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Meta‑analysis of host 
transcriptional responses 
to SARS‑CoV‑2 infection reveals 
their manifestation in human 
tumors
Fengju Chen1,9, Yiqun Zhang1,9, Richard Sucgang2, Sasirekha Ramani2, David Corry3,4,5,6, 
Farrah Kheradmand3,4,5,6 & Chad J. Creighton1,6,7,8*

A deeper understanding of the molecular biology of SARS-CoV-2 infection, including the host 
response to the virus, is urgently needed. Commonalities exist between the host immune response 
to viral infections and cancer. Here, we defined transcriptional signatures of SARS-CoV-2 infection 
involving hundreds of genes common across lung adenocarcinoma cell lines (A549, Calu-3) and 
normal human bronchial epithelial cells (NHBE), with additional signatures being specific to one 
or both adenocarcinoma lines. Cross-examining eight transcriptomic databases, we found that 
host transcriptional responses of lung adenocarcinoma cells to SARS-CoV-2 infection shared broad 
similarities with host responses to multiple viruses across different model systems and patient 
samples. Furthermore, these SARS-CoV-2 transcriptional signatures were manifested within specific 
subsets of human cancer, involving ~ 20% of cases across a wide range of histopathological types. 
These cancer subsets show immune cell infiltration and inflammation and involve pathways linked to 
the SARS-CoV-2 response, such as immune checkpoint, IL-6, type II interferon signaling, and NF-κB. 
The cell line data represented immune responses activated specifically within the cancer cells of the 
tumor. Common genes and pathways implicated as part of the viral host response point to therapeutic 
strategies that may apply to both SARS-CoV-2 and cancer.

Abbreviations
NHBE	� Normal Human Bronchial Epithelium
TCGA​	� The Cancer Genome Atlas
COVID-19	� Coronavirus disease 19
SARS-CoV-2	� Severe acute respiratory syndrome coronavirus 2

Worldwide, the Coronavirus disease 19 (COVID-19) pandemic has resulted in over 18 million confirmed cases 
and over 700,000 deaths1, with government-enforced mitigation measures, including lockdowns, likely to have 
widespread socio-economic effects, both short term and long term2. While a sizeable proportion of COVID-19 
patients are asymptomatic or have only mild symptoms, other cases range from moderate to severe or critical3, 
with the most vulnerable patients being those of advanced age or with underlying health conditions such as 
diabetes mellitus, chronic lung disease, or cardiovascular disease4. COVID-19 is caused by the severe acute 
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respiratory syndrome coronavirus 2 (SARS-CoV-2). The hallmark of lower respiratory tract beta coronavirus 
family, including SARS-CoV-2, is viral pneumonia accompanied by systemic inflammation, respiratory failure, 
and acute respiratory distress syndrome (ARDS)5,6. The host response to a virus is generally not uniform, and 
infections can, therefore, inflict different degrees of morbidity and mortality7. We need a deeper understanding 
of how SARS-CoV-2 infects cells and how the host responds to the virus.

Recently, gene transcription profiling studies of model systems or human patient samples involving SARS-
CoV-2 infection have been reported7,8. With the associated molecular data available in the public domain, the 
host transcriptional response of SARS-CoV-2, as observed in different cellular contexts, may be defined and 
compared with the host responses of other respiratory viruses. For example, in a recent study7, the host response 
in lung cell lines was defined by elevated chemokines and high expression of IL-6 and by low levels of type I 
and III interferons. Host responses, as observed using experimental models (e.g., in vitro cell lines), may be 
compared with molecular data from COVID-19 patients, to identify genes commonly altered in both settings. 
The available data also allow us to identify host responses common across different viruses and host responses 
specific to coronaviruses, including SARS-CoV-2.

Transcriptional data on host responses of cancer cells to SARS-CoV-2 infection in vitro also provide an 
intriguing opportunity to compare these data with human tumor data. Approximately 10% of all cancers are 
linked to viruses, whereby some (e.g., human papillomavirus) drive a malignant phenotype by continuous viral 
oncogene expression or modification of host genes9. Beyond the above, there could conceivably be parallels 
between the transcriptional program initiated in response to viral infection and how tumors interact with the 
immune system. Both microbes and tumors activate innate resistance, tissue repair, and adaptive immunity10. 
To the immune system, cancer cells may present as infected cells, as they express aberrant proteins as surface 
antigens11, which anomalies are also a common feature of viral and other infections. Therefore, immune system 
evasion represents a hallmark of cancer, as manifested in the alteration of immune checkpoint pathways12. 
Cancer is a heterogeneous disease, with different sets of somatic genomic alterations that confer uncontrolled 
cellular proliferative capacity13,14. There are multiple mechanisms for a cancer-mediated escape from immune 
responses, including usurping pathways shared by the viral host response10,15. Host responses to infection can 
differ between different cancer cell lines, which may reflect distinct ways in which these cancers have evolved 
throughout the disease.

In this present study, we defined transcriptional gene signatures of the host response to SARS-CoV-2 infec-
tion, using three different lung cell lines, one normal epithelial cell line and two lung adenocarcinoma cell lines. 
We identified signatures common across all three cell lines and signatures specific to one or both adenocarcinoma 
lines. We found significant overlaps between the SARS-CoV-2 in vitro signatures with genes associated with 
human COVID-19 infections in tracheal samples. Using the SARS-CoV-2 signatures, we probed multiple gene 
expression profiling datasets from independent studies involving infection by other viruses in different model 
systems and human patient data. We found broad similarities between the host responses to SARS-CoV-2 with 
that of other viruses. Finally, we discovered that the SARS-CoV-2 transcriptional signatures also manifested 
within specific subsets of human cancer. These subsets were identified previously using class discovery14,16 and 
involved the immune response and immune checkpoint pathway, as well as IL-6, type II interferon signaling, 
and NF-Kappa B (NF-κB) pathways.

Results
Transcriptional signatures of the host response to SARS‑CoV‑2 infection in human bronchial 
epithelial cells and lung cancer cell lines.  Figure 1 provides an overview of our study’s approach, utiliz-
ing transcriptional gene signatures of the host response to SARS-CoV-2. Independent biological triplicates of 
three lung cell lines—normal human bronchial epithelium (NHBE), A549 adenocarcinoma, and Calu-3 adeno-
carcinoma—were mock-treated or infected with SARS-CoV-2 and then profiled for gene expression using RNA-
seq7. We observed widespread expression changes 24 h post-infection for each cell line, though with notable 
fewer changes for NHBE than for the adenocarcinoma lines (Supplementary Data S1). At a nominal p value 
of p < 0.01 (t test), 566 human genes were altered for NHBE (with predicted false discovery rate, or FDR, of 
29%), 5675 genes were altered for A549 (FDR 3%), and 4968 genes were altered Calu-3 (FDR 4%). Taking the 
above genes, supervised clustering of the differential patterns could identify host responses to infection common 
across multiple cell lines or specific to a single cell line (Fig. 2a). Using a relaxed cutoff for NHBE (one-sided 
p < 0.05), when combining results with those of A549 and Calu-3, we defined a signature of 308 genes (181 up-
regulated, 127 down-regulated) commonly altered in the same direction across all three cell lines (Fig. 2b). We 
used these data to define four distinct SARS-CoV-2 transcriptional signatures (Fig. 2c): altered in all three cell 
lines examined (308 genes), altered specifically in A549 (1326 genes), altered specifically in Calu-3 (1327 genes), 
and altered in the same direction specifically in both A549 and Calu-3 (2963 genes).

Although the A549 cell line has low expression of viral receptor ACE27, the above SARS-CoV-2 signatures 
shared across multiple cell lines (i.e., NHBE/A549/Calu-3 and A549/Calu-3) were repeatedly observable in 
A549 cells transduced with ACE2 and infected with SARS-CoV-2 (Supplementary Figure S1). However, the 
Calu-3-specific transcriptional signature, but not the above A549-specific signature, was also manifested in 
A549 over-expressing ACE2 (Supplementary Figure S1). The transcriptional differences between A549 with 
and without ACE2 would presumably have something to do with ACE2 receptor, although NHBE primary cells 
also expressed ACE2 (Supplementary Figure S1), and so other factors involving the Calu-3 and A549 cancer cell 
lines, as well as very high ACE2 expression, may also be involved. Notably, alternative receptors with a potential 
role in SARS-CoV-2 entry may also exist17.

In several analyses presented below, we used the above transcriptional signatures of cell line response to SARS-
CoV-2 infection as a frame of reference for comparisons with other transcriptional datasets from independent 
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studies, representing other model systems and other diseases. For example, in the above-noted SARS-Cov-2 
study, NHBE or A549 cells were infected with other viruses (Influenza A virus or IAV, respiratory syncytial virus 
or RSV, human parainfluenza virus 3 or HPIV3) or treated with interferon beta (IFNB) and transcriptionally 
profiled7. Across this extended dataset, we examined the differential SARS-CoV-2-associated expression pat-
terns common to all three cell lines (NHBE, A549, Calu-3) or found for just one or two cell lines (Fig. 2c). We 
observed manifestation of the SARS-CoV-2 signatures within the differential patterns of the other infections and 
treatments. In this manifestation pattern, the genes up-regulated by SARS-CoV-2 tended to be up-regulated as a 
group across the other treatments, while the genes down-regulated by SARS-CoV-2 tended to be down-regulated 
across the other treatments. For example, of the 181 genes up-regulated by SARS-CoV-2 across all three cell lines, 
105 were also up-regulated (p < 0.05, t test) in A549 in response to RSV infection. These manifestation patterns 
were striking when visualized using expression heat maps (Fig. 2c). The manifestation patterns were also evident 
by Gene Set Enrichment Analysis (GSEA) method (Table S1).

In an independent study (GSE148729), three cell lines—H1299 lung squamous, Caco-2 colorectal, and Calu-3 
lung adenocarcinoma—were infected with SARS-CoV-1 or SARS-CoV-2 and transcriptionally profiled. The 
Calu-3 SARS-CoV-2 signature from the previous dataset validated in the Calu-3 SARS-CoV-1 and SARS-CoV-2 
profiles in this additional dataset (Fig. 2d). Of the 181 genes up-regulated by SARS-CoV-2 across all three cell 
lines from the first dataset, 118 (61%) were also up-regulated (p < 0.05, t test) in SARS-CoV-2-infected Calu-3 in 
the second dataset. Of the 784 genes up-regulated in the SARS-CoV-2 Calu-3-specific signature (from Fig. 2a), 
576 (78%) were also up-regulated in the second Calu-3 dataset. These manifestation patterns were also evident 
by GSEA method (Table S1). At the same time, differential patterns from the lung squamous and colorectal cell 
lines did not overlap with those of the previous dataset from normal human bronchial epithelium and lung 
adenocarcinoma. This lack of signature manifestation may be due to cell type-specific responses, though Calu-3 
also had higher ACE2 expression than either H1299 or Caco-2.

Pathways associated with the host response to SARS‑CoV‑2 infection include interferon sign-
aling and inflammation.  Each of the four SARS-CoV-2 signatures (three cell lines, A549-specific, Calu-
3-specific, and A549/Calu-3) represented specific altered pathways or functional gene categories. We searched 
wikiPathways18 for enrichment of any of our SARS-CoV-2-associated gene sets (Supplementary Data S2). Out 
of 417 pathways considered, 47 were significant by one-sided Fisher’s exact test with FDR < 1% for at least one 
of our gene sets (Fig. 3a). Most of these enriched pathways involved the common three cell line signature, with 
the majority of these pathways also showing enrichment within the Calu-3-specific signature. Enriched path-
ways within the three cell line signature included “Photodynamic therapy-induced NF-κB survival signaling”, 
“Cytokines and inflammatory response”, “Type II interferon signaling”, and “VEGFA-VEGFR2 Signaling Path-
way”. In terms of functional gene categories, significantly enriched Gene Ontology (GO) annotation terms for the 
three cell line SARS-CoV-2 signature (Fig. 3b; Supplementary Data S3) included “immune response” (involving 
44 out of a total of 741 genes with this annotation), “inflammatory response” (29 out of 370), “cytokine activ-
ity” (19 out of 176), “growth factor receptor binding” (13 out of 117), and “response to virus” (15 out of 229). 
A survey of the wikiPathways “Type II interferon signaling” pathway showed many genes that were statistically 
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Figure 1.   Overview of the basic approach of the study. (a) Diagram of the overall analytical approach to score 
a set of differential expression profiles according to a given gene transcription signature. For a given expression 
dataset, we score each mRNA profile according to an independently-derived transcriptional signature 
representing the host response to SARS-CoV-2 infection. The scoring basis is on whether the relative differential 
patterns in the external sample profile, higher versus lower, are broadly similar to the patterns of up- versus 
down-regulation, respectively, in the SARS-CoV-2 signature. The “t score” signature scoring metric from 
previous studies is used34–37. (b) Diagram of the study. We first defined transcriptional gene signatures of SARS-
CoV-2 infection, using three different lung cell lines (NHBE, A549, Calu-3)7. We then applied these signatures 
to examine differential expression profiles from the indicated external transcriptome datasets representing other 
viruses or diseases, other model systems, or patient samples.
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significant or trending with the NHBE cell line—including IFNGR1 and IFNGR2, with additional pathway genes 
significant for A549 or Calu-3 (Fig.  3c). Interestingly, there was little overlap between the Type I and Type 
II interferon wikiPathways (Supplementary Data S2), with only the latter showing high enrichment for genes 
up-regulated with SARS-CoV-2 infection. Genes up-regulated with SARS-CoV-2 involving the “Cytokines and 
Inflammatory Response” pathway (Fig. 3d) included CSF2, CSF3, CXCL1, CXCL2, IL1A, IL1B, and IL6.

The SARS‑CoV‑2 in vitro transcriptional signatures are manifested in upper airway samples 
from COVID‑19 patients.  To determine the relevance of our SARS-CoV-2 in vitro signatures to clinical 
samples, we examined an RNA-seq dataset of upper airway (trachea) samples in 238 patients with COVID-19, 
other viral, or non-viral acute respiratory illnesses8. We scored each patient sample expression profile for each 
of the four SARS-CoV-2 transcriptional signatures (three cell lines, A549-specific, Calu-3-specific, and A549/
Calu-3). The scoring basis was on whether the relative differential patterns in the patient sample profile—higher 
versus lower—were broadly similar to the patterns of up- or down-regulation, respectively, in the in vitro infec-
tion dataset. As compared to the non-viral group, SARS-CoV-2 in vitro scores for the common three cell line 
signature and the Calu-3-associated signatures were higher in a substantial fraction of patient samples in both 
the COVID-19 and other viral groups (Fig. 4a). Taking the top set of genes correlated positively with SARS-
CoV-2 viral load across the 238 patient samples (p < 0.01, Pearson’s correlation), these significantly overlapped 
with the genes high in the in vitro three cell line signature (41 genes out of 181, p < 1E−13, one-sided Fisher’s 
exact test) and with the genes high in the Calu-3-specific signature (194 out of 784 genes, p < 1E−69, Fig. 4b; 
Table S1). The overlapping genes involved pathways related to cytokines and the inflammatory response. Sam-
ples from COVID-19 patients with high viral loads of SARS-CoV-2 tended to most strongly manifest the in vitro 
signatures of infection, while samples from lower viral loads often appeared negative for the signatures (Fig. 4a,c; 
Supplementary Data S4).

The SARS‑CoV‑2 transcriptional signatures represent broad similarities with host responses 
to other viruses.  Extending upon the analysis results from the GSE147507 dataset (Fig. 2c), we examined 
transcriptional data from other viruses in other model systems, including mice, to compare the host response 
of SARS-CoV-2 with the host responses of other viruses (Supplementary Data S1). The common three cell line 
signature and the Calu-3 specific signature of SARS-CoV-2 infection were broadly discernable in transcriptional 
profiles of lung samples from mice infected with other SARS coronaviruses (Fig. 5a; Table S1), based on analysis 
of three external public datasets (GSE36969, GSE5918519, GSE6882020). Of the 308 genes in our SARS-CoV-2 
three cell line signature (from Fig. 2a), 181 (59%) were significantly altered in the same direction (p < 0.05) for at 
least one of the three SARS datasets in mice. Similarly, in another gene expression profiling dataset of blood and 
lung samples in mice, the three cell line signature and the Calu-3 specific signature of SARS-CoV-2 infection 
shared broad similarities with host responses to Toxoplasma gondii, Influenza A virus, RSV, acute Burkholderia 
pseudomallei, Candida albicans, and House dust mite21 (Fig. 5b; Table S1). In the above dataset, we found more 
commonalities with the SARS-CoV-2 signatures for the mouse lung samples than for the blood samples.

We next examined human samples, using a gene expression dataset of 418 patients from both viral-associated 
and non-viral nasal lavage samples22, with viruses represented including Human Rhino/enteroviruses (HRV/EV), 
Human coronavirus NL63 (HCoV-NL63), Human coronavirus HKU1 (HCoV-HKU1), RSV, Human bocavirus 
(HBoV), Aleution disease virus (ADV), human parainfluenza virus (HPIV), Human metapneumovirus (MPV), 
and influenza. The SARS-CoV-2 signatures were again broadly similar to the signatures of other viruses (Fig. 5c; 
Table S1), and the scores for each SARS-CoV-2 signature were significantly higher in the viral group compared 
to the non-viral group. In particular, the three cell line and Calu-3 signatures appeared markedly elevated in the 
viral group (p < 1E−11, t test).

The SARS‑CoV‑2 transcriptional signatures are manifested in a subset of human lung tumors 
involving the immune checkpoint pathway.  As the A549 and Calu-3 lung adenocarcinoma cell lines 
each exhibited distinctive transcriptional signatures of SARS-CoV-2 infection, we sought to determine whether 

Figure 2.   Transcriptional signatures of the host response to SARS-CoV-2 infection across three different 
human lung cell lines. (a) Three different human lung cell lines (NHBE, A549, Calu-3) were infected with SARS-
CoV-2 at multiplicity-of-Infection (MOI) of 2 and profiled for gene expression by RNA-seq (GSE1475077). 
Genes altered with p < 0.01 for any cell line are represented as a heat map. Each cell line profile is centered on 
the average of its corresponding mock control group. (b) Heat map representing a common set of 308 genes 
up-regulated or down-regulated across all three cell lines and in the same direction of change (one-sided p < 0.05 
NHBE, and two-sided p < 0.01 A549 and Calu-3). (c) In the same study noted above, NHBE or A549 cells were 
infected with other viruses (IAV, RSV, HPIV3) or treated with interferon beta (IFNB). Differential SARS-
CoV-2-associated expression patterns common to all three cell lines (NHBE, A549, Calu-3) or found for just 
one or two cell lines (taken from a) are shown for both the SARS-CoV-2 infection profiles and the additional 
profiles representing the other infections and treatments. Each treatment profile is centered on the average of 
its corresponding control group. Patterns of manifestation of SARS-CoV-2 signatures within the other virus 
or treatment groups are highlighted. (d) In an independent study (GSE148729), three cell lines—H1299 lung 
squamous, Caco-2 colorectal, and Calu-3 lung adenocarcinoma—were infected with SARS-CoV-1 or SARS-
CoV-2 and transcriptionally profiled. The SARS-CoV-2 signatures from part c were examined in this additional 
dataset. Patterns of manifestation of SARS-CoV-2 signatures within the Calu-3 signatures of the independent 
dataset are highlighted. p values by t test using log2-transformed data. See also Supplementary Data S1.

▸
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Figure 3.   Pathways associated with SARS-CoV-2 infection in lung cells in vitro. (a) Significance of enrichment (by one-
sided Fisher’s exact test) for wikiPathway18 gene sets within the respective sets of genes up-regulated with SARS-CoV-2 
infection according to cell line (from Fig. 2b,c). Signatures represented are: up-regulated in all three cell lines examined 
(NHBE, A549, and Calu-3), A549-specific up-regulation, Calu-3-specific up-regulation, and up-regulated specifically 
in both A549 and Calu-3. Pathways represented were significant (FDR < 1%39) within at least one of the above gene sets. 
(b) Selected significantly enriched Gene Ontology (GO) terms, involving the gene sets described in part a. Enrichment p 
values by one-sided Fisher’s exact test. (c) Pathway diagram representing type II interferon signaling (from wikiPathways), 
with differential expression patterns in response to SARS-CoV-2 infection in each of the three cell lines represented 
(left, NHBE; middle, A549; right, Calu-3). Red, high in SARS-CoV-2-infected group versus control. p values by t test 
using log-transformed values. (d) Similar to part c, but for wikiPathway “Cytokines and inflammatory response”. See 
also Supplementary Data S2 and Supplementary Data S3 (which files provide the numbers of genes involved with each 
pathway or annotation term).
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Figure 4.   The SARS-CoV-2 in vitro transcriptional signatures are manifested in upper airway samples from 
COVID-19 patients. (a) An RNA-seq dataset of upper airway (trachea) samples in 238 patients with COVID-19, 
other viral, or non-viral acute respiratory illnesses was examined8. The patient expression profiles were probed 
according to the SARS-CoV-2 transcriptional signatures. Differential SARS-CoV-2-associated expression 
patterns common to all three cell lines (NHBE, A549, Calu-3) or found for just one or two cell lines (from 
Fig. 2b,c) are shown for both the in vitro SARS-CoV-2 infection dataset and the patient dataset. Gene order is 
the same across both datasets. SARS-CoV-2 viral loads (log2 reads per million) corresponding to the patients 
are also plotted. Heat map contrast (bright yellow/blue) is threefold change from either mock control for the 
in vitro dataset or from no virus group for the patient dataset. Selected patterns of manifestation of the in vitro 
SARS-CoV-2 signatures within the human dataset are highlighted. Under the differential expression heat maps, 
scores for each of the in vitro SARS-CoV-2 signatures across the patient profiles are represented (orange-cyan 
heatmap). (b) Venn diagram representing the gene set overlaps among the genes high with SARS-CoV-2 
infection in vitro in all three cell lines (from Fig. 2b), the genes high specifically in Calu-3 lung cell line (from 
Fig. 2c), and the genes positively correlated with SARS-CoV-2 viral load across the 238 patient samples (p < 0.01, 
Pearson’s correlation using log2-transformed data). p values by one-sided Fisher’s exact test. Genes overlapping 
between three cell line gene set and patient gene set are listed. (c) Scatterplot of cell line-based SARS-CoV-2 
gene signature score versus SARS-CoV-2 viral load, for the 94 COVID-19 patients in the human trachea dataset. 
See also Supplementary Data S4.
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they might be manifested within a subset of human lung tumors. We examined the SARS-CoV-2 transcriptional 
signatures in The Cancer Genome Atlas (TCGA) Non-Small Cell Lung Cancer (NSCLC) cohort of 1016 cases 
(primarily adenocarcinomas and squamous cell carcinomas)16. Using the mRNA profiling dataset from TCGA, 
we scored each tumor expression profile for each of the four SARS-CoV-2 signatures (three cell lines, A549-spe-
cific, Calu-3-specific, and A549/Calu-3). A previous study classified the NSCLC profiles into nine molecular 
subtypes16, three associated with lung squamous cell carcinoma, and six associated with lung adenocarcinoma. 
Three of the adenocarcinoma subtypes—AD.2, AD.3, and AD.4—express several immune checkpoint genes, 
including PDL1 and PDL2, corresponding with patterns of greater immune cell infiltration16.

We found that the common signature of SARS-CoV-2 infection across three cell lines represented a tran-
scriptional program associated with the immune response and immune checkpoint pathway in human lung 
tumors. Interestingly, scores for all four SARS-CoV-2 signatures had higher levels in normal adjacent lung tissues 
than in lung tumors (Fig. 6a, Table S2, Supplementary Data S4). Normal adjacent tissues involve inflammation 
and immune cell infiltration, as well as a collection of cell types that differ from the cancer cell of origin. The 
common three cell line signature, in the TCGA lung tumor profiles, was uniformly manifested across the SQ.1, 
AD.2, AD.3, and AD.4 subtypes in particular (Table S2). Scores for the other three signatures related to A549 or 
Calu-3 were broadly correlated with those of the three cell line signature, though with less distinctive associa-
tions according to NSCLC subtype. As expected, the SARS-CoV-2-infected cell lines did not show signatures 
of immune cell infiltrates found in the above lung tumor subtypes, as tumors represent a mixture of cancer and 
non-cancer cells in contrast to cell lines. However, both A549 and Calu-3 showed elevated expression (p < 0.05, 
t test using log2-transformed data) of immune checkpoint genes CD274 (PDL1) and PDCD1LG2 (PDL2) with 
SARS-CoV-2 infection (Fig. 6a,b). A survey of immune checkpoint pathway genes16 also showed up-regulation 
of TNFSF14 in A549 and Calu-3 in response to infection and TNFRSF14 in Calu-3. Previously, most immune 
checkpoint-related genes, those presumed to express in either T-cells or the target cells, have been found elevated 
across the AD.2, AD.3, and AD.4 NSCLC subtypes16.

The SARS‑CoV‑2 transcriptional signatures are manifested across large subsets of human can-
cers from diverse histopathological types.  We sought to determine the relevance of our SARS-CoV-2 
signatures to cancer types other than lung. We hypothesized that the transcriptional programs associated with 
viral infection in vitro could be manifested within well-defined subsets of human tumors. Therefore, we exam-
ined the entire TCGA pan-cancer cohort of 10,224 cases involving 32 major types and previously classified into 
ten major pan-cancer classes that cut across the tissue of origin14. These ten pan-cancer classes included a “c3” 
class (representing ~ 13% of all cancers), strongly associated with the immune response and immune checkpoint 
pathways, and “c7” and “c8” classes (representing ~ 11% and 9% of cancers, respectively), associated with mesen-
chymal or stromal cells. The c3, c7, and c8 classes also associated with hypoxia, NRF2/KEAP1, Wnt, and Notch 
pathways14. Using the mRNA profiling dataset from TCGA, we scored each tumor expression profile for each of 
the four SARS-CoV-2 signatures (three cell lines, A549-specific, Calu-3-specific, and A549/Calu-3).

We found that both the three cell line and Calu-3-specific signatures associated with SARS-CoV-2 infection 
manifested in the c3, c7, and c8 human tumors, though more prominently in c3 and c8 (Fig. 7a, Table S2, Sup-
plementary Data S4, S5). Of the 181 genes up-regulated by SARS-CoV-2 across all three cell lines, 150 (83%) were 
also up-regulated (p < 0.01, t test) in c3 compared to other human tumors, and 111 (61%) were also up-regulated 
(p < 0.01) in c8 compared to other tumors (Supplementary Data S5). The SARS-CoV-2 signature specific to A549 
and Calu-3 but not NHBE also manifested in c7 and c8 tumors. The set of genes both high in the three cell line 
SARS-CoV-2 signature and high in either c3 or c8 human tumors versus other tumors (p < 0.01, t test) were 
enriched for a similar set of wikiPathways associated above with SARS-CoV-2 alone (Fig. 3a; Supplementary Data 
S5). Enriched pathways common to SARS-CoV-2 infection and c3 and c8 human tumors included the NF-κB 
survival signaling pathway, including NFKB1, NFKB2, REL, and RELB genes, as well as downstream transcrip-
tional targets (Fig. 7b). These findings were specific, as we found that other pathways previously associated with 
c3 and c8 (e.g., Wnt and Notch) were not associated with SARS-CoV-2 infection.

Figure 5.   The SARS-CoV-2 in vitro transcriptional signatures overlap with signatures of host responses to 
other virus in other model systems and patient samples. (a) Gene expression profiles of lung samples from mice 
infected with SARS viruses other than SARS-CoV-2 were probed according to the SARS-CoV-2 transcriptional 
signatures. Differential SARS-CoV-2-associated expression patterns common to all three cell lines (NHBE, 
A549, Calu-3) or found for just one or two cell lines (from Fig. 2b,c) are shown for both the in vitro SARS-
CoV-2 infection dataset and the three independent SARS mouse datasets (GSE36969, GSE5918519, GSE6882020). 
Gene order is the same across all datasets. Mouse datasets involve different variants of the SARS-CoV-MA15 
virus, in addition to wild-type. (b) A gene expression profiling dataset of blood and lung samples obtained from 
mice infected or challenged with Toxoplasma gondii, Influenza A virus, Respiratory Syncytial virus (RSV), acute 
Burkholderia pseudomallei, Candida albicans, and House dust mite (HDM) allergen (GSE11985621) was probed 
for the SARS-CoV-2 transcriptional signatures. Gene order is the same for both datasets. Selected patterns of 
manifestation of SARS-CoV-2 signatures within the GSE119856 mouse lung samples are highlighted. (c) A gene 
expression dataset of 418 patient from both viral-associated and non-viral nasal lavage samples22 (GSE115770) 
was probed for the SARS-CoV-2 transcriptional signatures. Gene order is the same for both datasets. 
GSE115770 profiles are ordered by virus (HRV/EV, HCoV-NL63, HCoV-HKU1, RSV, HBoV, ADV, HPIV, 
MPV, flu). Under the differential expression heat maps, scores for each of the SARS-CoV-2 signatures across the 
GSE115770 profiles are represented (orange-cyan heatmap).

▸
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Figure 6.   The SARS-CoV-2 transcriptional signatures are manifested in subsets of human lung cancer 
involving the immune checkpoint pathway. (a) RNA-seq profiles of 1023 Non-Small Cell Lung Cancer (NSCLC) 
cases16 were probed according to the SARS-CoV-2 transcriptional signatures. Differential SARS-CoV-2-
associated expression patterns common to all three cell lines (NHBE, A549, Calu-3) or found for just one or two 
cell lines (from Fig. 2b,c) are shown for both the in vitro SARS-CoV-2 infection dataset and the NSCLC dataset 
(“normal adj lung”, normal adjacent lung tissue samples in proximity to lung tumor, n = 110). Gene order is the 
same across both datasets. The ordering of NSCLC profiles is by nine previously-identified molecular subtypes16, 
three associated with lung squamous cell carcinoma (SqCC) and six associated with lung adenocarcinoma (AD). 
Heat map contrast (bright yellow/blue) is threefold change from control for SARS-CoV-2 dataset and 1 SD from 
median for NSCLC dataset. Selected patterns of manifestation of SARS-CoV-2 signatures within the human 
cancers are highlighted. Under the differential expression heat maps, scores for each SARS-CoV-2 signature 
across the NSCLC profiles are represented (orange-cyan heatmap). Gene expression-based signatures of 
immune cell infiltrates38 and PDL1/PDL2 genes are also represented in both SARS-CoV-2 and NSCLC datasets 
(NK cells, natural killer cells). (b) Diagram of immune checkpoint pathway (featuring interactions between T 
cells and antigen-presenting cells, including tumor cells), with differential expression patterns in response to 
SARS-CoV-2 infection in each of the three cell lines represented (left, NHBE; middle, A549; right, Calu-3). Red, 
high in SARS-CoV-2-infected group versus control. p values by t test using log-transformed values. Most all of 
the genes represented where previously found elevated across the AD.2, AD.3, and AD.4 NSCLC subtypes16.
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human tumor profiles (NK cells, natural killer cells). (b) Diagram of the NF-κB signaling pathway (from wikiPathways18, full pathway 
name “Photodynamic therapy-induced NF-κB survival signaling”). For each gene shown, three different expression comparisons are 
represented: SARS-CoV-2 infection versus control in Calu-3 cells (left square), pan-cancer c3 class versus the other tumors (middle 
square), and pan-cancer c8 class versus the other tumors (right square). Red, high expression in SARS-CoV-2-infected cells, c3 human 
tumors, or c8 human tumors, as indicated. p values by t test using log-transformed values. See also Supplementary Data S5.
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Discussion
In our present study, we have shown that the host transcriptional response to SARS-CoV-2 infection, as identi-
fied using cell lines, shares broad similarities with results from multiple independent studies of coronaviruses or 
other viruses, using other model systems or patient samples. Our results demonstrate how in vitro model system 
could be effective in identifying rapid responses within cancer cells that would also be observable in other cellular 
contexts. In particular, the Calu-3 model showed specific host responses to infection not observed in the other 
two cell lines but which validated in independent datasets. In particular, the overall similarities in host responses 
observed among different coronaviruses support some degree of leveraging of what has previously been learned 
towards our understanding of SARS-CoV-2. In the United States, current guidelines from the Centers for Disease 
Control (CDC) require Biosafety Level (BSL)-3 facilities and practices for experimental studies involving the 
SARS-CoV-2 virus, which can be rather restrictive in practice. For some proposed studies, coronaviruses with 
lower Biosafety Levels, such as 229E or NL63, might yield similar results to those of SARS-CoV-2.

The meta-analysis results across the various datasets, as provided in our supplemental, represents a resource 
for future investigations, whereby one can identify gene candidates for the study of the host response that appear 
common to multiple systems or viruses. Our data could also help identify genes that would be specific to corona-
viruses or SARS-CoV-2 in particular. Genes that appear involved with COVID-19 in both experimental models 
and human patient samples may be particularly attractive for further study, and our results allow for honing in 
on a focused set of genes. However, identifying genes altered specifically in response to SARS-CoV-2 infection 
and not in response to any other viral infection may be challenging, as asserting a negative is inherently difficult. 
Our results also indicate that different cell types may respond differently to viral infection. For example, host 
response patterns observed in lung adenocarcinoma cells did not show in colon or lung squamous cells.

Our study further revealed that the transcriptional programs initiated in cancer cells in response to SARS-
CoV-2 are also at work within ~ 20% of human tumors. This finding reflects known parallels between responses 
to viral infection and the immune response associated with cancer10. These associations would not be exclusive to 
SARS-CoV-2 but would involve host responses to a broad range of viruses. The viral response signatures manifest 
within specific and previously-identified cancer subtypes, which strongly indicates that the signatures represent 
a coordinated transcriptional program that underlies these subtypes. The inherent limitations of cancer cell line 
models, e.g., in their inability to capture the microenvironmental effects at work within human tumors, are well 
understood. At the same time, cell lines can reveal molecular properties intrinsic to cancer cells, independent of 
cellular environment or context. Tumors represent a mixture of cancer and non-cancer cells, which may include 
immune cells, and distinguishing between the two based on molecular data on bulk tumor samples is inherently 
difficult. In contrast, the cell line results allow us to de-convolute an immune response program that would be 
activated specifically within the cancer cells of the tumor. The in vitro viral infection model could help identify 
candidate genes with roles in cancer cell responses to immune cells and inflammation. For example, we found 
cancer-specific responses to viral infection to include up-regulation of PDL1 and PDL2 genes, two critical targets 
in cancer immunotherapy23. As cancer represents a collection of molecularly heterogeneous diseases, different 
cell lines may respond differently to infection, as observed here.

The links identified here between viral infection and cancer suggest opportunities for leveraging knowledge 
between domains10. Pathways identified as part of the host response to viral infection could be relevant for 
therapeutic targeting, both for certain viral infections and specific cancer subsets. Inflammation and immu-
nity are inherent characteristics of cancer, and both viruses and cancers are associated with dominant Th1 
responses10, as reflected in our results. The host response to SARS-CoV-2 includes interleukin-6 (IL-6)7, which 
plays an important role in the “cytokine storm,” and IL-6 receptor antagonist tocilizumab is currently under 
evaluation as a treatment for severe COVID-1924. IL-6 is a major factor driving T helper 17 (Th17) responses25, 
which, under some circumstances, can interfere with the control of viral infections. Similarly, Th17 responses 
can either promote or inhibit tumorigenesis, depending on the precise tumor and other factors26,27. IL-6 also 
promotes tumorigenesis by regulating multiple hallmarks of cancer and signaling pathways. As such, blocking 
IL-6 is under investigation as an anticancer therapy28, but our findings suggest that strategies that block Th17 
responses might offer additional benefit in the context of COVID-19. Similarly, NF-κB-mediated inflammation, 
known to be associated with several cancer types29, has also been investigated previously as a therapeutic target 
for SARS coronaviruses30, which findings would likely apply to SARS-CoV-2. Our present study has brought 
together disparate results from multiple systems, diseases, and domains. These results can lend support to cur-
rent therapeutic strategies under investigation, as well as suggest new ones.

Materials and methods
Derivation of SARS‑CoV‑2 transcriptional signatures of host response in cell lines.  To define 
transcriptional signatures of the host cell response to SARS-CoV-2 infection, we referred to the GSE147507 
dataset7. In this dataset, three lung cell lines—NHBE, A549, and Calu-3—were mock-treated or infected with 
SARS-CoV-2 and then profiled for gene expression using RNA-seq7. We used data from the SARS-CoV-2 profil-
ing experiments involving multiplicity-of-Infection (MOI) of 2. We converted raw gene-level sequencing read 
counts to reads per million Mapped (RPM) values and then log2-transformed them.

Using GSE147507, we defined a common set of 308 genes up-regulated or down-regulated across all three cell 
lines and in the same direction of change (one-sided p < 0.05 NHBE, and two-sided p < 0.01 A549 and Calu-3, 
t test using log2-transformed expression). For NHBE, we used a relaxed statistical cutoff, to lower false nega-
tives, as we combined the NHBE results with results from A549 and Calu-3. A gene in the common three cell 
line signature had to meet multiple criteria for inclusion, which mitigated the relatively high FDR (adjusted for 
multiple testing) observed when considering NHBE alone. Also, significant patterns of correspondence were 
observed when examining the common signature across multiple independent datasets.
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In addition, we evaluated the set of genes differentially expressed for any one of the three cell lines, with 
p < 0.01 (t test using log2-transformed data) in infection versus mock-treated, to identify patterns specific to one 
cell line or common across multiple cell lines. We performed this supervised clustering approach31 as follows: 
(1) expression values within each cell line were centered on the average of the corresponding control group; (2) 
each pattern of interest (i.e., genes up-regulated or down-regulated specifically in A549, or genes up-regulated or 
down-regulated in both A549 and Calu-3 but not NHBE) was represented as a series of 1 s and 0 s; (3) for each 
gene, we computed the Pearson’s correlation between its expression values and each of the predefined patterns; 
(4) for each genes, the pre-defined pattern of interest best correlated with the gene’s differential expression pat-
tern was determined; and (5) we sorted the genes by their assigned patterns. The dominant signatures from this 
analysis included an A549-specific signature, a Calu-3-specific signature, and an A549/Calu-3 common signature. 
A subset of genes in the common three cell line signature was also part of the cell line-specific signatures, repre-
senting instances where the gene was differentially expressed in all three cell lines, but with the altered expressed 
being particularly prominent within one or two cell lines. Of the 308 genes in the three cell line signature, 47 
were included in the Calu-3-specific signature, and 165 were included in the A549/Calu-3 common signature.

Pathway analyses.  We searched each of the four SARS-CoV-2 in vitro signatures for enrichment of pre-
viously-curated pathways and functional gene groups. We evaluated enrichment of GO annotation terms32 and 
wikiPathways18 within sets of genes up-regulated in response to viral infection, using SigTerms software33 and 
one-sided Fisher’s exact tests. Gene sets for each wikiPathway were downloaded in July 2019 (“20190710” ver-
sion). For GO term enrichment analysis, we used all 19510 unique proteins represented in at least one of the 
seven cancer types profiled as the reference population. For wikiPathways enrichment analysis, we used all 6597 
unique proteins represented in at least one wikiPathway as the reference population.

Analysis of external transcriptome datasets.  For multiple viral and human cancer datasets, we scored 
each external mRNA profile according to the in vitro SARS-CoV-2 transcriptional signatures from GSE147507 
dataset (three cell lines, A549-specific, Calu-3-specific, and A549/Calu-3). The scoring basis was on whether 
the relative differential patterns in the external sample profile, higher versus lower, were broadly similar to the 
patterns of up- versus down-regulation, respectively, in the in vitro SARS-CoV-2 signature. We based the SARS-
CoV-2 signature score on our previously described “t score” metric34–37. We have defined the t score as the 
two-sided t statistic when comparing, within each external differential expression profile, the average of the 
SARS-CoV-2-up-regulated genes with the average of the down-regulated genes. For example, the t score for a 
given sample profile is high when both the up-regulated genes in the signature are high and the down-regulated 
genes are low. For viral expression datasets, we centered logged expression values (base 2) on the correspond-
ing non-viral group. For TCGA lung16, and pan-cancer14 datasets, logged expression values for each gene were 
centered on the median and divided by the standard deviation across the sample profiles. For TCGA pan-cancer 
dataset14, logged expression values for each gene were centered on the median and divided by the standard 
deviation within their respective cancer types (according to TCGA project). Computational inference of the 
infiltration levels of specific immune cell types using RNA-seq data, based on published immune signatures38, 
was carried out previously for TCGA datasets14,16. RPM values for the COVID-19 patient trachea dataset8 were 
quantile normalized before the analysis.

When joining genes from microarray datasets to the GSE146507 dataset, for side-by-side comparisons of the 
differential patterns using heat maps, there were cases where multiple array probes referred to the same gene. In 
these cases, we used the probe with either the smallest p value (in either direction, where the dataset involved just 
two experimental groups) or the highest standard deviation across sample profiles (where multiple experimental 
groups were involved) to represent the gene.

Statistical analysis.  All p values were two-sided unless otherwise specified. We performed all tests using 
log2-transformed gene expression values. False Discovery Rates (FDRs) were estimated using the method of Sto-
rey and Tibshirini39. Visualization using heat maps was performed using both JavaTreeview (version 1.1.6r4)40 
and matrix2png (version 1.2.1)41. GSEA42 was carried out using version 4.0.3 of the software, using weighted 
enrichment statistic and 10,000 gene set permutations. For GSEA, genes were ranked using GSEA’s Signal2Noise 
metric, except for human trachea COVID-19 dataset, which used correlation with log2 viral load for the gene 
rankings.

Data availability
All data used in this study are publicly available. We obtained RNA-seq or microarray expression data from 
experimental models of viral infection or other treatments from the Gene Expression Omnibus (GEO). The 
COVID-19 trachea patient RNA-seq dataset is available at https​://githu​b.com/czbio​hub/covid​19-trans​cript​omics​
-patho​genes​is-diagn​ostic​s-resul​ts and at GEO (GSE156063). TCGA data are available through the Genome Data 
Commons (https​://gdc.cance​r.gov/) and the Broad Institute’s Firehose data portal (https​://gdac.broad​insti​tute.
org).
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