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Abstract

Multipotent adult progenitor cells (MAPC) are bone marrow-derived stem cells with a high 

growth rate suitable for therapeutical applications as three-dimensional (3D) aggregates. 

Combined applications of osteogenically differentiated MAPC (OD-MAPC) aggregates and 

adeno-associated viral vectors (AAV) in bone bioengineering are still deferred until information 

regarding expansion technologies, osteogenic potential, and AAV cytotoxicity and transduction 

efficiency is better understood. In this study, we tested whether self-complementary AAV 

(scAAV) can potentially be used as a gene delivery system in a OD-MAPC-based “in vivo” bone 

formation model in the craniofacial region. Both expansion of rat MAPC (rMAPC) and osteogenic 

differentiation with dexamethasone were also tested in 3D aggregate culture systems “in vitro” 

and “vivo”. Rat MAPCs (rMAPCs) grew as undifferentiated aggregates for 4 days with a 

population doubling time of 37h. After expansion, constant levels of Oct4 transcripts, and Oct4 

and CD31 surface markers were observed, which constitute a hallmark of rMAPCs 

undifferentiated stage. Dexamethasone effectively mediated rMAPC osteogenic differentiation by 

inducing the formation of a mineralized collagen type I network, and facilitated the activation of 

the wnt/β-catenin, a crucial pathway in skeletal development. To investigate the genetic 

modification of rMAPCs grown as 3D aggregates prior to implantation, scAAV serotypes 2, 3, 

and 6 were evaluated. scAAV6 packaged with the enhanced green fluorescent protein expression 

cassette efficiently mediated long-term transduction (10 days) “in vitro” and “vivo”. The reporter 
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transduction event allowed the tracing of OD-rMAPC (induced by dexamethasone) aggregates 

following OD-rMAPC transfer into a macro-porous hydroxyapatite scaffold implanted in a rat 

calvaria model. Furthermore, the scAAV6-transduced OD-rMAPC generated a bone-like matrix 

with a collagenous matrix rich in bone specific proteins (osteocalcin and osteopontin) in the 

scaffold macro-pores 10 days post-implantation. Newly formed bone was also observed in the 

interface between native bone and scaffold. The collective work supports future bone tissue 

engineering applications of 3D MAPC cultures for expansion, bone formation, and the ability to 

genetically alter these cells using scAAV vectors.

INTRODUCTION

Stem cell-based clinical applications require both a large quantity of cells and an effective 

expansion technology with a reproducible differentiation protocol for bone formation and 

regeneration of large skeletal defects. Multipotent adult progenitor cells (MAPC) are a bone 

marrow subpopulation of stem cells characterized by high levels of CD31 and Oct4. This 

latter marker is crucial for their extensive self-renewal ability as revealed in embryonic stem 

cells (ESCs).[1] Besides its self-renewal advantage, MAPC also present more 

homogeneity[1] when compared to mesenchymal stem cells (MSC), and the clinical grade 

human MAPCs (Multistem®) offer therapeutic relevance as a immunomodulatory treatment 

tool for certain diseases (ClinicalTrials.gov NCT00677859, NCT00677222).[2] However, 

little is known about the clinical potential of MAPC to form bone tissue, and also on the 

phenotypic and genotypic expression pattern during MAPC osteogenic differentiation. 

Furthermore, combined applications of MAPC and adeno-associated viral (AAV) vectors in 

bone tissue engineering have been deferred until AAV cytotoxicity and transduction 

efficiency are thoroughly investigated.

Recently, the rat MAPC (rMAPC) line has been shown to have a high expansion rate when 

cultured as static three-dimensional (3D) cell aggregates.[3] These cell aggregates retained 

their pluripotency state for at least 16 days.[3] More importantly, researchers have 

demonstrated that 3D static aggregate stem cell cultures are robust bioprocesses for MAPC 

expansion that offer safety advantages over suspension cultures. [3,4] Unlike suspended 

aggregates, static ESC cultures do not form invasive tumors after “in vivo” transplantation.

[4] Moreover, adult stem cells (like MSCs) are known to differentiate in the presence of 

bone signaling cues, such as dexamethasone and bone morphogenetic protein-2 (BMP-2) 

through wnt/β-catenin pathways.[5,6] In our preliminary studies with 2D cultures, 

dexamethasone positively modulated the osteogenic differentiation of rMAPCs, but not 

exogenous recombinant human BMP-2, a potent osteogenic growth factor. Thus, it would be 

important to test the reproducibility of dexamethasone osteogenic effects in 3D aggregate 

systems, since the 3D system better mimics the “in vivo” environment with a higher 

expansion capability.[3,5] Interestingly, 3D cultures of human ESCs have also been 

confirmed as a viable alternative to monolayer 2D systems, and possess a significant “in 

vivo” reproducibility after long-term culture.[7] Therefore, this study focused on 

investigating rMAPC 3D aggregate static long-term cultures for cell expansion and 

osteogenic differentiation induced by dexamethasone.
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In addition to applications of MAPCs for characterization of bone formation in large skeletal 

defect models, the therapeutic potential of transgenic MAPCs is also of particular interest. 

For example, multipotent or differentiated MAPCs could be altered to express or secrete 

endogenous factors involved in local bone formation, such as BMPs as in other bone 

fracture healing models.[11] In addition, MAPCs could be labeled (i.e. with the green 

fluorescent protein) for “in vivo” tracing of cell replication and migration “in vivo”. 

Currently, viral gene delivery vectors have demonstrated success for the efficient 

transduction of a wide variety of cell types “in vivo” and “ex vivo”.[12] In particular, 

recombinant adeno-associated virus (rAAV) offer a broad tropism and have demonstrated 

success in “in vivo” applications.[12, 13] While several studies have demonstrated MSC 

transduction by single-strand rAAV serotypes 2, 3 and 6 “in vitro” [14, 15], to our 

knowledge none have evaluated the transduction of self-complementary rAAV vectors in 

MAPCs for “in vitro” and/or “in vivo” applications in large calvaria bone defects within a 

non load-bearing environment. These critical-size large defects (CSD) do not heal by 

themselves, and therefore, they may need a combination of MAPC-based bone tissue 

engineering approaches and AAV vector technologies for bone formation to occur.

Thus, our hypotheses test whether a 3D cell culture system can provide a large number of 

rMAPCs for (1) osteogenic differentiation with dexamethasone supplementation and (2) 

rAAV-mediated gene transfer for “in vivo” bone formation in calvaria large defects. The 

transduction efficiency of rAAV serotypes on multipotent and differentiated rMAPCs was 

investigated and a transgenic reporter used to track rMAPC aggregates “in vivo” in 3D 

scaffolds in rat calvaria CSD. This “in vitro” 3D culture system may allow the expansion, 

bone formation, and effective AAV-based gene delivery for “in vivo” bone healing 

therapies.

RESULTS

1. Expansion and viability of the 3D rMAPC aggregates

Rat MAPC (rMAPC) in 3D aggregates grew steadily up to day 4, increasing from 

approximately 1,500 up to a mean of 10,548 viable cells per aggregate (Figure 1a). After 

day 4, the number of viable cells decreased substantially, which is possibly related to the 

low volume of the growth medium (Figure 1a) (p<0.001). Also, the doubling time was 

consistently 37h through all 4 days of the 3D aggregate culture, and then decreased 

substantially thereafter. The population of viable cells outstand the dead/damaged cells seen 

by the large viable-associated red fluorescence 2D plane of the aggregate (Figure 1b). Also, 

rendering a 3D volume view of the aggregate revealed a large population of viable cells 

clustered together to form a rounded aggregate as seen in the 2D view (Figure 1b, c).

Similar to the cell aggregate growth curve, there was also an increase in cell aggregate 

diameter. After the centrifugal settling to the bottom of a well, single cells clustered together 

to an average diameter of 333μm. Aggregates then increased in size to about 397 μm 

diameter by 96 h (4 days) after the initial agglomeration (p<0.001), and after that point the 

size of the aggregate remained unchanged (Figure 1d).
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After 4 days of rMAPC aggregate expansion, flow cytometry revealed that the cells in the 

aggregate retain their positive levels for the rMAPC pluripotent marker Oct4 and the 

rMAPC marker CD31 (Figure S1). This latter marker is highly expressed in undifferentiated 

MAPC, and therefore is used as an hallmark with Oct4 to confirm rMAPC’s undifferentiated 

state.[1] This was also confirmed at the transcript level, where expression of Oct4 and CD31 

remained high at day 4, when compared to baseline levels before expansion started (Figure 

S1).

2. AAV cytotoxicity and transduction efficiency on rMAPC aggregates

To investigate gene delivery to rMAPCs in the 3D aggregate culture, a self-complementary 

(sc) CMV-eGFP expression cassette was packaged in capsids previously reported to be 

capable of MSC transduction.[14] After scAAV-GFP vector transduction at a multiplicity of 

infection (MOI; viral genomes/cell) of 100, no differences in cell viability were observed 

between undifferentiated and differentiated rMAPC aggregates for serotypes AAV3 and 

AAV6(Figure 2a). For AAV2, viability of differentiated rMAPC aggregates was similar to 

untransduced cells (Figure 2a). However, there was a significant decrease in cell viability 

when comparing AAV2-treated undifferentiated and differentiated rMAPC cultures (p≤0.01) 

(Figure 2a).

In general the transduction efficiency of different scAAV serotypes, as measured by a GFP+ 

phenotype, was greater in differentiated aggregate cultures compared to undifferentiated 

cells (Figure 2b). Among the tested serotypes, AAV6 serotype presented the highest 

percentage of GFP+ cells after 3 days when compared to AAV2 (p=0.0073) and to AAV3 

(p=0.0068). Expression of GFP increased up to day 7 in AAV6-transduced cultures (Figure 

3a), and afterwards, cells continued to express GFP through day 14 (Figure 3 b-e).

3. Bone-like matrix derived from dexamethasone-treated rMAPC aggregates

Since effective gene delivery was demonstrated in 3D cultures, we next sought to investigate 

the effects of dexamethasone on the bone matrix generation and mineralization. Cell/matrix 

cryo-sections were analyzed after differentiation of rMAPC aggregates was induced by 

osteogenic media with and without dexamethasone (OMD and OM, respectively) and by 

basal media (BM) without dexamethasone and osteogenic supplements. Unlike in OM and 

BM treatment, dexamethasone-treated aggregate cultures were highly immunoreactive to 

collagen type I antibody and a collagenous fiber network could be observed (Figure 4a). The 

orange/redness of collagen fibrils could also be appreciated under polarized light after picro-

sirius red staining, consistent with a high level of maturation of the collagen (Figure S2c).

[16]

Electron microscopy images of the rMAPC aggregate matrices at day 38 confirmed the 

abundant matrix mineralization in dexamethasone cultures (Figure 4b) indicated by large 

areas of long spindle-like crystals (white arrows). On demineralized sections at an earlier 

time point (day 27), few matrix demineralized areas were observed, as well as a densely 

compacted matrix which possessed regions with typical collagen D-periodicity (data not 

shown). On the other hand, matrix-formed crystals were scarce and short in length in 
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cultures grown in the absence of dexamethasone (Figure 4d). In rMAPC aggregate matrices 

grown in basal medium no crystals were observed (Figure 4f).

All these matrix features in OMD cultures resembled natural bone tissue. On the contrary, 

aggregate cultures without dexamethasone (both OM and BM cultures) showed poorly 

mineralized matrices with scarce collagen type I (Figure 4c, e). In addition, all matrices in 

dexamethasone medium stained poorly for lipid deposits (red deposits stained by Oil red O 

in Figure S2a) and for proteoglycans (orange/red areas stained by Safranin O in Figure S2b).

[6] These observations indicate that dexamethasone-treated rMAPC aggregates committed 

to an osteogenic phenotype and not to adipogenic or chondrogenic lineages.

4. Dexamethasone increases expression of mesoderm and bone markers in rMAPC 
aggregates

After undergoing a dexamethasone-enriched osteogenic differentiation protocol for 38 days 

in 3D cultures, Oct4 mRNA levels in rMAPC decreased significantly to an average ΔCT of 

approximately 2 compared to baseline levels (Fold change=0.7, Figure 4g) (p=0.019). This 

observation was consistent with other literature[3] and was seen at a lesser extent in cultures 

treated without dexamethasone (OM: average ΔCT=3, Fold change=0.9), suggesting that 

dexamethasone is inducing rMAPC differentiation. The alpha-fetoprotein (Afp) transcript, 

which is usually upregulated on differentiated cells, was expressed at high levels in 

osteogenic culture medium without dexamethasone (OM) but without significance and to a 

lesser degree in dexamethasone-enriched media (OMD) with significance (p<0.01) (Figure 

S3). At the terminus of the differentiation process, the endothelial-specific marker CD31 

was significantly downregulated in both media without dexamethasone (p=0.003928) and 

with dexamethasone (p=0.035557), ruling out a possible endothelial commitment (Figure 

4h). Also, Kdr, a mediator of VEGF-induced endothelial proliferation and differentiation, 

was found downregulated in dexamethasone-supplemented cultures (Figure 4h). More 

importantly, mesoderm-specific transcripts such as BMP-2 (p=0.039) and BMP-4 (p=0.015) 

were found highly upregulated by dexamethasone, and to lesser extent in OM without 

dexamethasone (Figure 4h). Essential mid- to late-stage osteogenesis markers signaling 

molecules were assessed, particularly Col1a2, osteopontin (OSP), and osteocalcin (OCN) 

(Figure 4i). The late bone-specific gene, OCN (Figure 4i), was found highly upregulated 

with dexamethasone when compared to medium without dexamethasone (p=0.014). 

Collagen type 1 (Col1a2) and osteopontin (OSP) early bone markers were overexpressed 

relative to baseline (Figure 4i); however, transcript expression was without significance for 

Col1a2, perhaps due to the ongoing late stage of bone development (38 days) on 

dexamethasone culture conditions (OMD). In summary, overexpression of mesodermal and 

late bone-specific genes in OMD confirmed their osteogenic potential under dexamethasone 

supplementation in this 3D culture system.

5. Nuclear co-localization of β-catenin increased in rMAPC aggregates treated with 
dexamethasone

After confirming the osteogenic potential of rMAPC aggregates, we assessed the activation 

of the wnt/β-catenin pathway, crucial on skeletal development. Expression of nuclear β-

catenin was evaluated during the osteogenic differentiation in medium with and without 
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dexamethasone. To confirm the translocation of the β-catenin to the nucleus and inhibition 

of β-catenin degradation, the expression of the activated form of GSK3 (p-GSK3 Tyr 

216/279) that sequesters and negatively regulates β-catenin activation was also assessed. The 

β-catenin is only activated when a Wnt signal is present and p-GSK3 kinase activity is 

inhibited.[6] Upon activation β-catenin is mainly found free and co-localized with the 

nucleus, and this was demonstrated only in dexamethasone-differentiated rMAPC cells 

(Figure 5a). Conversely, in OM without dexamethasone (OM), β-catenin was found outside 

the nucleus and closely associated with the plasma membrane, which suggests that this 

molecule is inactive, and therefore, no wnt signaling occured (Figure 5b). These 

observations were supported by the lack of expression of the β-catenin negative regulator p-

GSK3 in dexamethasone-treated cultures (Figure 5c) and by its abundant expression in 

culture media without dexamethasone (OM) (Figure 5d).

6. AAV6 transduction for “in vivo” rMAPC tracing and bone formation

After efficient osteogenic differentiation conditions were set for the aggregates, we then 

used the AAV6 serotype to both trace the differentiated aggregates “in vivo” and study its 

effects on bone formation. The ability of scAAV6 to label differentiated rMAPC for “in 

vivo” tracing was investigated on a macro-porous hydroxyapatite-based 3D scaffold. In 

these experiments, osteogenically differentiated rMAPC or OD-rMAPC aggregates 

(dexamethasone-treated at day 38 of differentiation) were transduced with scAAV6-CMV-

eGFP at a MOI of 100. On the following day, these transduced aggregates were loaded into 

macro-porous hydroxyapatite-based scaffolds, which were then implanted in a rat calvaria 

CSD bone formation model. Four and ten days after “in vivo” implantation of porous 

scaffolds with AAV6-transduced rMAPC, tracing of transduced cells revealed GFP+ cells 

on the porous areas around the scaffold materials (Figure 6 a-e). The number of GFP+ cells 

appeared to be higher at 10 days than at 4 days of post-implantation (Figure 6f).

Importantly, untransduced and AAV6-transduced rMAPCs generated a osteogenic-like 

tissue expressing late specific bone markers (such as osteopontin and osteocalcin) within the 

macro-pores of the 3D scaffold after 10 days (Figure 7 a-b, d-e). Furthermore, transplanted 

AAV6-transduced rMAPCs formed a bone-like collagenous matrix with osteocyte-like cells 

entrapped in lacunae within the macro-pores (Figure 7g-h). Also, newly formed bone was 

visualized at the native bone-scaffold interface 10 days after implantation of transduced cells 

(Figure 7i). These observations indicate that rAAV6 transduction allows for “in vivo” bone 

formation and mediates stable gene transfer to differentiated rMAPC aggregates, which 

remains strong post-implantation while not affecting the osteogenic differentiation of 

rMAPCs. Lastly, Oct4 expression was not detected in GFP+ cells “in vivo” after 10 days, 

and therefore, the presence of cell growth from day 4 to 10 was not related to the presence of 

immortalized rMAPC (Figure 8).

DISCUSSION

Stem cell-based approaches are valuable tools not only for the formation of new tissues like 

bone, but also when used as models of bone disease and to understand bone development.

[17, 18, 19] Rat and human MAPCs have been used as cell-based therapies for newly 
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formed tissues in rodent studies [20, 21], and MAPC-based clinical trials have been initiated 

to take advantage of MAPCs immunomodulatory effects (ClinicalTrials.gov NCT00677859, 

NCT00677222). Our current study successfully combined for the first time osteogenically 

differentiated rat MAPC (OD-rMAPC) and AAV vector mediated gene delivery for the final 

purpose of bone formation in a calvaria critical-size defect (CSD) model.

Rat calvaria “in vivo” CSD models require a large number of cells, which often rely on 

growth in cell scale-up bioprocesses.[5, 22, 23] Despite several innovations in these robust 

bioprocesses, progress has been slow due to cellular heterogeneity including karyotypic 

abnormalities associated with prolonged “ex vivo” culture times, which make stem cells 

unfit for clinical use.[24, 25, 26] However, in this studywe used a cell line (rMAPCs) with 

high self-renewal ability and homogeneity, and thus we were able to expand rMAPCs on 

static 3D aggregate culture systems for a short time period (4 days). Recently, rMAPC have 

shown to possess a high expansion rate with a doubling time of about 23h in 3D suspension 

cultures.[3] In our study, the doubling time was consistently 37h through all 4 days of the 

3D aggregate culture. The lower doubling time reported by Subramanian et al.[3] is 

probably related with the different cell counting protocol used. Determining the viable cell 

population was a more appropriate approach in this study, since poor diffusion of oxygen 

and essential nutrients to the center of the aggregate has been found to compromise cell 

survival and increase Oct4 mRNA levels.[4] Though, the expansion observed here as cell 

aggregates did not compromise the viability of the cells (approximately 85-95% of viability/

aggregate), particularly in the center of the aggregate as seen by the large viable-associated 

red fluorescence (Figure 1b). In the periphery of the aggregate few nonviable cells were 

observed, but those were attached to the bottom of the well and not clustered to the 

aggregate. The 3D volume view of the aggregate revealed a large number of viable cells 

clustered together to form a robust rounded aggregate of about 400 μm in diameter. At the 

end of expansion, cells in aggregates retained their initial rMAPC undifferentiated state, as 

seen in other studies.[3]

After an appropriate expansion method was found, we tested the osteogenic potential of 

rMAPC aggregates under different media conditions with and without dexamethasone. 

Dexamethasone appears to drive commitment of rMAPC aggregates to an osteogenic 

phenotype and not to chondrogenic, adipogenic or endothelial lineages, since: i) matrices 

had little proteoglycans and lipids deposits (Figure S2), and ii) differentiated cells had the 

endothelial cell marker CD31 downregulated at the mRNA and protein levels (Figure 4h). 

At the transcriptional level, dexamethasone also significantly increased the expression of 

late bone-specific markers (osteocalcin) and endogenous osteogenic growth factors (BMP-2 

and BMP-4) (Figure 4h). Formation of collagen type I and of large areas of long spindle-like 

crystals and crystal nucleation was seen on matrices when dexamethasone was 

supplemented, which indicates that normal calcification occurred (Figure 4a-b). Dystrophic 

(or abnormal) calcification has been reported elsewhere when organic phosphates are added 

to osteogenic culture medium.[27, 28] On the other hand, our cultures without 

dexamethasone had the crystal nucleation and formation drastically impaired (Figure 4c-f).

In preliminary monolayer culture studies, dexamethasone stimulated rMAPC to form a 

bone-like matrix in vitro and increased ALP activity at early stages. In this study, 
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dexamethasone-enriched medium induced the translocation of the β-catenin molecule to the 

nucleus during rMAPC differentiation (Figure 5a), suggesting the activation of the wnt/β-

catenin pathway. Elucidating the role of dexamethasone in the activation of the β-catenin 

pathway is important, since this pathway was found to be essential in skeletal development, 

and stem cell fate.[9, 10, 29, 30] Here in 3D aggregate cultures, we found that 

dexamethasone also increased the nuclear β-catenin at the terminus of rMAPC osteogenic 

differentiation, like in MSCs.[31] The free translocation of β-catenin to the nucleus was 

confirmed by the absence of GSK3 (Figure 5c). Besides the presence of wnt, the β-catenin 

signaling requires the inhibition of GSK3 kinase activity, since the active form of GSK3 

targets β-catenin for proteasomal degradation.[30] The GSK3-β-catenin degradation 

complex is activated when a specific tyrosine is phosphorylated at GSK3.[32, 33] 

Conversely, in medium without dexamethasone (OM), the β-catenin was not found in the 

nucleus in the presence of an abundant p-GSK3 kinase, which targets β-catenin for 

degradation and restricts its nuclear translocation. The concomitant activation of the β-

catenin pathway and inhibition of the GSK3 kinase activity has been reported and 

extensively reviewed in literature.[30, 34, 35, 37] The interaction of the BMP and wnt 

pathways seems to be particularly complex in bone development.[31, 37, 38] The existence 

of different levels of crosstalk between BMP and wnt has been recently confirmed during 

the differentiation of the Drosophila mesoderm and of other stem cell lineages.[31, 37, 39] 

Nevertheless, these complex interactions are far away from being fully understood and 

further research is mandatory for later bone regeneration applications.

AAV vectors are proving to be increasingly effective because of their superior safety profile 

and “in vivo” sustained transgene expression[40, 41], including their ability to transduce 

nondividing primary cells[42] and certain adult stem cell lineages.[14, 15, 43] The results 

present herein suggest that safe, efficient, and long-term OD-rMAPC aggregate transduction 

is feasible through 14 days “in vitro” and 10 days “in vivo” for rat calvaria defects 

(endpoints of the study) through the use of scAAV6 vectors (Figures 3 and 6). Importantly, 

gene transfer with self-complementary AAV6 (scAAV6) didn’t affect the osteogenic 

differentiation of rMAPC or the proliferation of these osteoblast-like cells (Figure 7). 

Undifferentiated aggregates displayed reduced transduction efficiency with the three 

analyzed scAAV serotypes, and an increase cytotoxic trend, particularly with scAAV2 

(Figure. 2). To our knowledge, this is the first report comparing the scAAV transduction 

efficiency in undifferentiated versus differentiated MAPC using a 3D culture system. As 

previously mentioned, the therapeutical potential of human MAPC cells is currently being 

tested in clinical trials.[2] This fact plus the stable transduction efficiency seen here with 

scAAV6, makes the MAPC 3D aggregate system an ideal cell-based therapy for AAV6-

mediated gene delivery. Compared to previous literature[14], levels of AAV6 transduction 

efficiency on rMAPC were significantly higher (15-27% up to day 7) at lower MOIs (100) 

than with human MSCs at MOIs of 107 (<0.5%). Yet, further studies are needed focusing on 

AAV transduction efficiency of human MAPCs because efficient gene transfer decreases 

significantly from nonhuman primates to humans when using marrow-derived adult stem 

cells (MSCs).[14] More interestingly, our 3D hydroxyapatite macro-porous scaffolds loaded 

with untransduced and transduced OD-rMAPC aggregates generated a bone-like tissue 10 

days after implantation in calvaria CSD models that do not heal by themselves (Figure 7). 

Ferreira et al. Page 8

Gene Ther. Author manuscript; available in PMC 2013 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These findings indicate this scAAV6 technology could be used with rMAPC for future bone 

regeneration approaches with porous 3D hydroxyapatite-based scaffolds. Nevertheless, 

optimal conditions for the complete regeneration of this calvaria defect model by MAPCs 

have yet to be established, as well as for load-bearing defect models (e.g. femur).

In conclusion, the results demonstrate that rMAPC in this 3D culture system can be a 

feasible model to effectively generate valuable sources of: (1) rMAPCs, and (2) OD-

rMAPCs intended for transplantation with macro-porous 3D scaffolds for “in vivo” bone 

formation in calvaria. When transplanted to scaffolds, the scAAV6-transduced and 

untransduced OD-rMAPC can form a bone-like tissue at initial bone healing stages. Future 

advantages of this model include 1) to engineer bone tissues using a MAPC-based scaffold 

construct after longer implantation periods, and 2) to study bone development, including the 

crosstalk levels between BMP and wnt pathways.

MATERIALS and METHODS

1. MAPC isolation and maintenance

Multipotent adult progenitor cells (MAPCs) derived from rat bone marrow (rMAPC) were 

isolated and characterized at the University of Minnesota Stem Cell Institute according to a 

well-established protocol.[44,45] Briefly, six to ten million cells were plated in MAPC 

growth medium. The plates were incubated in a humidified incubator at 37°C with 5% O2 

and 5–6% CO2. After 4 weeks of culture, cells were depleted of CD45 and Ter119 using 

magnetic microbeads and the remaining cells were seeded. After 3–14 weeks, cells with a 

typical spindle-shaped rMAPC morphology appeared. To confirm that these clones were in 

fact MAPC, the level of Oct4 mRNA was determined using quantitative RT-PCR and the 

presence of CD31, typical for rMAPC was analyzed by fluorescence-activated cell sorting 

(FACS). Once a cell line with rMAPC phenotype (Oct4 mRNA at ΔCt of 4–6, and CD31 

positive) was derived, a large frozen working cell bank was prepared. The characteristics of 

the putative rMAPC were then evaluated (endothelial, hepatocyte, and neural precursor-like 

differentiation; and further transcriptome phenotype) as previously described.[1] During 

subsequent cell expansion/maintenance, quality control studies were performed up to 

passage 30. Rat MAPC cells from passage 20 were used for all the experiments of the 

present study.

2. rMAPC Growth and Osteogenic Medium

Briefly, rMAPC growth medium consisted of a 60/40 (v/v) mixture of low glucose DMEM 

(Gibco, CA) and MCDB-201 (Sigma, MO) supplemented with 0.026 μg/mL ascorbic acid 3-

phosphate (Sigma), linoleic acid bovine serum albumin (LA-BSA, Sigma) (103 μg/mL BSA 

and 8.13 μg/mL linoleic acid), insulin-transferrin-selenium (ITS, Sigma) (final concentration 

10 μg/mL insulin, 5.5 μg/mL transferrin, 0.005μg/mL sodium selenite), 0.02 μg/mL 

dexamethasone (Sigma), 4.3 μg/mL β-mercaptoethanol and 2% (v/v) qualified fetal bovine 

serum (FBS, Hyclone, IL). Three growth factors were also added to the media: human 

platelet derived growth factor (PDGF-BB, R&D Systems, MN) (10 ng/mL), mouse 

epidermal growth factor (EGF, Sigma) (10 ng/mL), and mouse leukemia inhibitory factor 
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(LIF) (103 Units/mL) (Chemicon, ESGRO). All media were also supplemented with 100 

IU/mL penicillin and 100 μg/mL streptomycin (Lonza, MD).

Basal medium (BM) composition consisted of 60/40 (v/v) mixture of low glucose DMEM 

and MCDB-201 supplemented with LA-BSA (103 μg/mL BSA and 8.13 μg/mL linoleic 

acid), ITS (final concentration 10 μg/mL insulin, 5.5 μg/mL transferrin, 0.005μg/mL sodium 

selenite), 4.3 μg/mL β-mercaptoethanol and 10% FBS. Basal media did not have 

dexamethasone supplementation. Osteogenic medium (OM) was composed of BM with the 

addition of 10mM of β-glycerophosphate (Sigma) and ascorbic acid at 0.2mM (Sigma) with 

or without dexamethasone supplementation at 10−7M (OMD and OM, respectively).[45]

3. Cell culture systems

Rat MAPCs (rMAPC) were cultured either as three-dimensional (3D) aggregates or as 

monolayer (2D) cell culture systems in an incubator at 37°C, 5% CO2 and O2 while in 

growth media, and when differentiation media (OMD, OM, BM) was supplemented, cell 

cultures were changed to normal O2 levels.

For the 3D aggregate system, 1-2×103 MAPC cells were seeded in suspension with MAPC 

growth medium in 96-well rounded bottom ultra-low attachment plates (Costar), using a 

modification of a forced aggregation method previously reported.[3, 46] Cells in suspension 

were centrifuged at 1400 rpm for 4 minutes to allow cells to settle to the bottom of the well 

and form aggregates over time. Aggregates were allowed to grow for 5 days, and cell 

viability and diameter of aggregates was monitored at day 1, 2, 3, 4 and 5 (see protocol 

below). Then, at day 4 ten 3D aggregates were transferred to each well on 24-well ultra-low 

attachment plates (Costar), and the medium was completely changed to either BM, OM and 

OM with dexamethasone (OMD). OM and BM had no dexamethasone supplementation. 

Medium change took place every 2-3 days. All of these 3 culture conditions (BM, OM and 

OMD) were evaluated for osteogenic differentiation. Differentiation was terminated at both 

27 and 38 days.

For the 2D monolayer cultures, 8×104 rMAPCs were seed with rMAPC growth medium in 

24-well flat plates with regular attachment properties (Costar). Cells were allowed to grow 

for 4-5 days until they reach the 80-90% of confluency for mesodermal differentiation. 

Then, growth medium was completely replaced by either OMD, OM or BM conditions, to 

study the osteogenic potential of the rMAPC aggregates using these three culture conditions. 

Media change took place every 2-3 days. All these culture conditions (OM and OMD) were 

evaluated for osteogenic differentiation. Differentiation was terminated at both 21 and 42 

days.

4. Cell Viability and rMAPC 3D Aggregate Diameter

During the 4 days of rMAPC aggregate growth, cell viability and proliferation in the 

aggregates was assessed by a CellTiter 96 Aqueous One Solution assay kit (Promega, WI) 

according to the manufacturer. Briefly, this kit contains a MTS compound that is bioreduced 

by cells into a colored formazan product. The quantity of formazan product was measured 

by the amount of 490nm of absorbance which is directly proportional to the number of 

living cells in culture. In order to perform the assay, 20ul of CellTiter 96 solution was added 
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to the media with gentle shaking. Plates were then placed in incubator for about 2h at 37°C, 

5% CO2 and 5% O2. Background absorbance from negative controls (without cells) was 

typically 0.206-0.216 for all wells; this average background was subtracted from all 

absorbance values of experimental groups for normalization. Eight biological replicates 

were run at day 0, 2, 4 and 5. The cell number was determined by performing cell titration.

A Live/Dead® Cell Vitality Assay C12-resazurin/SYTOX® Green kit (L34951, Molecular 

Probes, Eugene, OR) was used to visualize the cell viability status within the 3D aggregate 

according to the manufacturer. Briefly, the aggregates were incubated at 37°C for 15 

minutes with the kit working solutions. Metabolically active cells will stain red fluorescent 

color, and stain damaged or dead cells in green. Fluorescence was observed by microscopy 

with bright field, TRITC and FITC filters with Nikon Eclipse Ti-U camera (Nikon, Japan), 

and Nikon NIS Elements software was used to render the 2D and 3D images of the 

aggregate. The diameter of five cell aggregates was recorded from day 0 to 5 with light 

microscopy using previous Nikon camera and software.

5. Intracellular Staining for Oct4 and CD31 by Flow Cytometry

The protocol used for MAPC characterization by flow cytometry has been published 

elsewhere.[1, 45] Briefly, after 4 days of MAPC aggregate expansion (in growth media), 

cells were harvested by trypsinization of aggregates were washed with and suspended in 

PBS with 3% (v/v) serum at 100,000 cells per tube. After fixing and blocking for 1h, cells 

were incubated with antibodies against Oct4, CD31 and CD44 to confirm whether cells 

retained the levels of these undifferentiated rMAPC markers.

6. Histological analysis of 3D aggregate matrices

On day 27 and 38, cell/matrix layers from 3D aggregate and 2D cultures, were washed with 

calcium-free PBS 1x and fixed. Cryosections with approximately 5μm thickness were made 

from the rMAPC aggregate matrices. For collagen maturation, matrix cryosection slides 

were stained for 1h in 0.1% solution of Sirius red dissolved in aqueous saturated picric acid 

(Electron Microscopy Sciences, PA) for collagen identification.[16] Slides were dehydrated 

in gradient ethanol, followed by xylene treatment and resin mounted. Stained cell/matrix 

layers were visualized and photographed with a Nikon Eclipse Ti-U with an Olympus DP70 

camera (Japan) on polarized light.

For cartilage tissue analysis, cryosections were stained using a Safranin O staining protocol. 

Briefly, cryosection slides were stained with Weigert’s iron hematoxylin working solution 

for 10 minutes, washed in water , stained with Fast Green solution for 5 minutes, rinsed 

quickly with 1% acetic acid solution for 10 –15 seconds, and stained in 0.1% safranin O 

solution for 5 minutes. Dehydration followed and mounting followed.

Lipid deposition in cell matrices was evaluated using Oil Red O staining protocol after 

fixation of cryosection slides. Briefly, cell/matrices layers were rinsed with 60% 

isopropanol, stained with freshly prepared Oil Red O working solution 15 min (Electron 

Microscopy Sciences, PA), rinse with 60% isopropanol and stained with Harris Hematoxylin 

for nuclei counterstain. All cell/matrices layers were visualized under light microscopy 
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(Nikon Eclipse Ti-U, Japan with an Olympus DP70 camera). Matrices stained with Picro-

sirius Red solution were observed under polarized light to view collagen organization and 

maturation. All experiments were run in triplicate.

7. Immunohistochemistry

Rat MAPC aggregates/matrix cryosections were fixed with 4% paraformaldehyde (PFA), 

rinsed, endogenous peroxidase activity was inhibited by incubating for 30 min with 0.3% 

H2O2 in 100% methanol, rehydrated, and transferred to PBS–Triton solution.

For collagen type I, avidin/biotin activity was blocked in the cryosections with Avidin-

Biotin kit (Dako, CA), rinsed thrice with PBS plus Triton X and unspecific antibody binding 

sites were blocked for 30 min with 0.4% fish skin gelatin in PBS. Then, cryosections were 

incubated overnight at 4°C with rabbit primary antibody against rat collagen type I 

(NB600-408, Novus Biologicals, CO), rinsed thrice, and incubated with secondary 

biotinylated goat anti-rabbit IgG antibody (NB730-B, Novus Biologicals) for 30 min at RT. 

The cell/matrix layer was incubated in ABC complex (Vector Laboratories, CA) according 

to the manufacturer’s protocol, rinsed thrice, and DAB Chromogen solution (Dako, CA) was 

added to the matrix layer for 5-20 minutes until brown color developed. Positive controls 

with collagen type I matrices produced by osteoprogenitor cultures (MC3T3-E1) and 

negative controls containing a gelatin substrate were also stained. Cell/matrices layers were 

visualized under light microscopy.

For β-catenin and active form of GSK3α/β immunostaining, cryosections were incubated 

overnight at 4°C with either goat primary antibody against rat β-catenin (C-18) (sc-1496, 

Santa Cruz Biotechnology, CA) or p-GSK3α/β (Tyr279/Tyr216) (sc-11758, Santa Cruz), 

rinsed thrice, and incubated with secondary donkey anti-goat DyLight649-conjugated IgG 

antibody (705-496-147, Jackson ImmunoResearch, PA) for 30 min at RT. Then, 

cryosections were counterstained with DAPI nuclei kit (Millipore, Billerica, MA) for 5 min. 

Sections with primary rat osteoblast cultures were used as positive controls to view β-

catenin translocation from the plasma membrane to the nucleus. β-catenin, GSK3α/β and 

nuclei were observed under fluorescent microscopy (Nikon Eclipse Ti-U with Nikon Digital 

sight DS-Qi1Mc camera, Japan) with TRITC and DAPI filters, respectively; photos were 

taken for each filter and then merged together.

8. Transmission Electron Microscopy

On day 27 and 38 of differentiation, 3D aggregate cells/matrices were washed twice with 

PBS 1X and fixed in 2.5% glutaraldehyde, 2% paraformaldehyde in 0.1M sodium 

cacodylate buffer (pH 7.4). For decalcification, a 0.1M EDTA solution was used for 2 days 

buffered with 0.15M sodium phosphate, at pH 7.4, 4°C. Then samples were post-fixed in 

potassium ferrocyanide reduced osmium (1% osmium tetroxide/1.25% potassium 

ferrocyanide/0.15M sodium phosphate, pH 7.4) for 1 h. For undecalcified samples, after the 

ethanol dehydration series, propylene oxide was used as an intermediate solvent, followed 

by incubation in a solution of propylene oxide and Polybed 812 resin for 2 h, samples stayed 

overnight in Polybed 812 resin, and then polymerization was achieved in the tube for 24 

hours at 60°C. Ultrathin sections with 70nm thickness were cut, stained with uranyl acetate 
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and lead citrate, and observed using a LEO EM-910 transmission electron microscope 

operating at 80kV (Carl Zeiss SMT, Peabody, MA), and images were taken at 

2,000-50,000X using a Gatan Orius SC1000 CCD camera with Digital Micrograph 3.11.0 

(Gatan, Inc., Pleasanton, CA) at the Microscopic Services Laboratory (MSL) at the 

University of North Carolina. Matrices/cell layer sections from differentiated osteoblast-like 

murine-derived clonal MC3T3-E1 cell lines were used as a positive control for comparison 

purposes with OD-rMAPC.

9. Gene Expression Arrays

Rat MAPCs were collected from aggregate cultures at baseline (day 0), day 4 of growth, and 

day 38 of differentiation in three media conditions (BM, OM and OMD) with TRIzol 

reagent (Invitrogen) for total RNA extraction, according to manufacturer protocol. Total 

RNA purification was performed with a RNeasy Mini Kit (Qiagen). Reverse transcription to 

cDNA was achieved by mixing 500ng of total RNA with a first strand cDNA synthesis mix 

(from RT2 First Strand Kit C-03, SABiosciences, MD), based on established manufacturer 

protocol. Real-time PCR reaction was accomplished by adding RT2 qPCR Master Mix (RT2 

SYBR Green/ROX qPCR Master Mix, SABiosciences, MD) to the first strand cDNA 

synthesis reaction at room temperature; the cocktail mix was dispensed into a 96-well plate 

rat osteogenesis customized RT2 Profiler PCR array (array CAPR09685, SABiosciences, 

MD), which was then run in a 7500 Real Time PCR System. Three biological replicates 

were analyzed for each experimental group, and the fold change was calculated relative to 

day 0 (baseline) and normalized to the mean expression of three house-keeping genes 

(Rpl13a, Ldha, Actb). If fold change >1, this indicates an up-regulation of the gene; if fold 

change <1, it will indicate a down-regulation. The SABiosciences web-based platform was 

used for PCR data analysis. The mRNA expression of the following genes was analyzed: 

Smad1, Runx2, Sox9, Osx (osterix), Col1a2 (collagen type I alpha 2 chain), OSP 

(osteopontin), OCN (osteocalcin), BMP-2, Oct4, BMP-4, Kdr, Afp, and CD31.

10. In vitro AAV transduction

Recombinant self-complementary AAV-CMV-eGFP vectors serotypes 2, 3B and 6 were 

produced using our previously described triple transfection protocol in human embryonic 

kidney cells.[12, 47] Following transfection, the nuclear lysate was fractionated based on 

density using cesium chloride centrifugation.[47] Fraction samples were then digested with 

DNAseI, subsequently followed by proteinase K digestion, and the remaining viral genomes 

were denatured in a sodium hydroxide solution as described.[47] Alkaline gel 

electrophoresis and southern blotting were used to identify fractions with self-

complementary genomes, which were then pooled and dialyzed in PBS.[48] The viral titer 

was then determined by quantitative PCR using the following GFP primer set: forward 

primer, 5-AGCAGCACGACTTCTTCAAGTCC-3′, and the reverse primer 5-

TGTAGTTGTACTCCAGCTTGTGCC-3. The final titer was then verified by southern 

blotting. Cultures with 3D undifferentiated aggregates (after 4 days of aggregate expansion 

in GM) and 3D dexamethasone-differentiated 3D aggregates (after 15 days in OM plus 

dexamethasone) in 24 ultra-low attachment wells were incubated for 3, 7 and 14 days with 

serotypes AAV2-GFP, AAV3B-GFP and AAV6-GFP at multiplicities of infection (MOI; 

viral genomes/cell) of 100. After trypsinization, cell viability was assessed after 72h of 
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transduction using the CellTiter 96 Aqueous One Solution assay kit as recommended 

(Promega). Also, quantification of rAAV transduction efficiency was performed by 

evaluating GFP positive cells using flow cytometry with dead cell exclusion by gate region. 

Transduction efficiency was monitored for 14 days using fluorescence microscopy and 

photos were taken with FITC filter using the previously mentioned Nikon apparatus.

11. “In vivo” tracing and bone formation with AAV6-GFP-transduced OD-rMAPC 
aggregates

Three-dimensional macro-porous hydroxyapatite-based scaffolds (diameter 8mm and 

thickness 2 mm) developed previously in our lab[48] were used to carry dexamethasone-

treated osteogenically differentiated rMAPC (OD-rMAPC) aggregates after rAAV6 

transduction at MOI 100 into an “in vivo” bone large defect model in calvaria. The defect 

consisted in a 8-mm-diameter calvaria critical-size defect, which has been described.[49] 

Eleven- to thirteen-week-old Sprague-Dawley rats (Charles River, Wilmington, MA) served 

as recipients of the rMAPC aggregate-loaded scaffolds. Rats were anesthetized and an 8-

mm-diameter defect was created on the calvaria bone using a dental drill. Rats were divided 

into scaffold groups with untransduced cell aggregates; and groups with AAV6-GFP 

transduced aggregates.

Four and ten days after surgery, rats were euthanized and the specimens were retrieved for 

decalcification and immunohistological examinations with antibodies against rat GFP, Oct4, 

osteopontin, osteocalcin and rabbit IgG (negative isotype CTL). DAB chromogen solution 

(Dako, CA) was added until brown color developed. Counterstaining with nuclear 

hematoxylin or alcian blue was also performed. Number of GFP+ cells was counted in 5 

random fields in each defect using a microscopy grid of 400×400um. Total of cells was 

calculated towards a total defect area of 33.6mm2. Decalcified specimens were also 

evaluated microscopically for the formation of bone-like matrix and collagen at the 

hydroxyapatite-based scaffold macro-pores and at the native bone-scaffold interface using 

hematoxylin-eosin and Masson’s Trichrome histological staining. The experimental protocol 

for all animal care and use in this study was reviewed and approved by the Institutional 

Animal Care and Use Committee of the University of North Carolina at Chapel Hill.

12. Statistics

Student t-tests were performed in all assays, except for gene expression data, where one-way 

ANOVA analysis was used for multiple statistical comparisons using JMP9 software (SAS 

Institute, NC). Statistical significance was defined at p<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Rat MAPC expansion and viability during 3D aggregate culture. (a) Cell proliferation in the 

aggregate during 5 days in growth media. Data are shown as mean ±SD of eight independent 

experiments. (b) Cell viability under fluorescence microscopy in one 3D aggregate using a 

non-fluorescent compound that changes to a red fluorescent color when cells are viable and 

metabolically active and changes to green when cells are damaged or dead. The image 

shown is a merge of three images taken with bright field, TRITC and FITC filters. (c) Three-

dimensional rendered image showing viable cells (red) in a 3D aggregate under fluorescence 

microscopy. (d) Aggregate growth in diameter during 5 days in growth media. Data are 

shown as mean ±SD of five independent experiments. *p<0.01 when statistically compared 

to baseline (day 0 or 1).
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Figure 2. 
Cell viability and transduction efficiency with AAV-GFP serotypes 2, 3, and 6 using 

rMAPC 3D culture system. Percentage of viable undifferentiated and osteogenically 

differentiated rMAPC (OD-MAPC) 72h after transduction with AAV-GFP serotype 2, 3, 

and 6 (a) when compared to untransduced cells (100%). Transduction efficiency after 72h in 

undifferentiated and differentiated MAPC measured by the percentage of cells expressing 

GFP vector (b). *p≤0.01, **p≤0.05, and #p=0.06, when statistically compared 

undifferentiated versus differentiated MAPC. Data are shown as mean ±SD of three 

independent experiments.
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Figure 3. 
Transduction efficiency and GFP expression on AAV6-transduced rMAPC after in vitro 

osteogenic differentiation. Number of GFP+ rMAPC cells after 3, 7 and 14 days of vector 

transfer at MOI 100 (a). GFP expression on untransduced differentiated MAPC (b), and on 

AAV6-GFP-transduced cells 4 days (c), 10 days (d), 14 days (e) after vector transfer at MOI 

100. Data are shown as mean ±SD of three independent experiments.
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Figure 4. 
Phenotypic and genotypic characterization of cell/matrices from 3D rMAPC cultures after 

38 days of osteogenic differentiation. Aggregate cultures supplemented with: osteogenic 

media (OM) with dexamethasone (a-b), OM without dexamethasone (c-d), and basal media 

without osteogenic supplements and without dexamethasone (e-f). Matrices were 

immunostained with collagen type I antibody (a,c,e) showing a immunoreactive matrix 

network (black arrows). Matrices (m) visualized under transmission electron microscopy 

(b,d,f) showing large mineralization areas with spindle-like and plate-like crystals (white 

arrows). mRNA expression of specific markers at the MAPC 3D aggregate differentiation 

(g-i). MAPC-specific markers (g), mesoderm-specific markers (h) and mid to late bone-

specific markers (i). Fold change was normalized to house-keeping genes and compared to 

baseline levels. Dexa: dexamethasone. **p<0.05 when statistically compared to both ΔCT at 

baseline and at OM day 38 of differentiation; *p<0.05 when statistically compared; #p<0.05 

when statistically compared to baseline level. Data are shown as mean ±SD of three 

independent experiments.

Ferreira et al. Page 22

Gene Ther. Author manuscript; available in PMC 2013 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
β-catenin nuclear translocation (left) and p-GSK3 cellular localization (right) in rMAPC 

aggregate cultures in the presence and absence of dexamethasone in OM media after 38 days 

of osteogenic differentiation. Immunostained matrices from cultures with dexamethasone 

(a,c), and without dexamethasone (b,d). β-catenin immunoreactivity in red (a,b) and p-GSK3 

immunoreactivity in red (c,d). Blue: nuclear DAPI, Magnification: 400x.
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Figure 6. 
“In vivo” tracing of osteogenic-differentiated rMAPC cells after AAV6-GFP transduction in 

a calvaria bone CSD formation model. Macro-porous 3D hydroxyapatite-based scaffolds 

carried untransduced cells (a) or AAV6-GFP-transduced cells (b-e) and GFP expression was 

visualized by immunohistochemistry with anti-GFP antibody after 4 days (b) and 10 days (c) 

“in vivo” and with isotype IgG antibody after 4 (d) and 10 days (e). Sections were stained 

with DAB chromogen and counterstained with hematoxylin. Quantification of rMAPC-

GFP+ cells “in vivo” (f) by light microscopy counting, mean from 5 technical replicates. 

Hap: hydroxyapatite-based biomaterial. Nuclei counterstained with hematoxylin. 

Magnification: 100x.
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Figure 7. 
Expression of osteogenic markers and newly formed bone tissue 10 days after “in vivo” 

implantation of AAV6-GFP-transduced OD-rMAPCs in a calvaria bone regeneration CSD 

model. Osteogenically differentiated rMAPCs (OD-rMAPCs treated with dexamethasone) 

were either untransduced (a,d) or transduced with AAV6-GFP vector (b,c,e-i) and were 

loaded into macro-porous 3D hydroxyapatite-based scaffolds (Hap) before implantation. 

Expression of osteopontin (a,b) and osteocalcin (d,e) was visualized by 

immunohistochemistry with anti-osteopontin and anti-osteocalcin primary antibodies and 

with isotype IgG antibody for those markers respectively (c,f). Nuclei counterstained with 

Alcian blue (a-f). In Figures g-i: formation of bone-like matrix (bm), collagenous matrix (c) 

in the macro-porous areas, and formation of newly formed bone (nfb) at native bone-

scaffold interface can be visualized using hematoxylin-eosin (g) and Masson’s Trichrome 

(h-i) staining. These stains were used to assess bone-like and collagen matrix formation 

between the hydroxyapatite (Hap) biomaterials. bm: bone-like matrix; c: collagenous matrix; 

nfb: newly formed bone; nb: native bone; Magnification: 200x.

Ferreira et al. Page 25

Gene Ther. Author manuscript; available in PMC 2013 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Expression of the stem cell intracellular marker Oct4, 10 days after “in vivo” implantation of 

rMAPCs in a bone critical-size defect (CSD). Osteogenically differentiated rMAPCs (OD-

rMAPCs) transduced with AAV6-GFP vector (a,c) and untransduced (b,d) were loaded into 

hydroxyapatite-based scaffolds (Hap) before implantation. Expression of Oct4 (a, b) was 

visualized by immunohistochemistry with anti-Oct4 primary antibody and with isotype IgG 

antibody (c,d) plus DAB chromogen (brown staining). Nuclei counterstained with Alcian 

blue. Magnification: 200x.
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