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INTRODUCTION 
 

Globally bladder cancer is the tenth most common 

malignant tumor in women and the fourth most 

common in men [1, 2]. The main histological type of 

bladder cancer is transitional cell carcinoma (TCC), 

which accounts for more than 90% of bladder cancer 

cases [3]. Many factors are involved in the 

carcinogenesis and progression of bladder cancer, 

including chromosomal aberrations, genetic polymer 

phisms, as well as genetic and epigenetic alterations [4]. 

Bladder cancer can be subdivided into three subtypes: 

superficial, invasive, and metastatic [5]. At diagnosis, 

75% of cases are classified as superficial tumors, 20%  

 

are invasive cancers, and 5% already involve metastasis 

[6, 7]. The current gold-standard treatment of bladder 

cancer is a surgical operation followed by radio-

chemotherapy and biological therapy [8]. Surgical 

resection is the key modality, and adjuvant therapy is 

considered an effective supplementary treatment for 

preventing recurrence and metastasis [9]. Nonetheless, 

more than 30% of patients either fail to respond to 

treatment or experience recurrent disease within five 

years, and 50% of patients die of metastatic disease 

[10]. Improving our understanding of the molecular 

mechanisms underlying the carcinogenesis and 

progression of bladder cancer may help identify new 

therapeutic strategies against bladder cancer. 
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ABSTRACT 
 

The long noncoding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) is a key 
malignancy regulator in a variety of human cancers. In this study, we first measured the expression of NNT-AS1 in 
bladder cancer and examined its role in cancer progression. The mechanisms behind the oncogenic functions of 
NNT-AS1 in bladder cancer were explored. We found that NNT-AS1 was upregulated in bladder cancer tissues and 
cell lines. This increased expression demonstrated a significant correlation with advanced clinical stage, lymph 
node metastasis, and shorter overall survival. NNT-AS1 knockdown suppressed bladder cancer cell proliferation, 
migration, and invasion and facilitated apoptosis in vitro and hindered tumor growth in vivo. NNT-AS1 functioned 
as a competing endogenous RNA for microRNA-496 (miR-496), and the suppressive effects of NNT-AS1 
knockdown on malignant characteristics were abrogated by miR-496 silencing. HMGB1 was identified as a direct 
target gene of miR-496 in bladder cancer, and HMGB1 expression was enhanced by NNT-AS1 via sponging of miR-
496. In conclusion, the NNT-AS1–miR-496–HMGB1 pathway plays a significant role in the aggressive behavior of 
bladder cancer and may lead to new NNT-AS1–based diagnostics and therapeutics. 
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Long noncoding RNAs (lncRNAs) have recently emerged 

as a novel hot area of research into anticancer therapies 

[11]. LncRNAs are a family of RNA transcripts that are > 

200 nucleotides long [12]. They lack protein-coding 

ability yet participate in the control of a variety of cellular 

processes, including epigenetic, transcriptional, and post-

transcriptional regulation [13]. Increasing evidence has 

shown involvement of lncRNAs in the malignant 

characteristics of human cancers, including bladder cancer 

[14–16]. Numerous lncRNAs are differentially expressed 

in bladder cancer, including PART1 [17], HCG22 [18], 

and TUC338 [19]. The dysregulated lncRNAs exert 

crucial effects on bladder carcinogenesis and cancer 

progression through various mechanisms [20–22]. They 

can function as guides, scaffolds, and molecular sponges 

in interactions with proteins, microRNAs (miRNAs), and 

mRNAs, thereby resulting in the formation of a complex 

signal-regulating network [23, 24].  

 

MiRNAs belong to a large group of single-stranded 

noncoding short RNAs 17–24 nucleotides in length 

[25]. MiRNAs directly interact with the 3′-untranslated 

region (3′-UTR) of their target mRNAs, thus degrading 

these mRNAs and/or inhibiting translation [26]. Studies 

have revealed changes in miRNA expression in bladder 

cancer, suggesting that miRNAs take part in the 

initiation and progression of this disease [27–29]. 

MiRNAs can exert tumor-suppressive or oncogenic 

actions in bladder cancer and participate in the 

modulation of a wide range of pathological conditions 

[30–32]. Therefore, clarifying the associations among 

lncRNAs, miRNAs, and bladder cancer may facilitate 

the development of novel techniques for the prevention, 

diagnosis, and treatment of this condition.  

 

An lncRNA called nicotinamide nucleotide 

transhydrogenase antisense RNA 1 (NNT-AS1) is 

abnormally expressed in a variety of human cancers and 

functions as a key regulator of cancer progression  

[33–42]. Nevertheless, the expression profile, clinical 

significance, and biological functions of NNT-AS1 in 

bladder cancer and the underlying mechanisms remain 

unknown. In the present study, we first measured the 

expression of NNT-AS1 in bladder cancer tissues and cell 

lines. Next, we examined the clinical value of NNT-AS1 

among patients with bladder cancer. Furthermore, the 

specific roles and mechanisms underlying the oncogenic 

activities of NNT-AS1 in bladder cancer were explored in 

detail.  

 

RESULTS  
 

NNT-AS1 is overexpressed in bladder cancer  

 

To determine the expression profile of NNT-AS1 in 

bladder cancer, we measured its expression in 47 pairs 

of bladder cancer tissue specimens and matched 

adjacent normal tissues (ANTs) by reverse-transcription 

quantitative PCR (RT-qPCR). NNT-AS1 was found to 

be overexpressed in bladder cancer tissues relative to 

ANTs (Figure 1A, P < 0.05). In addition, obviously 

higher expression of NNT-AS1 was detected in all four 

bladder cancer cell lines (T24, 5637, UM-UC-3, and 

TCC-SUP) when compared with a normal bladder 

immortalized epithelial cell line (SV-HUC-1; Figure 

1B, P < 0.05).  

 

We next determined the clinical significance of NNT-

AS1 in patients with bladder cancer. All these patients 

(n = 47) were distributed into two groups: either “high-

NNT-AS1” (n = 24) or “low-NNT-AS1” (n = 23), based 

on the median value of NNT-AS1 expression in the 

bladder cancer tissue specimens. Evaluation of the 

correlation between NNT-AS1 expression and clinical 

parameters revealed that high NNT-AS1 expression 

significantly correlated with lymphatic invasion (P = 

0.017) and TNM stage (P = 0.015) in patients with 

bladder cancer (Table 1). Furthermore, patients in the 

high-NNT-AS1 group demonstrated shorter overall 

survival in comparison with the patients in the low-

NNT-AS1 group (Figure 1C, P = 0.0264). Taken 

together, these results indicated that NNT-AS1 was 

overexpressed in bladder cancer and correlated with 

poor clinical outcomes, suggesting that this lncRNA 

may be closely related to the malignancy of bladder 

cancer.  

 

Knockdown of NNT-AS1 restricts bladder cancer 

cell proliferation, migration, and invasion but 

induces apoptosis  

 

T24 and TCC-SUP showed the highest expression of 

NNT-AS1 among the four bladder cancer cell lines; 

accordingly, they were chosen for further experiments. 

To investigate whether NNT-AS1 is functionally 

implicated in the aggressiveness of bladder cancer, 

either small interfering RNAs (siRNAs) specific to 

NNT-AS1 (siNNT-AS1) or a negative control (NC) 

siRNA (siNC) were transfected into T24 and TCC-SUP 

cells, and the efficiency of siRNA transfection was 

assessed by RT-qPCR. The siNNT-AS1 transfection 

dramatically reduced the expression of NNT-AS1 in 

both T24 and TCC-SUP (Figure 2A, P < 0.05). The 

impact of NNT-AS1 knockdown on the proliferation of 

bladder cancer cells was determined using a Cell 

Counting Kit-8 (CCK-8) assay. NNT-AS1 knockdown 

significantly hindered the proliferation of T24 and 

TCC-SUP cells compared with the siNC group (Figure 

2B, P < 0.05). Next, flow cytometry was utilized to test 

whether the influence of NNT-AS1 on bladder cancer 

cell proliferation is related to apoptosis. Transfection 

with siNNT-AS1 clearly raised the proportion of 
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apoptotic T24 and TCC-SUP cells (Figure 2C, P < 

0.05), indicating that the inhibition of bladder cancer 

cell proliferation by NNT-AS1 knockdown could be 

attributed to the promotion of apoptosis. Using 

transwell cell migration and invasion assays, we 

evaluated the migratory (Figure 2D, P < 0.05) and 

invasive (Figure 2E, P < 0.05) abilities of NNT-AS1–

depleted T24 and TCC-SUP cells. Upon knockdown of 

NNT-AS1, the migration and invasiveness of T24 and 

TCC-SUP cells significantly decreased as compared 

with the siNC group. Overall, these data suggested that 

NNT-AS1 may promote bladder cancer progression.  

 

NNT-AS1 acts as a competing endogenous RNA 

(ceRNA) on miR-496 in bladder cancer cells  

 

To investigate the mechanisms by which NNT-AS1 

promotes the malignant behaviors of bladder cancer cells, 

we first analyzed the subcellular localization of NNT-AS1 

in these cells. We found that NNT-AS1 is mainly located 

in the cytoplasm of T24 and TCC-SUP cells (Figure 3A). 

Growing evidence suggests that cytoplasmic lncRNAs 

can function as ceRNAs by competitively interacting with 

specific miRNAs [43–45]. A bioinformatic algorithm, 

starBase 3.0, was executed to search for a potential 

miRNA target of NNT-AS1. MiR-496 (Figure 3B) was 

predicted to contain (with high probability) a binding site 

for NNT-AS1 and was selected for validation as it has 

been reported to participate in tumorigenesis and tumor 

progression [46–49]. A luciferase reporter assay was 

performed on bladder cancer cells to test the miR-496–

binding site in NNT-AS1. Either miR-496 mimics or miR-

NC and either plasmid wt-NNT-AS1 (containing wild-

type miR-496–binding site 1 or site 2; Figure 3B) or 

plasmid mut-NNT-AS1 (containing mutant miR-496–

binding site 1 or site 2; Figure 3B) were cotransfected into 

T24 and TCC-SUP cells. The miR-496 mimics’ dramatic 

transfection–mediated overexpression of miR-496 (Figure 

3C, P < 0.05) decreased the luciferase activity generated 

by the reporter plasmid wt-NNT-AS1 (carrying site 1 or 

site 2) in T24 and TCC-SUP cells (P < 0.05; Figure 3D). 

By contrast, miR-496 upregulation did not reduce the 

luciferase activity generated by mut-NNT-AS1 (carrying 

site 1 or site 2; Figure 3D). In addition, an RNA 

immunoprecipitation (RIP) assay was carried out to 

determine the interaction between miR-496 and NNT-AS1 

in bladder cancer cells. MiR-496 and NNT-AS1 were 

specifically enriched in an Argonaute 2 (AGO2) 

immunoprecipitate from the lysates of T24 and TCC-SUP 

cells as compared with the IgG control group (Figure 3E, 

P < 0.05).  

 

MiR-496 expression was then quantified in the 47 pairs 

of bladder cancer tissue specimens and matched ANTs. 

The results of RT-qPCR analysis revealed that miR-496 

expression was significantly lower in bladder cancer 

tissues compared with that in ANTs (Figure 3F, P < 

0.05) was inversely correlated with NNT-AS1 

expression (Figure 3G; r = -0.6328, P < 0.0001). 

Finally, RT-qPCR analysis was performed to determine 

whether NNT-AS1 can sponge miR-496 in bladder 

cancer cells. The expression of miR-496 was

 

 
 

Figure 1. NNT-AS1 is overexpressed in bladder cancer and is associated with poor clinical outcomes. (A) The expression of NNT-

AS1 in the 47 pairs of bladder cancer tissue specimens and matched adjacent normal tissues (ANTs) was determined by RT-qPCR. *P < 0.05 
vs. the ANTs group. (B) NNT-AS1 levels were measured in four bladder cancer cell lines and a normal bladder immortalized epithelial cell line 
(SV-HUC-1) by RT-qPCR. *P < 0.05 vs. group SV-HUC-1. (C) Kaplan–Meier plot demonstrating the association between NNT-AS1 expression 
and overall survival of the patients with bladder cancer. P = 0.0264. 
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Table 1. Correlation between NNT-AS1 expression and clinical parameters of patients with bladder cancer. 

Clinical parameters 
NNT-AS1 expression 

P 
High Low 

Age (years)   0.461 

 < 60 18 (75.0%) 20 (87.0%)  

 ≥ 60  6 (25.0%) 3 (13.0%)  

Gender   0.534 

  Male 15 (62.5%) 17 (73.9%)  

  Female 9 (37.5%) 6 (26.1%)  

Histologic grade   0.212 

  Low grade 10 (41.7%) 5 (21.7%)  

  High grade 14 (58.3%) 18 (78.3%)  

Lymphatic invasion   0.017 

  Negative 14 (58.3%) 21 (91.3%)  

  Positive 10 (41.7%) 2 (8.7%)  

TNM stage   0.015 

  I-II 11 (45.8%) 19 (82.6%) 
 

  III-IV 13 (54.2%) 4 (17.4%)  

Smoking   0.380 

 Nonsmoking 12 (50.0%) 15 (65.2%)  

 Smoking 12 (50.0%) 8 (34.8%)  

 

substantially higher in the NNT-AS1–depleted T24 and 

TCC-SUP cells (Figure 3H, P < 0.05). Altogether, these 

results suggested that NNT-AS1 acts as a ceRNA and 

sponges miR-496 in bladder cancer cells.  

 

HMGB1 is a direct target gene of miR-496 in 

bladder cancer cells  

 

We then explored the biological functions of miR-496 

in bladder cancer cells. T24 and TCC-SUP cells were 

transfected with either the miR-496 mimics or miR-NC, 

and then a series of functional experiments were carried 

out with the transfected cells. The CCK-8 assay and 

flow cytometry revealed that miR-496 upregulation 

significantly decreased proliferation (Figure 4A, P < 

0.05) and increased apoptosis (Figure 4B, P < 0.05) of 

T24 and TCC-SUP cells. Additionally, ectopic miR-496 

expression markedly decreased the number of migratory 

and invasive T24 and TCC-SUP cells, suggesting that 

miR-496 impaired the migration (Figure 4C, P < 0.05) 

and invasiveness (Figure 4D, P < 0.05) of bladder 

cancer cells. These findings suggested that miR-496 

performs tumor-suppressive activities in bladder cancer 

cells by inhibiting cell proliferation, migration, and 

invasion and by promoting apoptosis.  

 

To elucidate the mechanisms behind miR-496–mediated 

inhibition of bladder cancer progression, three miRNA 

target prediction databases were searched to predict 

functionally relevant targets of miR-496. The 

bioinformatics prediction showed that the 3′-UTR of 

HMGB1 mRNA matches the “seed sequence” of miR-

496 (Figure 4E). To evaluate the possibility of binding 

between miR-496 and the 3′-UTR of HMGB1 mRNA, a 

luciferase reporter assay was performed on T24 and 

TCC-SUP cells after cotransfection with either the miR-

496 mimics or miR-NC and either plasmid wt-HMGB1 

(expressing luciferase mRNA containing the wild-type 

miR-496–binding site in the 3′-UTR of HMGB1) or the 

plasmid mut-HMGB1 (expressing luciferase mRNA 

containing a mutant miR-496–binding site in the 3′-

UTR of HMGB1). The luciferase activity generated by 

the wt-HMGB1 reporter plasmid in T24 and TCC-SUP 

cells was strikingly decreased by miR-496 upregulation 

(P < 0.05), whereas the luciferase activity generated by 

the plasmid mut-HMGB1 was unaltered by 
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cotransfection of miR-496 mimics (Figure 4F). In 

addition, resumption of miR-496 expression notably 

decreased HMGB1 expression at both mRNA (Figure 

4G, P < 0.05) and protein (Figure 4H, P < 0.05) levels 

in T24 and TCC-SUP cells, as evidenced by RT-qPCR 

and western blotting. Furthermore, we found that 

HMGB1 mRNA was more strongly expressed in 

bladder cancer tissues than in ANTs (Figure 4I, P < 

0.05). The high expression of HMGB1 showed a 

negative correlation with miR-496 expression among 

the 47 bladder cancer tissue specimens (Figure 4J; r = -

0.5221, P = 0.0002). Collectively, these data suggested 

that HMGB1 mRNA is a direct target of miR-496 in 

bladder cancer cells. 

 

 
 

Figure 2. Downregulation of NNT-AS1 inhibits the malignant characteristics of bladder cancer cells in vitro. (A) RT-qPCR was 

carried out to determine the expression of NNT-AS1 in T24 and TCC-SUP cells after either siNNT-AS1 or siNC transfection. *P < 0.05 vs. group 
siNC. (B, C) The proliferation and apoptosis status of NNT-AS1–depleted T24 and TCC-SUP cells were tested via the CCK-8 assay and flow 
cytometry. *P < 0.05 vs. group siNC. (D, E) The migration and invasion abilities of T24 and TCC-SUP cells after NNT-AS1 knockdown were 
evaluated using transwell cell migration and invasion assays. *P < 0.05 vs. the siNC group. 
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Tumor-suppressive effects of miR-496 in bladder 

cancer cells are mediated by downregulation of 

HMGB1 

 

To investigate whether the miR-496–driven suppression 

of bladder cancer progression was mediated via direct 

targeting of HMGB1 mRNA, rescue experiments were 

conducted with T24 and TCC-SUP cells cotransfected 

with the miR-496 mimics and either the HMGB1-

overexpressing plasmid pcDNA3.1-HMGB1 (hereafter: 

pc-HMGB1) or the empty pcDNA3.1 vector. The 

decrease in HMGB1 expression caused by miR-496 

overexpression was reversed in T24 and TCC-SUP cells 

after cotransfection with pc-HMGB1 (Figure 5A, P < 

0.05), as revealed by western blotting. Furthermore, 

functional experiments showed that miR-496 

overexpression attenuated T24 and TCC-SUP cell 

proliferation (Figure 5B, P < 0.05), promoted apoptosis 

(Figure 5C, P < 0.05), and reduced cell migration 

(Figure 5D, P < 0.05) and invasion (Figure 5E, P < 

0.05). These phenomena were abrogated by 

reintroduction of HMGB1 expression. Thus, miR-496 

was confirmed as a tumor-suppressive miRNA 

inhibiting the malignant characteristics of bladder 

cancer cells at least partly by decreasing HMGB1 

expression. 

 

 
 

Figure 3. NNT-AS1 serves as a competing endogenous RNA (ceRNA) for miR-496 in bladder cancer cells. (A) Relative NNT-AS1 

expression in nuclear and cytoplasmic fractions of T24 and TCC-SUP cells. (B) Bioinformatics prediction via starBase 3.0 uncovered two possible 
binding sites for miR-496 in NNT-AS1. (C) RT-qPCR was conducted to analyze miR-496 expression in T24 and TCC-SUP cells after introduction of 
either the miR-496 mimics or miR-NC. *P < 0.05 vs. group miR-NC. (D) Either plasmid wt-NNT-AS1 or mut-NNT-AS1 was cotransfected into T24 
and TCC-SUP cells with either the miR-496 mimics or miR-NC for the measurement of luciferase activity. *P < 0.05 vs. the miR-NC group. (E) A RIP 
assay was carried out to determine the interaction between miR-496 and NNT-AS1 in T24 and TCC-SUP cells. *P < 0.05 vs. group IgG. (F) MiR-496 
expression in 47 pairs of bladder cancer tissues and ANTs was assessed via RT-qPCR. *P < 0.05 vs. group ANTs. (G) The correlation between miR-
496 and NNT-AS1 expression levels in the 47 bladder cancer tissue specimens was examined by Spearman’s correlation analysis. r = -0.6328, P < 
0.0001. (H) The expression of miR-496 in NNT-AS1–depleted T24 and TCC-SUP cells was quantified by RT-qPCR. *P < 0.05 vs. siNC. 
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A reduction in NNT-AS1 expression suppresses the 

malignant phenotype of bladder cancer cells by 

inhibiting miR-496–HMGB1 axis output 

 

A series of rescue experiments were conducted to 

determine whether the oncogenic roles of NNT-AS1 in 

bladder cancer progression were mediated by the miR-

496–HMGB1 pathway. First, the transfection efficiency 

of the miR-496 inhibitor was assessed by RT-qPCR 

(Figure 6A, P < 0.05). After that, siNNT-AS1 in 

combination with either the miR-496 inhibitor or NC 

inhibitor was introduced into T24 and TCC-SUP cells. 

As shown by RT-qPCR, miR-496 inhibitor 

cotransfection reversed the stimulatory effect of NNT-
AS1 knockdown on miR-496 expression in T24 and 

TCC-SUP cells (Figure 6B, P < 0.05). Similarly, the 

 

 
 

Figure 4. HMGB1 mRNA is a direct target of miR-496 in bladder cancer cells. (A) CCK-8 assay of the proliferation of T24 and TCC-SUP 
cells transfected with either the miR-496 mimics or miR-NC. *P < 0.05 vs. miR-NC. (B) The proportion of apoptotic miR-496–overexpressing 
T24 and TCC-SUP cells was detected by flow-cytometric analysis. *P < 0.05 vs. group miR-NC. (C, D) The migratory and invasive abilities were 
examined in transwell migration and invasion assays involving T24 and TCC-SUP cells transfected with either the miR-496 mimics or miR-NC. 
*P < 0.05 vs. the miR-NC group. (E) The predicted wild-type and mutant miR-496–binding sequences in the 3′-UTR of HMGB1. (F) A reporter 
plasmid containing either a wild-type or mutant HMGB1 3′-UTR fragment was cotransfected in combination with either the miR-496 mimics 
or miR-NC into T24 and TCC-SUP cells, and luciferase activity was quantified. *P < 0.05 vs. the miR-NC group. (G, H) Detection of HMGB1 
mRNA and protein expression levels in miR-496–overexpressing T24 and TCC-SUP cells by RT-qPCR and western blot analysis, respectively. *P 
< 0.05 vs. group miR-NC. (I) HMGB1 mRNA expression was analyzed by RT-qPCR in the 47 pairs of bladder cancer tissue specimens and ANTs. 
*P < 0.05 vs. group ANTs. (J) Assessment of the correlation between miR-496 expression and HMGB1 mRNA expression among the 47 
bladder cancer tissue specimens was performed via Spearman’s correlation analysis. r = -0.5221, P = 0.0002. 
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decrease in HMGB1 protein expression caused by 

siNNT-AS1 was reversed in T24 and TCC-SUP cells 

after cotransfection with the miR-496 inhibitor (Figure 

6C, P < 0.05). Furthermore, the effects of NNT-AS1 

knockdown on the proliferation (Figure 6D, P < 0.05), 

apoptosis (Figure 6E, P < 0.05), migration (Figure 6F, P 

< 0.05), and invasiveness (Figure 6G, P < 0.05) of T24 

and TCC-SUP cells were neutralized by the miR-496 

inhibitor. Thus, these findings revealed that the miR-

496–HMGB1 axis was essential for the effects of NNT-

AS1 on the malignant characteristics of bladder cancer 

cells. 

 

 
 

Figure 5. MiR-496 performs its tumor-suppressive actions in bladder cancer cells by decreasing HMGB1 expression. (A) The 
miR-496 mimics in combination with either the HMGB1-overexpressing plasmid pc-HMGB1 or the empty pcDNA3.1 vector was cotransfected 
into T24 and TCC-SUP cells. At 72 h post-transfection, western blotting was performed to analyze HMGB1 expression. *P < 0.05 vs. the miR-
NC group. #P < 0.05 vs. the miR-496 mimics+pcDNA3.1 group. (B, C) The proliferative and apoptotic activities of T24 and TCC-SUP cells after 
cotransfection with the miR-496 mimics and either pc-HMGB1 or pcDNA3.1 were evaluated through the CCK-8 assay and flow-cytometric 
analysis, respectively. *P < 0.05 vs. the miR-NC group. #P < 0.05 vs. group miR-496 mimics+pcDNA3.1. (D, E) Transwell migration and invasion 
assays were conducted to examine the migratory and invasive abilities of T24 and TCC-SUP cells after cotransfection with the miR-496 mimics 
and either pc-HMGB1 or pcDNA3.1. *P < 0.05 vs. group miR-NC. #P < 0.05 vs. the miR-496 mimics+pcDNA3.1 group. 
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NNT-AS1 knockdown decreases the tumor growth of 

bladder cancer cells in vivo  

 

A tumor xenograft assay was carried out to test the 

influence of NNT-AS1 on the tumor growth of bladder 

cancer cells in vivo. All nude mice were randomly 

subdivided into two groups: One group was inoculated 

with siNNT-AS1–transfected T24 cells; T24 cells 

transfected with siNC were injected into the mice in the 

other group. On day 28, all the mice were euthanized, 

and the tumor xenografts were resected and weighed. 

Representative images are presented in Figure 7A. The 

volume of tumor xenografts in the siNNT-AS1 group 

was notably smaller in comparison with the siNC group 

(Figure 7B, P < 0.05). The weight of the tumor 

xenografts was significantly lower in the siNNT-AS1 

group compared with the siNC group (Figure 7C, P < 

0.05). Total RNA and protein were then extracted from 

tumor xenografts, and NNT-AS1, miR-496, and 

HMGB1 protein expression were measured. This 

analysis indicated that tumor xenografts derived from 

siNNT-AS1–transfected T24 cells featured lower NNT-

AS1 (Figure 7D, P < 0.05) and HMGB1 protein 

expression (Figure 7E, P < 0.05) as well as higher miR-

496 expression (Figure 7F, P < 0.05) compared with the 

siNC group. Overall, these data indicated that the NNT-

AS1 knockdown restricted the growth of bladder cancer 

cells in vivo through the miR-496–HMGB1 axis.  

 

 
 

Figure 6. The oncogenic functions of NNT-AS1 in bladder cancer cells are mediated by stimulation of the miR-496–HMGB1 
axis output. (A) T24 and TCC-SUP cells were transfected with either the miR-496 inhibitor or NC inhibitor. After 48 h, the transfection 

efficiency was assessed by RT-qPCR. *P < 0.05 vs. NC inhibitor. (B, C) siNNT-AS1 plus either the miR-496 inhibitor or NC inhibitor were 
cotransfected into T24 and TCC-SUP cells. The miR-496 and HMGB1 protein levels were measured by RT-qPCR and western blotting, 
respectively. *P < 0.05 vs. group siNC. #P < 0.05 vs. group siNNT-AS1+NC inhibitor. (D–G) CCK-8 assay, flow-cytometric analysis, and transwell 
migration and invasion assays were performed to determine the status of proliferation, apoptosis, migration, and invasiveness of T24 and 
TCC-SUP cells that were cotransfected with siNNT-AS1 and either the miR-496 inhibitor or NC inhibitor. *P < 0.05 vs. the siNC group. #P < 0.05 
vs. group siNNT-AS1+NC inhibitor. 
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DISCUSSION  
 

LncRNAs have been attracting increasing attention in 

recent years [50, 51]. Abnormal expression of lncRNAs 

has been discovered in bladder cancer, and their 

aberrant functions play a key part in the genesis and 

progression of this cancer, with lncRNAs functioning as 

tumor suppressors or oncogenic RNA [52, 53]. Hence, 

investigation of the activities of lncRNAs in bladder 

cancer may help to identify effective targets for 

anticancer therapies. Nevertheless, only a handful of 

lncRNAs have been studied in detail. In this work, we 

first tested whether NNT-AS1 is dysregulated in bladder 

cancer and assessed its clinical value among patients 

with bladder cancer. Second, we applied siRNA to 

silence endogenous NNT-AS1 expression in bladder 

cancer cells in order to investigate the biological effects 

of NNT-AS1 on the aggressive characteristics of these 

cells in vitro and in vivo. Third, the mechanisms 

underlying the activities of NNT-AS1 in bladder cancer 

cells were explored. 

NNT-AS1 is upregulated in osteosarcoma, and this 

upregulation significantly correlates with tumor size, 

Enneking stage, and tumor metastasis [33, 34]. 

Remarkably, NNT-AS1 is known as an independent and 

significant risk factor predicting survival among 

patients with osteosarcoma [33]. NNT-AS1 is also 

overexpressed in gastric cancer [35, 36]. Increased 

expression of NNT-AS1 is closely associated with the 

tumor stage, lymph node metastasis, and TNM stage 

[35]. Patients with gastric cancer featuring high NNT-

AS1 expression manifest shorter overall survival than do 

the patients with low NNT-AS1 expression [35]. NNT-

AS1 is also highly expressed in non–small cell lung 

cancer [37, 38], ovarian cancer [39], breast cancer [40], 

hepatocellular carcinoma [41], and cervical cancer [42]. 

Nevertheless, whether NNT-AS1 is dysregulated in 

bladder cancer has remained unknown. Our results 

indicated that the expression of NNT-AS1 is high in 

bladder cancer tissues and cell lines. The high NNT-AS1 

expression correlated with the clinical stage and lymph 

node metastasis among our bladder cancer patients. 

 

 
 

Figure 7. Knockdown of NNT-AS1 impairs bladder cancer cell growth in vivo. All the mice were injected with T24 cells that were 

transfected with either siNNT-AS1 or siNC. (A) Representative images of tumor xenografts collected from groups siNNT-AS1 and siNC. (B) The 
growth curves of subcutaneous tumor xenografts in groups siNNT-AS1 and siNC. *P < 0.05 vs. the siNC group. (C) The weights of tumor 
xenografts derived from either siNNT-AS1–transfected or siNC-transfected T24 cells were measured at 4 weeks post-inoculation. *P < 0.05 vs. 
group siNC. (D) NNT-AS1 expression in tumor xenografts obtained from groups siNNT-AS1 and siNC was evaluated via RT-qPCR. *P < 0.05 vs. 
the siNC group. (E) Western-blotting assessment of HMGB1 expression in the tumor xenografts derived from either siNNT-AS1–transfected or 
siNC-transfected T24 cells. *P < 0.05 vs. the siNC group. (F) MiR-496 expression in tumor xenografts obtained from both groups was 
evaluated via RT-qPCR. *P < 0.05 vs. the siNC group. 
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Patients with bladder cancer in the high-NNT-AS1 

group had a worse prognosis than those in the low-

NNT-AS1 group. Our findings suggest that NNT-AS1 

may be a promising biomarker for the diagnosis and 

prognosis of bladder cancer. 

 
NNT-AS1 performs an oncogenic function in 

osteosarcoma by promoting cell proliferation, 

migration, and invasion and by suppressing cell cycle 

arrest and apoptosis [33, 34]. NNT-AS1 knockdown 

attenuates gastric cancer cell proliferation and invasion 

in vitro, promotes cell cycle arrest, and hinders in vivo 

tumor growth [35, 36]. In non–small cell lung cancer, 

knockdown of NNT-AS1 inhibits cell proliferation, 

colony formation, and invasion and induces apoptosis, 

cell cycle arrest, and cisplatin chemoresistance [37, 38]. 

Nevertheless, the influence of NNT-AS1 on the 

biological functions of bladder cancer has been unclear. 

In this study, a series of functional experiments revealed 

that NNT-AS1 knockdown restricts cell proliferation, 

migration, and invasion and facilitates apoptosis in vitro 

as well as slows tumor growth in vivo.  

 

One of the main roles of lncRNAs is functioning as a 

ceRNA in a regulatory network involving lncRNA, 

miRNA, and target mRNA [54]. Here, the underlying 

mechanisms of NNT-AS1 activity in the malignancy of 

bladder cancer cells were explored. We demonstrated 

that NNT-AS1 can raise HMGB1 expression by 

functioning as a ceRNA for miR-496. The latter is 

known to be downregulated in colorectal cancer [46], 

non–small cell lung cancer [47], glioma [48], and 

osteosarcoma [49]. MiR-496 exerts tumor-suppressive 

actions on these human cancer types [46–49]. In our 

study, for the first time, miR-496 was found to be 

downregulated in bladder cancer and to directly target 

HMGB1 mRNA to restrain the aggressive phenotype of 

bladder cancer. Moreover, we found that miR-496 can 

be sponged by NNT-AS1, and the miR-496–HMGB1 

axis is responsible for the oncogenic roles of NNT-AS1.  

 

HMGB1, encoded within chromosomal region 8q22, is a 

highly conserved DNA-binding protein. It can relocate 

from the cytoplasm to the nucleus and interact with 

transcription factors, nucleosomes, and histones [55]. 

HMGB1 is upregulated in bladder cancer and is closely 

associated with the tumor grade and tumor stage [56, 57]. 

Patients with bladder cancer featuring high HMGB1 

expression have shorter disease-free survival and overall 

survival [56]. In addition, HMGB1 has been confirmed as 

an independent prognostic factor in bladder cancer [56]. 

HMGB1 exerts oncogenic effects on the formation and 

progression of bladder cancer and participates in the 

modulation of tumor cell proliferation, apoptosis, cell 

cycle, metastasis, radioresistance, and tumorigenesis [58]. 

In this study, we illustrated a novel upstream mechanism 

regulating the expression of HMGB1 in bladder cancer 

cells in vitro and in vivo. NNT-AS1, which contains an 

miR-496–binding site, was found to function as a ceRNA 

and to sponge miR-496, thereby increasing HMGB1 

expression. 

 

A weakness of the manuscript was that the bladder 

cancer samples have been studied from the same 

discovery cohort of patients as those assessed for 

survival and clinical behavior. A separate cohort of 

patients independent of the discovery cohort would 

have been studied as a validation cohort. We will 

resolve this weakness in our further investigations.  

 

In summary, our results revealed that knockdown of NNT-

AS1 suppresses the malignant phenotype of bladder 

cancer cells in vitro and in vivo. In terms of the 

mechanism, NNT-AS1 acts as a ceRNA on miR-496, 

thereby reversing the tumor-suppressive influence of miR-

496 on HMGB1 expression. Thus, the NNT-AS1–miR-

496–HMGB1 pathway is an important player in the 

malignancy of bladder cancer, suggesting that this 

pathway may be an effective target for anticancer 

therapies. 

 

MATERIALS AND METHODS  
 

Ethics statement 

 

This investigation was conducted in accordance with 

the ethical standards of the Declaration of Helsinki and 

national and international guidelines and was approved 

by the authors' institutional review board. This study 

was approved by the Ethics Committee of the Fourth 

Affiliated Hospital of Nantong Medical College. 

Informed consent was obtained. The experimental 

procedures involving animals were approved by the 

Animal Ethics Committee of the Fourth Affiliated 

Hospital of Nantong Medical College. Every effort was 

made to minimize the suffering of the mice. 

 

Clinical specimens  

 

Sample were collected from consenting patients. Forty-

seven pairs of bladder cancer tissue specimens and 

matched ANTs were obtained from the hospital between 

May 2013 to June 2014. Patients who were treated with 

preoperative radiotherapy, chemotherapy, or other 

anticancer modalities were excluded from this study. All 

tumor specimens were immediately frozen and stored in 

liquid nitrogen until RNA isolation. 

 

Cell culture  

 

Four human bladder cancer cell lines (T24, 5637, UM-

UC-3, and TCC-SUP) and a normal bladder 
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immortalized epithelial cell line (SV-HUC-1) were used 

in this study. These cell lines were bought from the 

Shanghai Institute of Biochemistry and Cell Biology 

(Shanghai, China) and were maintained in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% of 

fetal bovine serum (FBS), 100 U/ml penicillin, and 100 

μg/ml streptomycin (all from Gibco; Thermo Fisher 

Scientific, Inc., Waltham, MA, USA). All the cells were 

kept in a humidified incubator with 5% circulating CO2 

at 37°C. 

 

Transient transfection 

 

The siRNAs specific to NNT-AS1 (siNNT-AS1) and 

negative control (NC) siRNA (siNC) were purchased 

from Guangzhou Ribobio Technology (Guangzhou, 

China). The miR-496 mimics, NC miRNA mimics 

(miR-NC), miR-496 inhibitor, and NC inhibitor were 

chemically synthesized by Shanghai GenePharma 

Technology (Shanghai, China). The HMGB1-

overexpressing plasmid (pc-HMGB1) and the empty 

pcDNA3.1 vector were acquired from Shanghai Sangon 

Biotech Co., Ltd. (Shanghai, China). All transient 

transfection procedures were carried out using 

Lipofectamine® 2000 (Invitrogen; Thermo Fisher 

Scientific, Inc.). The transfected cells were collected 

after different periods of incubation and were subjected 

to the subsequent experiments.  

 

RT-qPCR 

 

RNA isolation from the tissue specimens and cultured 

cells was performed using TRIzol® reagent (Invitrogen; 

Thermo Fisher Scientific, Inc.). The concentration of 

total RNA was determined on a NanoDrop 2000/2000C 

spectrophotometer (Invitrogen; Thermo Fisher 

Scientific, Inc.). To quantify miR-496 expression, 

reverse transcription was conducted to prepare first-

strand complementary DNA (cDNA) using the miScript 

Reverse Transcription Kit (Qiagen GmbH, Hilden, 

Germany). Next, the miScript SYBR Green PCR Kit 

(Qiagen GmbH) was utilized for quantitative PCR on an 

ABI PRISM™ 7900 HT Sequence Detection System 

(Applied Biosystems, USA). The thermocycling 

conditions for qPCR were as follows: 95°C for 2 min, 

95°C for 10 sec, 55°C for 30 sec and 72°C for 30 sec, 

for 40 cycles. The expression level of miR-496 was 

normalized to that of U6 small nuclear RNA.  

 

For the measurement of NNT-AS1 and HMGB1 mRNA 

expression, cDNA was produced using the Prime-Script 

RT Reagent Kit (Takara Biotechnology Co., Ltd., 

Dalian, China). The synthesized cDNA was then 

subjected to PCR amplification with SYBR Premix Ex 

Taq (Takara Biotechnology Co., Ltd). The 

thermocycling conditions for qPCR were as follows: 5 

min at 95°C, followed by 40 cycles of 95°C for 30 sec 

and 65°C for 45 sec. Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) served as the normalization 

control for NNT-AS1 and HMGB1. Relative gene 

expression was analyzed by the 2−ΔΔCq method.  

 

The primers for PCR were as follows: miR-496: 

forward, 5′-ACACTCCAGCTGGGAATGGAGGTTG 

TCCATGGTG-3′; reverse, 5′-CTCAACTGGTGTCGT 

GGAGTCGGCAATTCAGTTGAGGAGTACCG-3′; U6 

forward, 5′-CGTTTTACTTCCTCATACAGCAC-3′; 

reverse, 5′-GCACCAAGAGACCTGTGACA-3′; NNT-

AS1: forward, 5′- AGTTCCACCAAGTTTCTTCA-3′;  

reverse, 5′-AGGTTTTGCCAGCATAGAC-3′; HMGB1 

forward, 5′-GCTCAGAGAGGTGGAAGACCA-3′;  

reverse, 5′-GGTGCATTGGGATCCTTGAA-3′; GAPDH  

forward, 5′-TGCACCACCAACTGCTTA-3′; reverse, 

5′-GGATGCAGGGATGATGTTC-3′. 

 

CCK-8 assay  

 

Transfected cells were collected 24 h after incubation, 

and a single-cell suspension was prepared with DMEM 

containing 10% of FBS to a final concentration of 2 × 

104 cells/ml. A total of 100 µl of the cell suspension was 

seeded in each well. Then, the cells were incubated at 

37°C for 0, 24, 48, or 72 h, after which 100 µl of the 

CCK-8 solution (Sigma-Aldrich; Merck KGaA) was 

added into each well. After additional 2 h of incubation 

at 37°C and 5% CO2, absorbance was detected at an 

excitation wavelength of 450 nm on a microplate reader 

(Molecular Devices, Sunnyvale, CA, USA). 

 

Detection of apoptosis via flow-cytometric analysis  

 

After 48 h of cultivation, transfected cells were detached 

using 0.25% trypsin without EDTA, washed with ice-cold 

PBS, and centrifuged at 4°C for 10 min. The proportion of 

apoptotic cells was determined with an Annexin 

V‑Fluorescein Isothiocyanate (FITC) Apoptosis 

Detection Kit (Biolegend, San Diego, CA, USA). Briefly, 

cells were resuspended in 100 µl of binding buffer, and 

the suspension was then mixed with 5 µl of Annexin 

V‑FITC and 5 µl of a propidium iodide solution, followed 

by 15 min incubation at room temperature in darkness. A 

FACScan flow cytometer (BD Biosciences, San Jose, CA, 

USA) was used to detect apoptotic cells. 

 

Transwell migration and invasion assays  

 

Transwell chambers (8.0 μm pore size; BD Biosciences) 

precoated with Matrigel (BD Biosciences) were employed 

to evaluate the capacity of cells to invade. Transfected 

cells were harvested at 48 h post-transfection, and a cell 

suspension was prepared in FBS-free DMEM. The 

suspension concentration was adjusted to 2.5 × 105 
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cells/ml. In total, 200 µl of the cell suspension was added 

into the upper compartments, while the lower 

compartments were covered with 800 µl of DMEM 

containing 20% of FBS. After 24 h of incubation, the 

noninvasive cells remaining on the upper surface were 

wiped off with a cotton swab. The cells that went through 

the pores and were located on the lower surface were 

fixed in 4% paraformaldehyde, stained with 0.1% crystal 

violet, and extensively washed. After drying, the invasive 

cells were imaged and subsequently counted under an 

inverted light microscope (Leica, Wetzlar, Germany). The 

average number of invasive cells was determined from 

five randomly selected visual fields and used to represent 

the invasive ability. The transwell migration assay was 

carried out in accordance with the same experimental 

procedures, but the chambers were not coated with 

Matrigel.  

 

Tumor xenograft assay  

 

Female 6-week-old BALB/c nude mice were purchased 

from Shanghai Pharmaceutical Research Institute 

(Shanghai, China) and were subcutaneously injected 

with T24 cells harboring either siNNT-AS1 or siNC. 

Each group contained four nude mice. The animals 

were maintained under specific pathogen-free 

conditions (25°C, 50% humidity, 10-h light/14-h dark 

cycle) and libitum food/water access. Measurement of 

tumor volumes was started two weeks after the injection 

and carried out every 2 days. The volume of tumor 

xenografts was calculated using the following formula: 

tumor volume (mm3)  =  0.5 × width2 (mm2) × length 

(mm). All the mice were euthanized via cervical 

dislocation at 4 weeks post injection, and the tumor 

xenografts were resected. After weighing, the tumor 

xenografts were stored in liquid nitrogen for further use.  

 

Subcellular fractionation  

 

A PARIS Kit (Invitrogen; Thermo Fisher Scientific, 

Inc.) was utilized to separate the cytoplasmic and 

nuclear fractions of T24 and TCC-SUP cells. Total 

RNA was then isolated separately and subjected to RT-

qPCR analysis for the determination of the intracellular 

distribution of NNT-AS1.  

 

RIP assay  

 

A Magna RNA-binding Protein Immunoprecipitation 

Kit (Millipore, Billerica, MA, USA) was used to 

conduct a RIP assay to evaluate the binding interaction 

between NNT-AS1 and miR-496 in bladder cancer cells. 

Cells were treated with RIP Lysis Buffer (Shanghai 

Haoran Biotechnology Co., Ltd., Shanghai, China). 

After 10 min of incubation followed by centrifugation at 

4°C, the obtained cell extract was incubated with 

magnetic beads that were conjugated with either an 

anti–Argonaute 2 antibody (AGO2) or anti-IgG 

antibody (Millipore). Proteinase K was chosen to digest 

proteins prior to the isolation of immunoprecipitated 

RNA. The expression of NNT-AS1 and miR-496 in the 

immunoprecipitated RNA was measured by RT-qPCR 

as described above.  

 

Bioinformatics analysis 

 

A bioinformatic algorithm, starBase 3.0 

(http://starbase.sysu.edu.cn/), was used to predict the 

miRNA interacting with NNT-AS1.  

 

The putative target genes of miR-496 were predicted via 

three bioinformatic algorithms, including starBase 3.0, 

TargetScan (http://www.targetscan.org/), and miRDB 

(http://mirdb.org/).  

 

Luciferase reporter assay  

 

The fragment of NNT-AS1 containing either the wild-

type (wt) or mutant (mut) miR-496–binding sequence 

(one of two versions) was chemically synthesized by 

Shanghai GenePharma Technology and inserted into the 

pmirGLO luciferase reporter plasmid, resulting in the 

plasmids wt-NNT-AS1 and mut-NNT-AS1, 

respectively. The reporter plasmids wt-HMGB1 and 

mut-HMGB1 were constructed in the same way. For the 

reporter assay, the miR-496 mimics or miR-NC plus wt 

or mut reporter plasmid was introduced into cells using 

Lipofectamine® 2000. The firefly luciferase activity 

was detected via a Dual-Luciferase® Reporter Assay 

System (Promega, Madison, WI, USA) and was 

normalized to Renilla luciferase activity.  

 

Western blot analysis  

 

Total protein was extracted from tissues or cells using 

RIP Lysis Buffer, after which protein concentration was 

quantified with the BCA Protein Assay Kit (Beyotime 

Institute of Biotechnology, Shanghai, China). Equal 

amounts of protein were separated by gel 

electrophoresis using an SDS–polyacrylamide 10% gel 

and transferred to polyvinylidene difluoride (PVDF) 

membranes. The membranes were then blocked with 

5% fat-free milk in Tris-buffered saline containing 0.1% 

Tween 20 (TBST) at room temperature for 2 h, 

followed by overnight incubation at 4°C with a primary 

antibody against either HMGB1 (ab79823; 1:1000 

dilution; Abcam, Cambridge, MA, USA) or GAPDH 

(ab181602; 1:1000 dilution; Abcam). After three rinses 

with TBST, a horseradish peroxidase–conjugated goat 

anti-rabbit IgG secondary antibody (ab205718; 1:5000 

dilution; Abcam) was added to the membrane and 

incubated for another 2 h at room temperature. The 

http://starbase.sysu.edu.cn/
http://starbase.sysu.edu.cn/
http://www.targetscan.org/
http://www.targetscan.org/
http://mirdb.org/
http://mirdb.org/
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protein signals were detected using Pierce™ ECL 

Western Blotting Substrate (Pierce Biotechnology, Inc., 

Rockford, IL, USA). GAPDH served as the loading 

control.  

 

Statistical analysis  

 

Each assay was repeated at least three times. All the 

data are presented as the mean ± standard deviation 

(SD) and were analyzed with SPSS 21.0 software (IBM 

Corp., Armonk, NY, USA). The correlations between 

NNT-AS1 levels and clinical characteristics of the 

patients with bladder cancer were determined using the 

chi-square (χ2) test. Spearman's correlation analysis was 

employed to test the expression correlation between 

NNT-AS1 and miR-496 in bladder cancer tissues. 

Student’s t test was carried out for evaluating the 

differences between two groups. Comparisons among 

multiple groups were conducted via one-way analysis of 

variance followed by Tukey’s test. The association of 

NNT-AS1 with the overall survival of patients with 

bladder cancer was tested by the Kaplan–Meier method 

and log rank test. Data with a P value < 0.05 were 

considered statistically significant. 
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