈ 
}

.

(3)f�̂ with �̂: = argmin
� ∈

[
n∑

i= 1

‖‖‖yi − G
(
f�
(
xi

)
, xi

)‖‖‖
2

]

(4)f̂
(�)

: = argmin
h∈

�
n�

i= 1

���yi − G
�
h
�
xi

�
, xi

����
2

+ � ‖h‖2


�

(5)T1: =

n∑
i= 1

‖‖‖‖G
(
f�̂
(
xi

)
, xi

)
− G

(̂
f
(�) (

xi

)
, xi

)‖‖‖‖
2

.

(6)

f̃
(�)

: = argmin

f= f� +h,

(�, h)∈ ×

�
n�

i= 1

���yi − G
�
f�
�
xi

�
+ h

�
xi

�
, xi

����
2

+ � ‖h‖2


�
,



      |  567NONPARAMETRIC TESTS FOR COVARIATE MODELS

which is analogously defined as T1 in the nonparametric case 
above.

From a modeling point of view, it is appealing that the 
combined model f = f� + h penalizes deviations from the 
parametric covariate model rather than the parametric covari-
ate model itself. For example, instead of shrinking to 0 for 
large values of � as the purely nonparametric covariate model 
does, where the mechanistic model G might even be unde-
fined, the combined model f̃

(�) shrinks toward the parametric 
part, thereby avoiding this undesired behavior of the purely 
nonparametric model.

Critical values of test statistics

Critical values c� for the level 0 < 𝛼 < 1 and both test sta-
tistics (generically denoted T  here) are approximated by a 
Monte Carlo procedure. Based on the data (xi, yi)

n
i=1

, the least 
squares estimator �̂  for the parametric null model is deter-
mined. Then, M synthetic datasets (xi, y

(1)

i
)n
i=1

,…, (xi, y
(M)

i
)n
i=1

 
are simulated under the approximate null model (with �̂  in-
stead of the unknown true value � ∗), i.e., for m = 1,…, M,

where �(m)

i
 are i.i.d. realizations of the noise (we assume for sim-

plicity that the distribution of residual errors is known). Based 
on the synthetic data, the statistic T(m) is computed as described 
previously. Then, letting F̂T denote the empirical distribution 
of T, we choose c� = F̂

−1

T
(1 − �) as a critical value for the 

test and reject H0 whenever T > c𝛼 (because large values of T  
favor the alternative for all considered statistics). The workflow 
is depicted in Figure 1.

Efficient algorithms for estimation in 
a nonparametric model

Calculating the test statistics in Equations 5 and 7 requires 
different optimization problems to be solved, namely the 
least squares problem in Equation 3 to determine f�̂ , the 
Tikhonov regularization problem in Equation 4 to deter-
mine f̂

(�)
, and the combined least squares/Tikhonov regu-

larization problem in Equation 6 to determine f̃(�). Whereas 
the parametric problem is usually low-dimensional, the 
others are high-dimensional. Because the mechanistic 
model G is assumed to depend nonlinearly on the parame-
ters �, none of these problems can be solved in closed form. 
As will be shown in Section “Efficient nonparametric esti-
mation of the maturation function”, general-purpose opti-
mizers perform poorly on the high-dimensional nonlinear 
problems, motivating the need for more tailored numerical 
approaches.

(7)T2: =

n∑
i= 1

‖‖‖‖G
(
f�̂
(
xi

)
, xi

)
− G

(
f̃
(�) (

xi

)
, xi

)‖‖‖‖
2

,

y
(m)

i
= G

(
f�̂
(
xi

)
, xi

)
+ �

(m)

i
, i = 1,…, n,

F I G U R E  1   Workflow for the nonparametric goodness-of-fit test. (a) After choosing parametric and nonparametric classes, parametric and 
nonparametric estimators f�̂ and f̂

(�)
 are computed for the given dataset. Based on these, different test statistics can be computed. (b) The sampling 

distribution of the test statistic under H0 is approximated using Monte Carlo simulations under the parametric estimate f�̂. To this end, M different 
synthetic datasets are created and for each, test statistics are computed as described in (a). Subsequently, the empirical (1 − �)-quantile of their 
distribution is taken as a critical value for the test decision

(a) (b)
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Parametrization of RKHS problems

The representer theorem in the theory of RKHS guarantees 
the existence of f̂

(�)
 within the finite-dimensional space

where k is the kernel associated with the RKHS .26,27 A 
finite-dimensional formulation is a prerequisite for solving 
Equation 4 numerically. Besides the so-called dual formulation 
in Equation 8 of the finite-dimensional optimization problem, 
two other finite-dimensional formulations can be obtained for 
special types of kernels (admitting finite-dimensional feature 
map representations). In this case, the dimension np of the dual 
formulation can be reduced further through a reparameteriza-
tion (leading to the so-called primal and mixed formulations). 
This technique is described in detail in Section S1 and exploited 
in the considered simulation study. For ease of readability, in 
the main text, we refer to the function f̂

(�)
 solving the optimi-

zation problem in Equation 4 without specifying its underlying 
parametrization.

Estimation algorithms

To solve the least squares problem and obtain the paramet-
ric estimate f�̂, we use the Levenberg-Marquardt (LM) algo-
rithm, a robust gradient-based method for solving nonlinear 
least squares problems.29,30

To solve the Tikhonov regularization problem in Equation 
4, we propose a three-step algorithm that first solves easier 
approximate problems, and uses the solution of each step to 
obtain improved initial guesses for the subsequent step (see 
pseudocode in Algorithm 1):

1.	 ParDir: determine a parametric estimate f�̂ via LM al-
gorithm, then solve the direct nonparametric (RKHS) 
problem analytically (see Section S2) by considering 
f�̂
(
xi

)
 as a surrogate for the unobservable parameters;

2.	 AlyLin: analytically solve a sequence of linearized non-
parametric problems (see Section S2 for derivation);

3.	 Nonlin: finally, solve the original nonlinear nonparametric 
problem in Equation 4 using a quasi-Newton method.

In this way, local minima of Equation 4 can be avoided 
more successfully. An analysis and benchmark of this al-
gorithm against several alternative approaches is shown 
for the simulation study, where it clearly outperforms 
general-purpose optimizers in terms of robustness and 
runtime.

Algorithm 1: ParDir-AlyLin-Nonlin for problem (4)

Finally, a variant of Algorithm 1 allows to compute the com-
bined parametric/nonparametric estimate f̃

(�) solving Equation 
6. The pseudocode for this Algorithm 2 is provided in Section 
S3.3.

Implementation

The proposed estimation algorithms and goodness-of-fit 
tests were implemented in R software version 3.5.1.31 For 
matrix algebra, R package “Matrix” version 1.2–14 was 
used.32 The Levenberg-Marquardt algorithm was taken 
from R package “minpack.lm” version 1.2–1, an interface 
to the Fortran library MINPACK.33 The general-purpose 
optimizers implemented in base R function “optim” were 
used for the quasi-Newton method (BFGS algorithm) and 
simulated annealing. The code used during the analysis is 
publicly available at https://zenodo.org/recor​d/4273796.

Simulation study: Effect of enzyme maturation 
on drug clearance

Context of the simulation study setup

A functional relationship between body weight and drug 
disposition parameters, called allometric scaling, is well-
established in the pharmacometric literature.34 In young 
children (in particular neonates and infants), however, this 
weight-effect is not sufficient to describe PK data and an ad-
ditional weight-independent impact of (young) age on drug 
clearance is accounted for by a maturation function.35,36 

(8)

{
h� ∈|h�:=

n∑
i= 1

k
(
⋅, xi

)
�i with �1,…, �n ∈ℝ

p

}
,

https://zenodo.org/record/4273796
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Many different parametric maturation functions have been 
proposed in the literature.37 Therefore, goodness-of-fit test-
ing for parametric covariate models is of particular impor-
tance in this context.

The setup of our simulation study “Effect of enzyme mat-
uration on drug clearance” was motivated by a meta-analysis 
which estimated the maturation effect of the monoclonal an-
tibody palivizumab against respiratory syncytial virus infec-
tions in young children.35 We translated their setting to our 
statistical framework as follows.

Covariates

In the meta-analysis, covariates (post-gestational) age, 
weight, gender, ethnicity, and presence/absence of chronic 
lung disease were considered. For ease of presentation, we 
focused on the covariates (post-natal) age a in years and body 
weight w in kg (i.e., x = (a, w)). We assumed a uniform age 
distribution between 0 and 20  years and an age-dependent 
body weight distribution according to an empirical model.38

Mechanistic model G

As in the original study, we assumed a two-compartment PK 
model

with drug concentrations C1, C2 in mg/L in the central and pe-
ripheral compartments with volumes V1, V2 in L, respectively, 
intercompartmental flow Q in L/day and clearance (CL) in 
L/day. The initial conditions were C1 (0) = Drel ⋅ w∕V1 and 
C2 (0) = 0 with an i.v. bolus administration of Drel = 15 mg/
kg body weight. We also considered a multiple dosing scenario 
with 30-day dosing intervals. The model can be solved analyti-
cally, see Section S3.1.

The model is parametrized in terms of the parameters 
� =

(
CL, V1, Q, V2

)
. In ref. 35 the covariate-to-parameter re-

lationship comprised a maturation part (depending on age a) 
and an allometric part (depending on weight w):

with reference body weight wref = 70 kg. Because allometric 
scaling in the stated form is widely accepted, we considered it 
as part of the ODEs defining the mechanistic model G,

and considered the weight-normalized parameters 
� =

(
CL∗ , V∗

1
, Q∗ , V∗

2

)
 as unknown. The observed quantity 

was

at fixed time points t1,…, tq. Finally, we assumed normally 
distributed additive noise (i.e., 

(
�i

)
∼iid

(
0, �2

)
 with 𝜎 > 0 

known).

Covariate-to-parameter relationship

To generate the virtual clinical data, a saturable exponential 
maturation function of age a

and the resulting covariate model

were used, with parameter values listed in Table 1.

Simulation scenarios

We considered four simulation scenarios, varying in number 
of individuals, noise level, and sampling times (see Table 2). 

(9)V1

dC1

dt
= Q

(
C2 − C1

)
− CL ⋅ C1,

(10)V2

dC2

dt
= Q

(
C1 − C2

)
,

CL=CL0 ⋅mat (a)

(
w

wref

) 3

4

; V1 =V
∗
1

(
w

wref

)
;

Q=Q
∗

(
w

wref

) 3

4

; V2 =V
∗
2

(
w

wref

)
;

(11)

V∗
1

(
w

wref

)
dC1

dt
= Q∗

(
w

wref

) 3

4 (
C2 − C1

)
− CL∗

(
w

wref

) 3

4

C1,

(12)V∗
2

(
w

wref

)
dC2

dt
= Q∗

(
w

wref

) 3

4 (
C1 − C2

)
.

G(�, x) =
(
ln C1(t1),…, ln C1(tq)

)

CL∗ (a) =
(
1 − �e−� ⋅a

)
CL∗

max

f� (a) =
(
CL∗ (a) , V∗

1
, Q∗ , V∗

2

)

T A B L E  1   Parameters of the covariate model used for simulation35

Parameter Value [Unit]

� 0.589a  –

� 0.133 [1/year]

CL
∗
max

198 [mL/day]

V ∗
1

4090 [mL]

Q ∗ 879 [mL/day]

V ∗
2

2230 [mL]
aIn the original publication, � = 0.411 was reported, inconsistent with the 
remaining results shown in the article. In contrast, 0.589 = 1 − 0.411 was 
consistent with all other results, hence we used this value for the simulation 
study.
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A typical prediction with the mechanistic model is shown in 
Figure 2, along with the sampling times of the four consid-
ered scenarios. Three scenarios (rich, sparse, and noisy) con-
tained sampling points from a single dosing interval, while 
scenario “multi” had sampling times in four dosing intervals. 
Because clearance is mainly informed by the terminal phase 
of a dosing cycle, the multiple dosing scenario is expected to 
allow for more precise estimates compared to the correspond-
ing single dose scenario (noisy). With a reported noise level 
of � ≈ 0.24, scenarios “rich” and “sparse” were less noisy, 
whereas scenarios “noisy” and “multi” were more noisy than 
the model in ref. 35. Exemplary simulated data for each of 
the four scenarios are shown in Section S3.2.

Parametric covariate model classes for  
goodness-of-fit testing

Three different classes of covariate-to-parameter relation-
ships were considered that differed in the parametrization of 

the CL∗ function. All three classes have been reported in the 
literature.37

•	 Class based on saturable exponential CL* functions

with � =
(
�, �, CL∗

max
, V∗

1
, Q∗ , V∗

2

)
. This parametric class 

allowed us to evaluate the type I error of the goodness-of-
fit tests, because it contains the model used to generate the 
virtual data.

•	 Class based on affine linear CL* functions

with � =
(
�, �, V∗

1
, Q∗ , V∗

2

)
.

•	 Class based on Michaelis-Menten type CL* functions

with � =
(
CL∗

max
, KM, V∗

1
, Q∗ , V∗

2

)
.

Choice of kernels and regularization parameters

As stated in Equation 8, the nonparametric estimate of the 
covariate-to-parameter function is of the form

f� (a) =
((

1 − �e−� ⋅a
)

CL∗
max

, V∗
1

, Q∗ , V∗
2

)
,

f� (a) =
(
� + � a, V∗

1
, Q∗ , V∗

2

)
,

f� (a) =

(
CL∗

max
a

KM + a
, V∗

1
, Q∗ , V∗

2

)
,

(13)f =

n∑
i= 1

k
(
⋅ , xi

)
�i; �1,…, �n ∈ ℝ

p.

T A B L E  2   Four scenarios considered in the simulation study 
“Effect of enzyme maturation on drug clearance”, differing in number 
of individuals n, standard deviation � of the residual error, and 
observation time points

Scenario n �

Observation timepoints 
(days)

Rich 100 0.1 0.5, 1, 2, 3, 4, 7, 14, 21

Sparse 20 0.1 1, 2, 4, 7, 21

Noisy 100 0.3 0.5, 1, 2, 3, 4, 7, 14, 21

Multi 100 0.3 0.5, 1, 2, 3, 4, 7, 14, 21, 40, 
55, 70, 85, 100, 115

F I G U R E  2   Typical plasma 
concentration-time profile for a reference 
adult (70 kg body weight) in the simulation 
study “Effect of enzyme maturation on 
drug clearance”, based on pharmacokinetic 
parameters for Palivizumab from ref. 35. 
Four 30-day dosing cycles with a dose 
of 15 mg/kg body weight are simulated. 
The sampling times of the four considered 
scenarios (rich, sparse, noisy, and multi) are 
indicated in red
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Because f (x) = �, the l-th entry of the parameter vector 
� =

(
CL∗ , V∗

1
, Q∗ , V∗

2

)
 corresponds to the l-th row of the ker-

nel k ( ⋅ , ⋅ ). For the RKHS  in the nonparametric alternative, 
an age-dependent diagonal kernel of the form

was assumed (allometric scaling, and hence the dependency on 
weight w, was modeled as part of the mechanistic model G).  
The first component (for parameter CL*) is a Gaussian kernel 
with bandwidth parameter b > 0, the 1's on the diagonal corre-
spond to constant kernels. Using this kernel structure, the de-
pendency of CL* on age was modeled as a weighted sum of 
Gaussians (see Equation 13 above), whereas the other three pa-
rameters were constant (age-independent), because allometric 
scaling was part of the ODE model; see Equations 11 and 12.

For the combined parametric/RKHS model, a slightly 
different kernel was chosen because the age-independent 
components were already contained in the parametric part, 
leading to the kernel

We followed the practice to adapt the regularization param-
eter � to a fixed bandwidth b with reasonable interaction 
range,39 first choosing b  =  100 weeks (≈  2  years, which 
represents 10% of the simulated age range) as bandwidth 
and then λ  >  0 in the Tikhonov regularization problems 
in Equation 4 and 6 by 5-fold cross-validation (see ref. 
40, chapter 7.10.1 for details), striking a balance between 
goodness-of-fit (small λ) and generalizability to new data 
(larger λ).

RESULTS

Estimated maturation functions based on 
cross-validated regularization parameters

As a first step toward a nonparametric estimation of the 
maturation function, the regularization parameter � was esti-
mated by 5-fold cross-validation. We simulated one dataset 
per scenario (rich, sparse, noisy, and multi) and determined 
the cross-validated estimate �̂ for the nonparametric estima-
tor in Equation 4 and the combined parametric/nonparamet-
ric estimator in Equation 6 for each of the three parametric 
classes. The estimates �̂ were insensitive to differences in 
the data scenarios. In contrast, they strongly depended on 
the chosen model, with �̂ = 2 ⋅ 10−5 in the nonparametric 
class and increasing from Michaelis-Menten (�̂ = 10−5), to 
affine linear (�̂ = 10−3), to the saturable exponential para-
metric class (�̂ = 10−2) of the combined parametric/non-
parametric model.

(14)k
�
a, a�

�
=

⎛
⎜⎜⎜⎜⎜⎝

exp

�
−

(a−a�)2

2b2

�
0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(15)k
�
a, a�

�
=

⎛⎜⎜⎜⎜⎜⎝

exp

�
−

(a−a�)2

2b2

�
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠

.

F I G U R E  3   Relationship between age 
a and clearance predicted by parametric 
(black dashed line), nonparametric (green 
dashed line) and combined parametric/
nonparametric (blue dashed line) estimates 
for one simulated dataset in scenario 
“rich”. Top panel: weight-normalized 
clearance CL ∗ (a); bottom panel: clearance 
CL

(
a, wtyp (a)

)
 for the typical weight wtyp (a) 

at a certain age a (median weight predicted 
with the model by ref. 38). Each column 
corresponds to a different parametric class, 
left: saturable exponential (containing the 
true model, red solid line), middle: affine 
linear, and right: Michaelis-Menten. Grey 
crosses in top panel: age values in the 
simulated dataset
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See Figure 3 for an illustration of the estimated covariate-
to-parameter relationships in the data-rich scenario. Due 
to the inverse problem character of the estimation problem 
(which depends on the sensitivity of G to the parameters �), 
oscillations appear in the nonparametric and combined para-
metric/nonparametric estimates (see also Discussion). The 
larger penalization parameter in the saturable exponential 
class, in particular compared to the Michaelis-Menten class, 
resulted in a much smoother combined estimate f̃

(
�̂
)
.

Efficient nonparametric estimation of the 
maturation function

From a computational point of view, the proposed goodness-
of-fit tests depend crucially on the performance of the numer-
ical algorithms used to determine the observed test statistics 
and, through the Monte Carlo procedure, the critical values 
of the test statistics. We therefore simulated 25 independent 
datasets for each considered scenario (rich, sparse, noisy, 
and multi) to evaluate convergence and runtime. The mixed 
RKHS formulation (see Section S1) allowed to substantially 
reduce the dimensionality of the corresponding estimation 
problems, from 4n to n + 3 parameters for the kernel struc-
ture in Equation 14 used in Equation 4 and from 4n to n for 
the kernel structure in Equation 15 used in Equation 6. For 
ease of presentation, here, we concentrate on Algorithm 1 in 

the nonparametric problem in Equation 4; Algorithm 2 in the 
combined parametric/nonparametric problem in Equation 6 
is evaluated in Section S3.4.

We benchmarked our proposed Algorithm 1 ParDir-
AlyLin-Nonlin against two commonly used general-purpose 
optimizers, namely quasi-Newton (gradient-based) and sim-
ulated annealing (gradient-free). Additionally, we included 
two variants of Algorithm 1 to further elucidate the impact of 
the different steps in Algorithm 1: ParDir-Nonlin (only steps 
1 + 3) and ParDir-AlyLin (only steps 1 + 2). The general-
purpose optimizers were initialized with lognormally dis-
tributed initial conditions around 1, yielding a reasonable 
initial guess in the absence of more detailed knowledge. For 
Algorithm 1 and its variants, the parametric class of affine 
linear models was chosen in step 1 (see Figure  3, middle 
panel), and the initial guess for its coefficients was lognor-
mally distributed within a plausible order of magnitude. All 
lognormal distributions had a large coefficient of variation of 
≈130% (a log-variance of 1).

The benchmark results based on our simulation study are 
displayed in Figure 4. Estimation with the general-purpose 
optimizers almost always failed to converge toward param-
eter values with mean squared errors close to the (expected) 
variances underlying the simulations, indicating inefficient 
exploration of the parameter space (simulated annealing) 
or convergence to local minima (quasi-Newton). Because 
quasi-Newton corresponds to step 3 of Algorithm 1, the 

F I G U R E  4   Benchmark of estimation algorithms for solving the Tikhonov regularization problem in Equation 4 in the simulation study “Effect 
of enzyme maturation on drug clearance”. We simulated 25 independent datasets for each of the four considered data scenarios (rich, sparse, noisy, 
and multi) and benchmarked the following estimation algorithms: a quasi-Newton method, simulated annealing, the proposed Algorithm 1 (steps 1–
3); and two variants of it: ParDir-AlyLin (only steps 1 and 2) and ParDir-Nonlin (only steps 1 and 3). For the general-purpose optimizers, random 
positive initial conditions were chosen. For optimizers starting with a parametric step, the parametric class of affine linear models was chosen, 
and the initial guess for its coefficients was lognormally distributed around values τ0 having the correct order of magnitude, with a coefficient of 
variation of ≈130%. Each dot represents runtime and mean squared error for one of the 25 simulated datasets. The black horizontal line indicates 
the error variance �2 used to generate the data
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performance of ParDir-Nonlin (steps 1 and 3) illustrates that 
informing the initial guess of RKHS coefficients through a 
parametric model largely improved frequency of successful 
estimations, even though the parametric class qualitatively 
differed from the class used to generate the data (affine linear 
vs. saturable exponential). Refining the initial guess (step 1) 
for the quasi-Newton method further by iteratively solving 
the linearized RKHS model (step 2) allowed to considerably 
reduce runtime due to a closed-form solution of the linear in-
verse problem. In some cases, the two steps in ParDir-AlyLin 
did not suffice to converge to nominal error levels, which 
showed that the final quasi-Newton step in ParDir-AlyLin-
Nonlin was necessary. In all four scenarios (rich, sparse, 
noisy, and multi), the benchmark strongly supported the use 
of Algorithm 1 within the goodness-of-fit tests.

Goodness-of-fit testing for parametric 
maturation effect models

For the goodness-of-fit testing problem, datasets were simu-
lated for each of the four scenarios (rich, sparse, noisy, and 
multi) using the saturable exponential model from ref. 35 
as the true covariate-to-parameter relationship. Each of the 
three parametric classes (saturable exponential, affine lin-
ear, and Michaelis-Menten) was considered as a null model, 
with the saturable exponential class representing a correctly 
specified model, and the other two a model misspecifica-
tion. Subsequently, the proposed test statistics T1 and T2 were 
computed using Algorithms 1 and 2, and their distribution 
under the parametric null hypothesis was approximated using 
M = 500 Monte Carlo samples. To determine the rejection 
frequency of the null hypothesis in each test, the entire pro-
cedure was repeated and averaged over 500 independent 
datasets.

The results of the goodness-of-fit tests are displayed in 
Table 3 (see also Section S3.5 for additional test statistics). 
Both tests approximately maintained the nominal type I error 
rate α = 0.05 in all four data scenarios. From theory, this be-
havior of the Monte Carlo approximation of the sampling dis-
tributions of the test statistics is expected whenever �̂  is close 
to the unknown true parameter � ∗ ∈   and under an exact 
calculation of the test statistic. The results thus highlighted 
the good performance of the numerical estimation algorithm, 
with only a slight type I error deflation in the most challeng-
ing sparse data scenario.

As expected, the power to detect a misspecified parametric 
class strongly depended on the considered data scenario. For 
a rich data scenario, both test statistics had low type II error 
rates (0.4%–2.4%). In the sparse and noisy data scenarios, 
type II error rates increased considerably (54.2%–82.3%). In 
contrast, with a sampling scheme extending over several dos-
ing intervals (scenario “multi”), the goodness-of-fit test was 

again able to detect a model misspecification in presence of 
noisy data with type II error rates of 1.5%–7.8%. Power also 
depended on the test statistic and the parametric null model, 
although to a lesser degree than on the data scenario. Type II 
error rates for statistic T2 were lower than for T1 under the af-
fine linear class, but larger under the Michaelis-Menten class.

DISCUSSION

We demonstrated the usefulness and practical applicability 
of the proposed goodness-of-fit tests for parametric covari-
ate models in a relevant proof-of-concept study (“Effect of 
enzyme maturation on drug clearance”). Due to the impor-
tance of covariate modeling in pharmacometric analyses, 
nonparametric goodness-of-fit tests have potential for a wide 
applicability.

Our simulation study was based on a meta-analysis of 
22 separate studies, which featured a very complex study 
design.35 Although we made an effort to represent the es-
sence of this meta-analysis, some specific aspects differed. 
In ref. 35, additionally to the covariates age and weight, the 
categorical covariates gender, ethnicity, and disease status 
were considered. The age distribution was nonuniform, with 
mainly young children and adults, because the disease is in 
young children (and adults were studied prior to children, as 

T A B L E  3   Type I and type II errors in goodness-of-fit testing for 
the simulation study “Effect of enzyme maturation on drug clearance”, 
for test statistics T1 and T2 (see Section S3.5 for the complete set of test 
statistics, including the variants)

Model class of H0

Type I error

Rich Sparse Noisy Multi

Saturable exponential

T1 5.2% 3.8% 5.2% 4.2%

T2 5.2% 3.0% 5.6% 4.0%

Model class of H0

Type II error

Rich Sparse Noisy Multi

Affine linear

T1 2.4% 82.3% 83.8% 7.8%

T2 0.6% 66.2% 70.2% 2.4%

Michaelis-Menten

T1 0.4% 68.4% 54.2% 1.5%

T2 1.0% 74.0% 68.8% 7.4%

Notes: For each of the simulation scenarios (rich, sparse, noisy, and multi), 500 
independent datasets were simulated with an underlying saturable exponential 
model with parameters from Table 1. For each parametric hypothesis, the 
test statistics T1 and T2 were computed and their distribution under the null 
approximated with M = 500 Monte Carlo samples. A level α = 0.05 was taken 
as a decision threshold (i.e., the empirical 0.05-fractile of the Monte Carlo 
samples).
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required by regulations). Moreover, the sampling schedules 
for young children were sparser than for adults. All of these 
effects could be integrated into a simulation study, but be-
cause they would make the presentation considerably more 
complex, we opted not to consider them here. Exemplarily, 
we investigated a modified scenario “rich,” with only young 
children (0–5 years) and young adults (15–20 years), and our 
goodness-of-fit test retained its properties (Section S3.7).

Moreover, the model in ref. 35 included random effects, 
which were not considered in our simulation study. Random 
effect models can be regarded as state-of-the-art in pharma-
cometric analyses,1 and hence, this extension of the RKHS 
framework is of considerable importance. The consideration 
of random effects, however, requires further extensions both 
on a theoretical and a numerical level, which were beyond the 
scope of this paper.

In the main text, we compared the test statistics T1 and 
T2 defined on the observation space. In the supplement, we 
additionally considered a smoothed version T∗

1
, as well as the 

corresponding statistics S1, S∗
1
, and S2 on the parameter space 

(Section S3.5). The test statistics on the observation space 
consistently resulted in higher power than the respective sta-
tistic on the parameter space, for all considered data scenar-
ios and both misspecified parametric classes. The additional 
smoothing step differentiating T∗

1
 from T1 (and S∗

1
 from S1) 

was motivated by a theoretical analysis in the direct problem, 
where (kernel density) smoothing increased robustness.13 In 
our simulation study, such an improvement was seen on the 
parameter space, S∗

1
 showing superior power to S1, but not 

on the observation space, where T1 and T∗
1
 resulted in almost 

identical test decisions. Computationally, T1 is preferable to 
T∗

1
, because the smoothing step in the latter contains another 

Tikhonov regularization problem. A purely parametric fit 
with the affine linear class resulted in lower mean squared 
errors compared to the Michaelis-Menten class, hence the af-
fine linear model could be considered as a less severe model 
misspecification. A comparison of the power of T1 versus T2 
under these two models indicates that the combined paramet-
ric/nonparametric formulation might be beneficial for slight 
misspecifications, whereas the purely nonparametric formu-
lation could have advantages for more severe misspecifica-
tions. Additionally, the more regularized formulation (i.e., 
with larger cross-validated �̂) led to lower type II error rates 
in both cases. Further investigations are warranted to eluci-
date the individual characteristics of these test statistics.

The considered data scenarios covered a range of different 
situations, “rich” being best-case, “sparse” and “noisy” chal-
lenging the algorithms in terms of data informativeness, and 
“multi” being a more realistic setting. To evaluate the intrin-
sic difficulty of the sparse and noisy data scenarios, where 
type II errors were largest, we performed two additional anal-
yses (see Section S3.6). First, the misspecified parametric 
models were tested against a correctly specified parametric 

alternative in a likelihood ratio test, still resulting in large 
type II errors, even though more information was available 
than in the nonparametric test, which is agnostic to the true 
model. Second, a Fisher information-based metric showed 
larger uncertainties in scenarios sparse/noisy compared to 
rich/multi. Both analyses indicate that the sparse and noisy 
data scenarios were particularly challenging, and that type II 
error rates were not due to the structure of our nonparametric 
tests.

The numerical algorithms presented have been carefully 
evaluated based on the simulation study. Their robustness is 
achieved by approaching the nonlinear high-dimensional op-
timization problem stepwise through problems of increasing 
complexity. Other “coarse-graining” heuristics could be en-
visaged, for example, a first data pooling step for individuals 
with similar covariates. The advantage of Algorithm 1, how-
ever, is that no such preprocessing steps are required.

Compared to purely parametric model selection criteria, 
our proposed nonparametric goodness-of-fit test requires a 
larger computational effort, in particular to approximate the 
sampling distribution of test statistics under H0. However, 
Monte Carlo sampling can be parallelized well, and for the 
investigated scenarios, test decisions could be made within 
the order of a minute on a desktop computer. For more com-
plex models, runtime could be reduced further, for example, 
by using a compiled programming language or through an-
other approximation of the sampling distribution.

Unlike commonly used parametric models, our proposed 
kernel-based estimators allowed for very flexible covariate-
to-parameter relationships, including non-monotonic 
functions. In goodness-of-fit testing, the flexibility of non-
parametric estimators is desirable because it allows to capture 
unexpected effects. To highlight this feature, we investigated 
an additional data scenario generated from a non-monotonic 
maturation function, representing an unknown maturation 
process occurring during puberty. This effect was correctly 
identified by the nonparametric goodness-of-fit test (see 
Section S3.8). If a less variable nonparametric estimate of 
the covariate-to-parameter relationship were desired, regular-
ization parameters could be adapted. Indeed, it is known that 
optimal rates of testing and estimation may differ, with less 
regularization required for testing than for estimation.41

For our proposed nonparametric goodness-of-fit test, we 
used concepts from statistical learning, in particular kernel-
based regularization techniques in the context of nonlinear 
statistical inverse problems with random design.21 The un-
derlying RKHS framework is general and powerful, offering 
many possibilities for extension. First, different classes of 
kernel functions allow to describe functions with a different 
degree of regularity, and hyperparameters like the bandwidth 
of the Gaussian kernel could be adapted to each data sce-
nario (e.g., via cross-validation).42 In addition, a nondiagonal 
kernel structure could be exploited to simultaneously model 
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parameters with a similar interpretation. Next, regulariza-
tion could be dealt with differently, for example, through 
Landweber iterations rather than Tikhonov regularization.43 
The current approach uses a single regularization parameter 
�. By using max�∈ΛT(�) over a suitably chosen grid Λ of reg-
ularization parameters, the tests could be made adaptive (i.e., 
avoiding to choose �)14; yet, a successful implementation of 
such an approach would require a normalization of the dif-
ferent test statistics T(�). Finally, in the vector-valued RKHS 
setting, it is natural to generalize the regularization schemes 
by using different regularization parameters for different 
components of the RKHS function.

In summary, the flexibility of the RKHS framework ren-
ders the proposed goodness-of-fit tests very versatile; our 
approach is envisioned to be beneficial for pharmacological 
applications that lack well-founded covariate models.
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ENDNOTE
	 a	‖ ⋅‖ and ‖⋅‖ denote the Euclidean and the RKHS norm, respectively, 

for the latter see also Section S1.
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