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Abstract

Identifying latent structure in high-dimensional genomic data is essential for exploring bio-
logical processes. Here, we consider recovering gene co-expression networks from gene
expression data, where each network encodes relationships between genes that are co-
regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical
model for biclustering to infer subsets of co-regulated genes that covary in all of the samples
or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete
representations of the data, computational tractability, and joint modeling of unknown con-
founders and biological signals. Compared with related biclustering methods, BicMix recov-
ers latent structure with higher precision across diverse simulation scenarios as compared
to state-of-the-art biclustering methods. Further, we develop a principled method to recover
context specific gene co-expression networks from the estimated sparse biclustering matri-
ces. We apply BicMix to breast cancer gene expression data and to gene expression data
from a cardiovascular study cohort, and we recover gene co-expression networks that are
differential across ER+ and ER- samples and across male and female samples. We apply
BicMix to the Genotype-Tissue Expression (GTEX) pilot data, and we find tissue specific
gene networks. We validate these findings by using our tissue specific networks to identify
trans-eQTLs specific to one of four primary tissues.

Author Summary

Recovering gene co-expression networks from high-throughput experiments to measure
gene expression levels is essential for understanding the genetic regulation of complex
traits. It is often assumed for simplicity that gene co-expression networks are static across
different contexts—e.g., drug exposure, genotype, tissue, age, and sex. The biological real-
ity is that, along with differences in gene expression levels, there are differences in gene
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interactions across contexts. In this work, we describe a model for Bayesian biclustering,
or recovering non-disjoint clusters of co-expressed genes in subsets of samples using gene
expression level data. Using results from our biclustering model, we build gene co-expres-
sion networks jointly across all genes by computing the full regularized covariance matrix
between all pairs of genes instead of testing each possible edge separately. Because biclus-
tering recovers structure in subsets of the samples, we are able to recover gene co-expres-
sion networks that occur across all samples, that are differential across contexts (e.g., up-
regulated in males and down-regulated in females), and that are unique to a context (e.g.,
only co-expressed in lung tissue). We illustrate the robustness of our approach and biolog-
ically validate the networks recovered from three different gene expression data sets.

Introduction

Cellular mechanisms tightly regulate gene transcription. Gene transcription is not indepen-
dently regulated across genes: many of the mechanisms regulating transcription affect multiple
genes simultaneously. Functional gene modules consist of subsets of genes that share similar
expression patterns and perform coordinated cellular functions [1, 2]. This cluster-based
description of gene expression fails to capture the informative co-expression patterns among
genes within a gene module.

If we consider each gene as a vertex in a network, then pairs of genes within a gene module
for which the correlation in expression levels cannot be explained by other genes may be con-
nected by an undirected edge. Across all genes, these pairwise relationships constitute gene co-
expression networks. Constructing these undirected gene networks, as compared to clustering
genes into gene modules [3-6], provides rich detail about pairwise gene relationships. An even
richer structure capturing these pairwise relationships would be a directed network of genes,
but currently directed networks are computationally intractable to construct relative to undi-
rected gene networks [7-10]. Our work describes a rigorous approach to recover undirected
gene co-expression networks from gene expression data that uses a probabilistic latent factor
model to quantify the relationships between all pairs of genes.

Several methods have been proposed to construct gene co-expression networks by partition-
ing a set of genes (and, in some cases, samples) into gene modules from which an undirected
graph is elicited [11-14]. In most cases, gene partitioning creates disjoint sets of genes, imply-
ing that genes only participate in a single gene module. Biologically this assumption does not
hold; the impact is that the gene networks built from methods that assume disjoint clusters are
modular. These approaches are not probabilistic, and thus uncertainty in the network edges is
not well characterized.

Alternatively, statistical latent factor models are often used to identify groups of co-regu-
lated genes in gene expression data [15-18]. In particular, latent factor models decompose a
matrix Y € 7" of p genes and n samples into the product of two matrices, A € R**X, the fac-
tor loadings, and X € R**", the latent factor matrix with K latent factors, assuming indepen-
dent Gaussian noise. Because it is costly to obtain and assay genome-wide gene expression
levels in a single sample, most expression studies include observations of many more genes p
than samples # [19, 20]. This so-called p >> n scenario limits our ability to find latent structure
in this expansive, underconstrained space. High dimensional data suggests the use of strong
regularization on the latent space to provide sufficient structure for the optimization to reach a
robust solution. For example, we may regularize a latent space to discourage all but a few genes
from contributing to a latent factor through a sparsity-inducing prior or penalty on the loading
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vectors [15, 21, 22]. Non-disjoint clusters of genes can be extracted from the resulting fitted
sparse loading matrix by recovering all genes with non-zero loadings on the same factor [16].
Sparse latent factor models are more interpretable than their non-sparse counterparts because
of this clustering effect.

Besides encouraging sparsity in the factor loading matrix, which results in non-disjoint clus-
ters of genes that co-vary across all samples, one can also induce sparsity in the factor matrix,
which results in non-disjoint subsets of samples within which subsets of genes uniquely exhibit
co-variation. Statistically, this corresponds to regularizing both factor and loading matrices
using priors that encourage zero-valued elements. Biologically, such a model recovers compo-
nents that identify small numbers of correlated genes, where the correlation among the genes is
exclusive to, for example, female samples. This statistical model encodes a general framework
known as biclustering [23-35]. A biclustering model decomposes a matrix into clusters that
each correspond to a subset of samples and a subset of features that exhibit latent structure
unique to those subsets.

Gene expression levels have been shown to be sensitive to a number of environmental, bio-
logical, and technical covariates including experimental batch, sex, ethnicity, smoking status,
or sample tissue heterogeneity [36, 37]. Methods to adjust the observation matrix to control
the effects of these covariates without eliminating signals of interest have been proposed. Most
attempts have been limited to correcting for confounding effects in a two-stage approach [20,
38, 39] or controlling for confounding effects jointly with association testing [40, 41]. The two-
stage approach applied to estimates of co-expression networks has not been successful: often
variation in expression levels of groups of co-expressed genes are captured in the estimates of
confounding effects and controlled in the first stage, leading to false negatives [42].

In this paper, we develop a Bayesian statistical model for biclustering called BicMix. Our
motivation behind developing this method was to identify large numbers of subsets of co-reg-
ulated genes capturing as many sources of gene transcription variation as possible within arbi-
trary subsets of the samples. Our biclustering model also includes non-sparse components to
represent sources of transcription variation that affect all genes or all samples, which includes
many types of confounding effects. We developed a simple but principled statistical method
to reconstruct gene co-expression networks based on the regularized covariance matrices esti-
mated using our biclustering model. This method recovers different types of gene co-expres-
sion networks, categorized by quantifying the contribution of each sample to the latent
components: i) ubiquitous co-expression networks, ii) co-expression networks specific to a
sample context, and iii) networks with differentially co-expressed genes across a sample
context.

In this paper, we motivate and describe our Bayesian model for biclustering, BicMix. We
validate our biclustering model on extensive simulations and compare biclustering with a num-
ber of state-of-the-art methods. We then apply our model to gene expression data without cor-
recting for known or unknown confounders. In particular, we apply our biclustering model to
gene expression levels measured in heterogeneous breast cancer tissue samples to recover a co-
expression network that is differentially expressed across estrogen receptor positive and nega-
tive (ER+ and ER-) samples [43, 44]. Next, we apply our biclustering model to gene expression
levels measured in lymphoblastoid cell lines (LCLs) from a cohort of patients in a cardiovascu-
lar disease study to identify co-expression networks with differential co-expression across
males and females, and across smoking status [45]. Finally, we apply BicMix to the Genotype-
Tissue Expression (GTEx) pilot data to elucidate tissue specific gene co-expression networks
[46]. We validate the recovered networks by identifying tissue specific trans-eQTLs using the
recovered tissue specific co-expression networks.
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Results
Bayesian biclustering using BicMix

Biclustering was first introduced to detect clusters of states and years that showed similar vot-
ing patterns among Republicans in national elections [47] and was later referred to as bicluster-
ing in the context of identifying co-expressed genes in subsets of samples [23]. Biclustering has
also been referred to as two mode clustering [48], subspace clustering [49, 50], or co-clustering
[51] in various applied contexts. Biclustering was used successfully to explore latent sparse
structure in different applied domains [52], including gene expression data [23, 24, 53-56],
neuroscience [57], time series data [54], and recommendation systems [58]. Refer to compre-
hensive biclustering reviews for details [27, 59].

Biclustering approaches fall into four general categories. The first category assumes that
each observed gene expression level for one sample is a linear combination of a mean effect, a
row (gene) effect, and a column (sample) effect, some of which may be zero [23]. One approach
in this category, Plaid, captures gene expression levels as a sum of many sparse submatrix com-
ponents, where each submatrix includes non-zero values only for a subset of genes and subset
of samples [30, 31]. The second category of biclustering methods uses hierarchical clustering to
group together similar samples and features [3]. For example, samples may be clustered by
considering some measure of feature similarity [24, 25, 28, 32, 35]. The third category of biclus-
tering methods builds up biclusters by iteratively grouping features in a greedy way—e.g., iden-
tifying all genes that have correlated expression levels with a selected gene—and then removing
samples that do not support that grouping [26]. The last category of biclustering methods uses
Bayesian sparse factor analysis models [33]. These models decompose a gene expression matrix
into two sparse matrices. Sparsity-inducing priors, such as the Laplace prior, are imposed on
elements of both the loading and the factor matrices to induce zero-valued elements. K biclus-
ters are recovered as the non-zero feature and sample components for each of the K latent com-
ponents. Our approach falls into this last category of a sparse latent factor model for
biclustering.

BicMix: Bayesian biclustering model. We developed a Bayesian biclustering model, Bic-
Mix, built on factor analysis with sparsity-inducing priors on both of the low dimensional
matrices. In particular, we defined the following latent factor model for matrix Y € RF*",
which is the set of observations of p gene expression levels across n samples:

Y=AX+¢ (1)

where A € R is the loading matrix, X € R**" is the factor matrix, ¢ € R is the residual
error matrix, and K is fixed a priori. We assume that the residual error is independent across
genes and samples and has a zero-mean multivariate Gaussian distribution with gene specific
variance: € ; ~ N, (0,¥) fori=1,..., n, where ¥ = diag(y,, . . ., ¥,). While a value must be
specified for K, the number of latent factors, this model removes factors that are unsupported
in the data through a global sparsity-inducing prior, so K should be set as an overestimate of
the number of latent factors (see Methods) [60].

To induce sparsity in both the factors (samples) and the loadings (genes), we used the three
parameter beta (7 PB) distribution [61], which has been shown to be computationally efficient
and to induce flexible modeling behavior. In previous work [60, 62], we included three layers
of regularization via the 7 P13 distribution to induce sparsity in the loading matrix. Here, we
extended this model to include this same sparsity-inducing prior on the factor matrix (see
Methods). With a flexible sparsity-inducing prior on both the factor and loading matrices, the
model becomes a biclustering model, estimating subsets of genes for which co-variation is
observed in a subset of samples. This structured prior produces favorable behavior in this
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Fig 1. Schematic representation of the BicMix biclustering model. Ordered from left to right are,
respectively, the p x n gene expression matrix Y, the p x K loading matrix A including both sparse and dense
columns, the K x n factor matrix X including both sparse and dense rows, and the p x n residual matrix e.
Blue, red, and white entries in each matrix correspond to negative, positive, and zero values, respectively.

doi:10.1371/journal.pcbi.1004791.g001

biclustering model: i) the number of factors and loadings are effectively estimated from the
data, because the sparsity-inducing prior removes unused factors; ii) each factor and corre-
sponding loading has a different level of shrinkage applied to it, enabling a non-uniform level
of sparsity and corresponding percentage of variance explained (PVE) for each factor and load-
ing pair [60]; iii) neither the clusters of genes nor the clusters of samples are disjoint, so all
genes and all samples may be in any number of clusters, or none; and iv) strong regularization
allows overcomplete estimates of the response matrix, with possibly more factors K than sam-
ples n or genes p.

In gene expression data, observed covariates or unobserved confounding effects may sys-
tematically influence variation in the observation [38, 40, 41]. As in prior work, we tailored our
sparsity-inducing prior to jointly model these often dense confounding effects [60]. In particu-
lar, we adapted our model so that the loadings and factors are drawn from a two-component
mixture distribution, where each vector is either sparse—with zero elements—or dense—with
no zero elements or all zero elements (Fig 1). We extracted information about whether a vector
is sparse or dense directly from the fitted model parameters using the posterior mean of the
mixture component assignment variables for each component k =1, . . ., K, where z; € {0, 1}
indicates a dense or a sparse loading and oy, € {0, 1} indicates a dense or a sparse factor. This
two-component mixture in the prior distribution for the factors and loadings adds two favor-
able behaviors to the biclustering model. First, it jointly models covariates that regulate varia-
tion in most genes and also in few genes; we have found that confounding effects are often
captured in the dense components as all samples and most genes are affected (e.g., batch effects,
population structure) [37, 60]. Second, the mixture component has the effect of relaxing a com-
putationally intractable space, enabling scalable parameter estimation in a Bayesian framework.
Specifically, considering all possible subsets of genes and samples to identify biclusters is an
intractably difficult problem; however, it is computationally tractable to first search over the
space for which cluster membership is relaxed, represented as a continuous value between 0
and 1. Then we identify clusters by iteratively shrinking the small magnitude membership val-
ues to zero, which maps the continuous values to the binary representation of cluster member-
ship. We estimated parameters in this model using both Markov chain Monte Carlo (MCMC)
and a variational expectation-maximization (VEM) approach (see Methods).

Gene co-expression networks from biclusters. To construct an undirected gene network,
we built a Gaussian Markov random field, or a Gaussian graphical model (GGM) [63], using
the components estimated with our biclustering model (see Methods). In particular, regular-
ized estimates of the gene-by-gene covariance matrix 2 may be computed from our parameter
estimates as Q = A X AT + ¥, where X is the covariance matrix for X. Factor analysis is often
viewed as a method for low-rank covariance estimation by marginalizing over the factors, X.
Furthermore, for any subset of components with sparse loading vectors, A C {1, ..., K},
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Q, =A%, 1AL + P, where =, 4 is the covariance matrix for X, estimates a regularized
covariance matrix for the genes loaded on A 4. Note that €4 is generally both sparse and full
rank; biclustering is a highly structured approach to estimating regularized covariance matrices
[64]. The inverted covariance matrix is a symmetric precision matrix A, = Q,", where each
element &;; can be transformed into the partial correlation between genes j and f,

i

Jid
I
A / 5145]/.]/

where x_;, 7). indicates all genes in X that are neither j nor 7.

In a GGM, edges are defined as pairs of nodes for which the partial correlation is non-zero.
Since each loading Ay, k € A, specifies a cluster of genes, we do not invert the full covariance
matrix, but instead invert the submatrix that corresponds to genes with non-zero loadings in

cor(x, ,x; | x. ;) = —

those components. This approach avoids inducing non-zero precision estimates—and, corre-
spondingly, edges in the GGM—between genes that never occur in the same bicluster. We
used GeneNet [63] to test the precision matrix for significant edges. GeneNet assumes that
the edges are drawn from a mixture of the null (no edge) and alternative (edge) distributions,
fE) =10 fo(E) + n1 f1(E), to calculate the probability of each edge being present or not. Practi-
cally, we selected edges with a probability > 0.8.

To recover co-variance networks specific to a subset of the samples, where the subset is
characterized by context status, we chose the subset of components that contributes to this
covariance matrix carefully. In particular, when we select subset A to include only components
that have non-zero factor values for samples in a specific context (e.g., only female samples),
we identify context specific covariance. When we select A such that all samples have a non-
zero contribution to a component, we recover ubiquitous components. When we select A such
that the mean rank of the factor values for one sample context is different than the mean rank
of factor values for a different sample context—evaluated using a Wilcoxon signed-rank test—
we identify components that are differential across the two contexts.

To combine results across runs of biclustering, we extracted co-expression network edges
using this procedure separately for each run. Then we used ideas from an ensemble method,
bootstrap aggregation (bagging) [65], and counted the number of times each edge for a specific
network type was recovered across the runs. The final co-expression network contained edges
that were identified in > runs.

Simulation results across biclustering methods

We validated our biclustering model using simulated data sets and compared results from five
state-of-the-art biclustering methods. We simulated data from an alternative generative model
for observation matrix Y = A X + ¢, where Y has dimension p = 500 by n = 300 and

€, ~ N(0,v™"). Within this model, we simulated sparsity as follows: for each loading and fac-
tor, a number m € [5, 20] of elements were randomly selected and assigned values drawn from
N (0, 2); the remaining elements were set to zero. We allowed components to share as many as
five elements. Simulation 1 (Sim1) had ten sparse components. Simulation 2 (Sim2) had ten
sparse components and five dense components, for which the loadings and factors were drawn
from a A/ (0, 2) distribution. The components were shuffled so that a sparse loading may corre-
spond to a dense factor, and vice versa. For both simulations we considered low and high noise
scenarios: the residual variance parameter in the low noise (LN) setting was v_' = 1 and, in the
high noise (HN) setting, was v_' = 2. Ten matrices Y were generated from each simulation
scenario.
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We ran BicMix and five other biclustering methods—Fabia [33], Plaid [30], CC [23], Bimax
[27], and Spectral biclustering [34]. For all simulations, we ran BicMix by settinga = b = 0.5,
c=1,d=0.5e=f=1and v=E=1 to promote substantial sparsity at the local level (i.e., the
horseshoe prior [66]), weaker sparsity at the factor specific level (i.e., the Strawderman-Berger
prior [67, 68]), and a uniform prior at the global level of the hierarchy [60]. The algorithm was
initialized with warm start values by running MCMC for 500 iterations and using the final
sample as the initial state for variational EM. For BicMix results, components that were classi-
fied as sparse have each element thresholded at 10'%, because our parameter estimation meth-
ods converged to values near, but not exactly, zero. All other methods were run using their
recommended settings (see Methods). For Sim2, we corrected the simulated data for the dense
components by controlling for five principal components (PCs) before all other methods were
run; without this initial correction for dense components, results from all five other biclustering
methods were uninterpretable. For all runs, BicMix was initialized with K = 50 latent factors;
all other methods were initialized with the correct number of sparse factors K = 10. For Fabia,
we ran the software in two different ways. The results from running Fabia with the recom-
mended settings are denoted as Fabia. We also set the sparsity threshold in Fabia to the num-
ber (from 100 quantiles of the uniform distribution over [0.1, 5]) that produced the closest
match in the recovered matrices to the number of non-zero elements in the simulated data; we
label these results Fabia-truth.

We used the recovery and relevance score (R&R score) [27] to measure the false discovery
rate (FDR) and sensitivity of each method in recovering true biclusterings. Let the true set of
sparse matrices be M; and the estimated set of sparse matrices be My; then the R&R score is
calculated as:

1 b,Nb

Rec = — E max —-= (2)
M| pean, M2 b, Ub,
1 b,Nb

Rel = — E max ——2. (3)
|M, | poent, 1M b, UD,

Recovery quantifies the proportion of true clusters that are recovered (i.e., recall); relevance
refers to the proportion of true clusters identified in the recovered clusters (i.e., precision). For
BicMix, we applied this R&R score to the components for which both the loading and the fac-
tor vectors were sparse, which indicates a bicluster. For the doubly-sparse latent factor models,
Fabia and BicMix, we also calculated a sparse stability index (SSI) [60] to compare the recov-
ered and true matrices; SSI is invariant to label switching and scale, and falls between [0, 1]
with 1 indicating perfect recovery.

For Sim1, we found that BicMix recovered the sparse loadings, sparse factors, and the biclus-
ters well in the low noise scenario based on both R&R (Fig 2a) and SSI (Fig 2b). Fabia-truth had
the second best performance based on R&R. For comparison, Fabia-truth achieved better R&R
scores than Fabia (Fig 2a); the clustering results from BicMix dominated those from Fabia-truth,
although there was only a small gain in relevance in the low noise Sim1 results for BicMix. Plaid
showed high relevance for the recovered biclusters regardless of the noise level for Sim1, but at
the expense of poor recovery scores. The remaining methods did not perform well in these simu-
lations with respect to the R&R score for both low and high noise simulation scenarios.

For Sim2, BicMix correctly identified the sparse and dense components (Fig 2a), where a
threshold of (zx) > 0.9 was used to determine when a loading k was dense. The performance of
Fabia on Sim2 deteriorated substantially relative to its performance on Sim1, although the con-
founders were removed using principal components (PCs) and the correct number of factors
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Fig 2. Comparison of BicMix with related methods. Top row: Simulation with low noise. Bottom row:
Simulation with high noise. Left column: Sim1 with only sparse components. Right column: Sim2 with sparse
and dense components. Panel a: Recovery score on the x-axis, relevance score on the y-axis for all methods
in the legend. Panel b: Stability statistic (y-axis) for the sparse components recovered by BicMix and Fabia.

doi:10.1371/journal.pcbi.1004791.9g002

was given. For both BicMix and Fabia, additional noise in the simulation made bicluster recov-
ery more difficult, as shown in deterioration of the recovery score for both methods; however,
unlike Fabia, the relevance score of the biclustering from BicMix was unaffected by additional

noise in the Sim2 high noise scenario.
The other methods show inferior performance relative to BicMix and Fabia on Sim2. CC

assumes that genes in each bicluster have constant expression values, which limits its ability to
cluster genes with heterogeneous expression levels. Bimax assumes binary gene expression val-
ues (i.e., over- or under-expressed), which limits its utility for heterogeneous expression levels.
Spectral biclustering imposes orthogonal constraints on the biclusters; this orthogonality
assumption is violated in these simulations and also in gene expression data, where correlated
sources of variation may impact similar subsets of genes.

Application of BicMix to three gene expression study data sets

We now turn to the application of BicMix to gene expression data from three studies. For each
application, we first describe the biclustering results from BicMix. Then we show the interpret-
able networks that were recovered from the BicMix results and discuss network validation
using cis- and trans-eQTLs.

Breast cancer network. We investigated a breast cancer data set that contains 24,158
genes assayed in 337 breast tumor samples [44, 69, 70] after removing genes that are >10%
missing and imputing missing values of included genes [71] (see Methods). All patients in this
data set had stage I or II breast cancer and were younger than 62 years old. Among the 337
patients, 193 had lymph-node negative disease and 144 had lymph-node positive disease; prog-
nostic signatures such as BRCAI mutations, estrogen receptor status (ER), distant metastasis
free survival (DMES) were collected for all patients. We focused on building differential gene
co-expression networks across ER positive (ER+) and ER negative (ER-) patients because of
ER’s prognostic value in profiling breast cancer patients [72]: cancer patients that are ER+ are
more likely to respond to endocrine therapies than patients that are ER-. In these data, there
are 249 ER+ and 88 ER- patients.

We ran BicMix on these data, settinga=b=0.5,c=1,d=0.5,e=f=0.5andv=&{=1asin
the simulations; the initial number of components was set to K = 300. Starting from 1,000
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Fig 3. Distribution of the number of genes, the number of samples, and PVE in the breast cancer data.
Panel a: Distribution of the number of genes with non-zero values in each of the 53,814 loadings. Panel b:
Distribution of the number of samples with non-zero values in each of the 53,814 factors. Panel c: average PVE
for the components sorted by PVE within each run. The middle lines show the median PVE, the ribbons show
the range of the minimum and maximum PVE across 900 runs. For panels a and b, the peaks on the far right
correspond to the number of the genes and samples for the dense loadings and dense factors.

doi:10.1371/journal.pcbi.1004791.9003

random values, BicMix was run until the total number of genes with non-zero loadings across
components changed < £ over 100 iterations. Removing runs that did not converge, we recov-
ered 53,814 components across 900 runs, of which 110 loadings and 19,239 factors were dense
(Fig 3a and 3b).

The distribution of the number of genes in each sparse component was skewed to small
numbers (Fig 3a). We categorized each component as one of four configurations: sparse gene
loadings with sparse sample factors (SS), sparse gene loadings with dense sample factors (SD),
dense gene loadings with sparse sample factors (DS), and dense gene loadings with dense sam-
ple factors (DD). SS components captured subsets of genes that are uniquely co-expressed in a
subset of samples, which may be due to, e.g., a genotype or environmental context that impacts
expression levels of a small number of genes. SD components capture subsets of genes that are
differentially co-expressed among all samples, which may be due to, e.g., sex-differential
expression or batch effects. DS components capture a subset of samples in which all genes have
additional co-variation, which may be due to, e.g., sample contamination. DD components
capture variation that occurs across all samples and affects co-variation across all genes, which
may be due to, e.g., latent population structure.

For each run, we calculated the percentage of variance explained (PVE) per component k as
%, where Tr denotes the trace operator. We ordered the components by PVE within
each SS, SD, DS, and DD component category. We calculated the mean, maximum, and mini-
mum values of the PVE-ordered, categorized components across the runs. Note that, because
there are no orthogonality constraints, it is possible that many of these components explain
similar variation in the observations; for this quantification we are assuming this PVE is dis-
joint and normalizing across all component-wise PVEs. We also calculated the total PVE
explained by each component category by summing the total PVE for all components jointly in
each category. The distribution of the number of genes contained in each loading and the PVE
by component and across SD, SS, DS, DD categories show that SD and SS components made
up the vast majority of recovered components, and that, on average, SD components accounted
for a larger PVE than SS components (Fig 3a). The number of components that fell into the SS,
SD, DS, DD categories accounted for 64.1%, 35.7%, 0.1%, 0.1%, respectively, of the total
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number of components. In the same order, components in the four categories accounted for
24.7%, 74.8%, 0.3% and 0.1% of the total PVE.

We selected components from the fitted BicMix model to identify ER+ and ER- specific gene
co-expression networks (see Methods). Moreover, to recover gene co-expression networks that
are differentially expressed across ER+ and ER- samples, we identified components correspond-
ing to factors that had a significant difference in the mean rank of the factor value between the
ER+ and ER- samples based on a Wilcoxon signed-rank test (p < 2% = 9.29 x 107"). Across
our components, we found 996 components unique to ER+ samples, 135 components unique to
ER- samples, and 17,051 components differential across ER+ and ER- samples. Interestingly, we
note that differential ER status represents the bulk of the SD components recovered across all of
the runs. We contrasted the correlation of all of the observed covariates with a representative
sample of the SD factors (S1 Fig), and we found that ER status correlated well with many of
these SD factors. Tumor grade also correlated well with many of the SD factors; however, tumor
grade is somewhat anti-correlated with ER status (S2 Fig), so we chose to focus on ER status
because of its clinical utility.

The precision matrices of the subsets of components corresponding to the three network
types were constructed and edges among these genes were tested using our method for extract-
ing gene co-expression networks from the fitted biclustering model (see Methods) [63]. For the
ER- specific network, we recovered a total of 15 genes and 10 edges that are replicated > 2
times; for the ER+ specific network, we recovered 621 genes and 760 edges that are replicated
> 2 times (S3 and S4 Figs; S1 and S2 Tables). We recovered more genes for ER+ than ER- spe-
cific networks because there are many more ER+ samples than ER- samples. We found one
node and no edges shared across the ER+ and ER- specific networks.

For the co-expression network differential across ER+ and ER- samples, we recovered 432
genes and 8,156 edges that were replicated > 15 times across the 900 runs (Fig 4; S3 Table). We
hypothesized that, in these differential networks, the 432 genes may be divided into two sub-
groups: a group of genes that is up-regulated in the ER+ samples and down-regulated in the
ER- samples, and a group of genes that is down-regulated in the ER+ samples and up-regulated

CD247 300
- CD53

Samples

cxcRra

ILI0ORA

0 100 200 abo 400
Genes
Fig 4. Differential ER-status gene co-expression network and gene expression for ER differential
genes. Panel a: differential ER gene co-expression network, where node size corresponds to betweenness
centrality, which quantifies the number of shortest paths between all pairs of nodes in the network in which
the gene is included. Panel b: gene expression levels for 432 genes in the ER-status differential co-
expression network.

doi:10.1371/journal.pcbi.1004791.9g004
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in the ER- samples. To explore this hypothesis, we quantified differential expression levels for
the 432 genes in the differential gene co-expression network (Fig 4b). We found 430 genes that
are up-regulated in ER- samples and down-regulated in ER+ samples. In contrast, we found
two genes that are down-regulated in ER- samples and up-regulated in ER+ samples (Fig 4b,
first two columns). This bias is likely due to the unbalanced number of ER+ and ER- samples.
The genes in the ER-status specific co-expression networks also show a pattern of differential
expression (S5 Fig), although not as strong, because gene correlation is differential across net-
works as opposed to coordinated differential expression levels across a subset of genes.

In the ER-status differential network, we found that many of the annotated genes play criti-
cal roles in breast cancer development. For genes that are up-regulated in ER- and down-regu-
lated in ER+ patients:

o CD53, the gene that encodes the leukocyte surface antigen CD53 protein, and ILI0RA, the
gene that encodes the receptor for interleukin 10, belong to a set of three genes (including
DMES) that are predictive of outcome specifically in ER tumors [73];

o CD247 encodes the CD3 zeta chain protein; a previous study has shown that the down-regu-
lation of CD3 zeta expression plays an important role in breast cancer progression [74, 75];

o CXCR3 encodes the chemokine (C-X3-C motif) ligand protein; studies have shown that
CXCR3 deficiency speeds tumor progression [76], and that CXCR3 isoforms have divergent
roles in promoting cancer stem-like cell survival and metastasis [77].

For genes that are up-regulated in ER+ and down-regulated in ER- patients:

o SFRP2 encodes the secreted frizzled-related protein, which inhibits the growth of triple-nega-
tive breast tumors [78];

o COLI12A1 encodes the alpha chain of type XII collagen, which has been found to be a regula-
tory target of miR-26b and is predictive of breast cancer recurrence [79].

Cardiovascular and Pharmacogenetic (CAP) RNA expression study data. We next
applied our biclustering model to a gene expression study with 10,195 expressed genes mea-
sured in 480 human lymphoblastoid cell lines (LCLs) [45]. In these data, there are 221 female
samples, 259 male samples, 64 smokers, and 416 non-smokers. Age and BMI are also available
for each sample. The data were processed according to previous work [45, 60]; In particular, we
removed genes with probes on the gene expression array that aligned to multiple regions of the
genome using a BLAST analysis against human genome reference hgl9, leaving 8,718
expressed genes. No known covariates nor PCs were controlled in these data before projecting
each gene expression level to the quantiles of a standard normal distribution (S6 Fig).

We set K = 400 and ran EM from 1000 starting points witha=b=0.5,c=1,d=0.5,
e=f=1,v=1and a=pF=1 [60]. After removing runs that did not converge, we recovered a
total of 865 runs. On average there were 93 factors across runs, of which on average 21 were
dense factors and dense loadings (where both the loading and the factor mixture component
posterior probability of being non-sparse > 0.9).

Sex-differential networks. To construct a sex differential network, we selected factors that
had differential mean values across sex. We recovered 68 genes corresponding to 78 edges that
were replicated > 5 times across runs (Fig 5a). The expected number of edges to replicate in
this experiment under the null hypothesis is approximately 0.8 (Eq 89). Many of the genes that
were identified to have differential co-expression partners across sex play important roles in
sex determination or sex specific regulatory activities.
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Fig 5. Sex differential gene co-expression network and gene expression levels for sex differential
genes. Panel a: differential sex gene co-expression network, where node size corresponds to betweenness
centrality. Panel b: gene expression levels for 61 genes in the sex differential gene co-expression network.

doi:10.1371/journal.pcbi.1004791.9g005

o The hub gene, UTX, regulates somatic and germ cell epigenetic reprogramming [80]; more
recently it has been shown to be a sex specific tumor suppressor in T-cell acute lymphoblastic
leukemia [81];

o ZFX, a gene on the human X chromosome that is structurally similar to the Y chromosome
gene ZFY, has been used for sex identification in many species [82];

« USP9X, an X-linked gene, is differentially expressed across sexes in the adult mouse brain,
and is hypothesized to play a role in differential neural development in women with XO
Turner syndrome [83].

A heatmap of the gene expression levels of these genes across male and female samples shows
patterns of differential expression as in the genes highlighted in the breast cancer ER-status dif-
ferential co-expression network (Fig 5b).

Sex specific and smoking status specific networks. To construct sex specific networks
and smoking status specific networks, we identified components with non-zero factor values
for either only male or only female samples, or only smokers or only non-smokers, respectively.
Using these components, we recovered 57 genes with 176 edges specific to males and 38 genes
with 80 edges specific to females, where both networks included edges that were recovered
> 10 times across runs (Fig 6). The expected number of edges to replicate in this experiment
under the null hypothesis is approximately 2.3 x 1077 (males) and 9.4 x 1077 (females; Eq 89).

For the smoking status specific networks, we identified 31 genes with 36 edges specific to
smokers that were recovered > 5 times across runs (S7a Fig); we identified 294 genes with
2,272 edges specific to non-smokers that were recovered > 10 times across runs (S7b Fig). The
expected number of edges to replicate in this experiment under the null hypothesis is approxi-
mately 4.6 x 1077 (smokers) and 1.3 x 10~® (non-smokers; Eq 89). The decrease in power to
detect smoker specific edges compared to non-smoker specific edges is likely due to the imbal-
anced number of smokers (64) and non-smokers (416) in this study.

Genotype-Tissue Expression (GTEx) study. We applied BicMix to a subset of the pilot
Genotype-Tissue Expression (GTEx) project data [46]. Our goal for these data was to identify
gene co-expression networks that were specific to a single tissue while controlling for networks
that appeared across all tissues and other confounding effects. The subset of gene expression
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Fig 6. Sex specific gene co-expression networks in the CAP gene expression data. Panel a: Gene co-
expression network specific to males. Panel b: Gene co-expression network specific to females. Node size
and color correspond to betweenness centrality.

doi:10.1371/journal.pcbi.1004791.9006

data that we used contained p = 20,850 genes measured in # = 446 samples across four tissues:
adipose (ny=103), artery (n, = 118), lung (n; = 122), and skin (1, = 106). We preprocessed
these RNA-sequencing data as described in Methods. We concatenated these data sample-wise
to create a single response matrix Y € RF < (¥ 1+t n),

We set K =300 and ran EM from 1000 starting points witha =b=10.5,c=1,d=0.5,
e=f=1,v=1anda=pF=1 [60]. After eliminating runs that did not converge, we used a total
of 958 runs. In these runs, we recovered on average 119 factors, approximately eight of which
were dense in both factors and loadings (S8 Fig).

Comparison with biclustering results from comparative methods. To determine
whether or not the existing biclustering methods also recover similarly informative biclusters,
we ran Fabia, CC, Bimax, Spectral, and Plaid on the GTEx data. To control for confounding
effects, we removed the effects of five principal components of the gene expression matrix sepa-
rately within each tissue so as to maintain the tissue specific effects for all methods except
Fabia and BicMix. We found that both Plaid and Fabia were able to separate the tissues in the
sample space, as was principal components analysis (PCA; S9 Fig). Starting from 300 biclusters,
Plaid reduced the number of biclusters to four, with each bicluster containing samples from a
subset of one tissue; adipose samples, however, were not identified uniquely (S10 Fig).

Results from Fabia depended on the specified number of biclusters: when the number of
clusters is set to the number of tissues (four), the biclusters distinguished the four tissues (S11
Fig). However, with larger numbers of clusters specified, the separation of the samples by tissue
became increasingly obfuscated until, with 20 clusters, there were no tissue specific patterns
across clusters (S12 Fig). Compared to results from Plaid and Fabia, the other methods pro-
duced uninterpretable results: with 300 clusters, CC found one bicluster that contained all
genes and one sample; Bimax failed to recover any biclusters in these data; Spectral found two
biclusters, each with zero genes. BicMix, as described above, identified the four tissues in sepa-
rate clusters as with Fabia (four factors) and PCA (S13 Fig).

Tissue specific networks. In the BicMix results, we identified all of the bicluster factors
and loadings that appeared uniquely in one of the four tissues. We collected genes and edges
that were recovered > 10 times across 1000 runs. We recovered 152 genes with 379 edges for
adipose tissue, 167 genes with 966 edges for artery tissue, 98 genes with 199 edges for lung tis-
sue, and 70 genes with 171 edges for skin tissue (Fig 7; S4-S7 Tables). The expected number of
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Fig 7. Tissue specific gene co-expression networks in the GTEXx pilot data. Adipose: gene co-
expression network for adipose. Artery: gene co-expression network for artery. Lung: gene co-expression
network for lung. Skin: gene co-expression network for skin. Node size and color correspond to betweenness
centrality.

doi:10.1371/journal.pcbi.1004791.9g007

edges to replicate in this experiment under the null hypothesis is approximately 9.3 x 10~ (adi-
pose), —2.8 x 107° (artery), 8.2 x 107° (adipose), 1.7 x 107° (skin; Eq 89). Note that the negative
expectation is due to the approximation in Eq (89).

To study the biological significance of the tissue specific gene clusters, we applied the
functional gene annotation tool, DAVID (version 1.1) [84] to perform a gene ontology
enrichment analysis on the recovered tissue specific gene clusters from a subset of 100 ran-
domly chosen runs. Using a false discovery rate (FDR) threshold of 0.05, we found 262 (adi-
pose), 265 (artery), 672 (lung), and 560 (skin) molecular function Gene Ontology (GO)
categories enriched in clusters specific to each of the four tissues (S8-S11 Tables). In particu-
lar, the adipose specific gene clusters were most enriched for lipid biosynthetic process (FDR
< 2.8 x 107, lipid metabolism (FDR < 1.7 x 10™2), and insulin signaling pathway (FDR
< 0.046); Interestingly, artery specific functions also appeared in adipose enriched terms; it
has been shown that angiogenesis and vascular functions modulate obesity, adipose metabo-
lism, and insulin sensitivity [85]. The artery specific gene clusters were most enriched for vas-
cular smooth muscle contraction (FDR < 9 x 107), circulatory system process (FDR < 0.03),
and ventricular cardiac muscle cell development (FDR < 0.049). The lung specific gene clus-
ters were enriched for respiratory burst (FDR < 5 x 10) and Toll-like-receptor (FDR
< 1.8 x 1072), where Toll-like-receptor has a role in lung disease [86]. The skin specific gene
clusters were most enriched for melanogenesis (FDR < 1.9 x 107%), the process of formation
of pigmentation, typically of the skin, and epidermolysis bullosa (EB) (FDR < 0.03), an inher-
ited connective tissue disease causing blisters in the skin and mucosal membranes. We also
observed that many GO terms were enriched in multiple tissues, suggesting that a similar set
of biological functions are achieved via different, cell specific mechanisms across tissues.

In the tissue specific networks, we found that the genes with larger betweenness centrality
were known to play important roles in tissue specific functions. For adipose tissue, we found
that the hub genes play important roles in adipose metabolism and show significant associa-
tions with obesity related traits. For example, DOK1, the gene that encodes Docking Protein 1,
was shown to mediate high-fat diet-induced adipocyte hypertrophy and obesity through mod-
ulation of PPAR-gamma phosphorylation [87]. APBBIIP, which encodes the Rap1-GTP-inter-
acting adaptor, has been shown to be involved in regulating metabolism and protecting against
obesity [88]. RHOQ, also known as TC10, alters its gene expression levels in visceral adipose
tissue of rats that are given a high-fat diet [89]. Genes with smaller betweenness centrality play
important adipose specific functions as well; for example, gene expression levels of PNPLA3
are affected by diet-induced obesity [90], and LGPATI was shown to influence BMI and per-
cent body fat in Native Americans [91].
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In the artery specific network, we found that the genes with larger betweenness centrality
play important roles in angiogenesis and vasculogenesis. For example, ELTD]I, also known as
epidermal growth factor (EGF), regulates angiogenesis [92]. CLIC4, a gene that encodes the
chloride intracellular channel protein 4, regulates vasculogenesis through endothelial tube for-
mation; abnormal CLIC4 expression may play a role in pulmonary arterial hypertension
pathology [93]. CD36 encodes the thrombospondin receptor, and polymorphisms in this gene
have significant associations with coronary artery heart disease risk [94]. BAIAP2 encodes the
brain specific angiogenesis inhibitor 1 BAII, and is protective of angiogenesis [95].

In the lung specific network, the genes with larger betweenness centrality play important
roles in maintaining the proper function of the lungs or are associated with lung and respira-
tory diseases. For example, IRAK3 encodes a member of the interleukin-1 receptor-associated
kinase protein family; hospital patients on mechanical ventilation with injury have differential
expression of TLR4 and IRAK3 [96]. CD46 encodes a regulatory protein for which higher
expression in the lungs of ex-smokers appears to reduce inflammation and protect individuals
from emphysema and chronic obstructive pulmonary disease [97, 98]. ILI8RAP encodes the
interleukin 18 receptor accessory protein. A recent study found that genetic variants in ILIRL]I
and ILI8RI were significantly associated with bronchial hyperresponsiveness [99].

In the skin specific network, we found genes with larger betweenness centrality played
critical biological roles in the skin, and were often related to skin tumor growth or carcinoma.
For example, RBPMS encodes the RNA binding protein with multiple splicing; RBPMS is one
of six genes that were shared among the top up-regulated genes both in dedifferentiated carci-
noma and in carcinoma with loss of 13q [100]. MCAM encodes the melanoma cell adhesion
molecule; increased expression of MCAM in human melanoma cells leads to increased tumor
growth and metastasis [101, 102]. Finally, MSRB encodes the methionine sulfoxide reductase,
which is important for antioxidant repair in human skin [103]. We note that it is possible in
the current methodological framework to recover gene networks specific to subsets of the con-
text specific samples; here it is possible that a subset of these skin samples include pre-cancer-
ous cells, which will lead to recovering skin specific networks with edges corresponding to
genes that are co-expressed only in pre-cancerous skin tissue.

Tissue specific trans-eQTLs. To validate the tissue specific networks identified in the
GTEx data, we performed a trans-eQTL analysis on the genes in these networks as follows. An
expression QTL (eQTL) is, in this context, a single nucleotide polymorphism (SNP) that regu-
lates expression levels of a specific gene. Transcription regulation may happen in an allele spe-
cific way (cis-eQTL) or may be mediated by a non-allele specific process (trans-eQTL). Given a
gene A, a SNP Q that has been identified as a cis-eQTL for gene A, and a target gene B thatisa
neighbor of A in the tissue specific network, we tested for association between Q and B in gene
expression values derived from samples with matched primary tissue. Using a list of eQTLs
identified in previous work [104], we performed a pairwise univariate regression analysis of
these eQTLs informed by the tissue specific networks. The same univariate analysis was per-
formed on the permuted gene expression data to find p values under the null distribution of no
trans-association.

Using our adipose specific networks, we found 40 cis-eQTLs for genes RHOQ and
PARVAI12, which were trans-eQTLs for many different target genes in adipose tissue samples
(FDR < 0.2). Two of these genes with trans-eQTLs specific to adipose tissue were TK2 and
EHD2, which have been associated with the abnormal development of adipose tissues and adi-
pokine levels in mice [105] and lead to specific changes in white adipose tissue of growth hor-
mone receptor-null mice [106], respectively. In artery, we found 121 cis-eQTLs for nine genes
that act as trans-eQTLs to multiple target genes. The artery specific trans-eQTL target genes
include CCM2L, involved in controlling vascular stability and growth [107], and ARHGEF15,
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which affects retinal angiogenesis in endothelial cells [108]. In lung, we found 19 cis-eQTLs for
seven genes that are trans-eQTLs for seven target genes including IRAK3, described above, and
SIGLECS5, which has been shown regulate acute pulmonary neutrophil inflammation [109]. In
skin samples, we found 13 cis-eQTLs targeting three genes that are trans-eQTLs for two target
genes that are unique to skin samples. One of these skin specific trans-eQTLs affects SLC11A1,
which has been associated with susceptibility to Buruli ulcers [110]. (Full list of tissue specific
trans-eQTLs in S12-S15 Tables.)

Discussion

In this work, we developed a statistical approach to biclustering based on a Bayesian sparse
latent factor model. We included a two-component mixture distribution to allow both sparse
and dense representations of the features or samples, which captures heterogeneous sources of
structured variation within the gene expression data. We used the regularized covariance
matrix estimated from the latent factor model to build a Gaussian graphical model with the fea-
tures represented as nodes in the undirected network. By extracting covariance matrices corre-
sponding to subsets of components, we were able to identify gene co-expression networks that
were shared across all samples, unique to a subset of samples, or differential across sample
subsets.

We applied our methodology to breast tumor tissue gene expression samples and recovered
co-expression networks that are differential across ER+ and ER- tumor types. We applied our
methodology to gene expression data from the CAP project and recovered sex-differential, sex
specific, and smoking status specific gene co-expression networks. We applied our methodol-
ogy to the GTEx gene expression pilot data and recovered tissue specific networks for four tis-
sues, which we validated by identifying tissue specific trans-eQTLs.

Factor analysis methods, including the biclustering approach presented here but extending
to many other well-studied models, are statistical tools developed for exploratory analyses of
the data. In this work, we have exploited the latent structure in both the factor and the loading
matrix to estimate the covariance matrix that is specific to sample subsets. We considered tis-
sue type and tumor types, but these methods can be used for any observed binary, categorical,
integer, or continuous covariate (e.g., case-control status, batch, sex, age, EBV load). We
showed in the Results that the recovered latent structure has substantial context specific biolog-
ical meaning.

Our results on the GTEx data show that a number of genes were identified as part of multi-
ple tissue specific networks. While individual genes may overlap across networks, the interac-
tions of those genes did not. Genes that co-occurred in multiple tissue specific networks are
good candidates to test for differential function across tissues. We also used this approach to
study sexual dimorphism, extracting gene networks specific to one sex or differential across the
sexes. We showed the potential of this approach to improve statistical power to identify sex
specific trans-eQTLs.

In this version of BicMix, extracting a covariance matrix specific to a subset of the samples
was performed post hoc: the linear projection to the latent space was performed in a mostly
unsupervised way, although our three layer sparsity inducing priors add additional structure
above SFA-type approaches. As described in the Results, there were multiple categories of
gene-interactions that we recovered. These categories included: gene interactions that existed
across context, gene interactions that were unique to specific contexts, and gene interactions
that were present across contexts but differentially interact in different contexts. However, this
approach currently does not use known context to directly inform the projection.
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Indirectly, we saw that the sparsity structure on the samples allowed small subsets of the
samples to inform projection, but this still relied on a post hoc interpretation of those sample
subsets to recover specific network types. Correlation between contexts, such as tissue and
batch, or smoking status and sex, would confound these results; here we checked for these cor-
relation among observed covariates (S2 and S6 Figs) and also validated our results using litera-
ture searches and trans-eQTL recovery. Furthermore, it may be the case that, for a sample
context of interest (e.g., age, sex), there is insufficient signal that is uniquely attributable to
those samples (e.g., female) to identify a covariance matrix corresponding to the values of inter-
est in this unsupervised framework. We are currently extending this approach so that the linear
projection is explicitly informed by the context of interest.

Methods
Bayesian biclustering model for BicMix

We consider the following factor analysis model:

Y =AX + €, (4)

where Y € R7" is the matrix of observed variables, A € #7*X is the loading matrix, X € R*"
is the factor matrix, and € € R*" is the residual error matrix for p genes and n samples. We
assumed € ; ~ N (0, V), where ¥ = diag(y1, . . ., y).

In previous work [60, 62], a three parameter beta (7 PB) [61] prior was used to model the
variance of A. The three parameter distribution has the form

s 0,b,0) = Fat (1= L 0 - ) )
forx € (0,1),a>0,b>0and ¢ > 0.

We used 7 PB to induce flexible shrinkage to both A and X. Specifically, we included three
layers of shrinkage—global, factor specific, and local—for both the factors and the loadings.
Next we describe the sparsity-inducing structure for A and X.

Hierarchical structure on A. The hierarchical structure for A is written as

o~ TPB(&f, V)v (6)
1
CkNTPB(c,d,Q—l) (7)
1
q)j.k ~ 77)B<a7bv¢_ 1); (8)
k
1
Ajy~ N(o,— — 1). (9)
ik
We used the fact that
¢ ~ TPB(a,b,v) < g ~ Bé'(a,b) < 0 ~ Ga(a, o) and § ~ Ga(b,v), (10)

where B¢/ (a, b) and Ga indicate an inverse beta and a gamma distribution, respectively. Making
the substitutionn =1 — 1, ¢, =2 — 1, 0, = ﬁ — 1, we get the equivalent hierarchical
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structure [61]:

7~ Galf,v), (11)
n~ Gale,7), (12)
7. ~ Ga(d,n), (13)
¢ ~ Gale, 1), (14)
0, ~ Ga(b, ¢,), (15)
0, ~ Ga(a,s,,), (16)
Ay~ N(0,0,,). (17)

We applied a two-component mixture model to jointly model possibly dense confounding
effects by letting 0, , be generated from a mixture of sparse and dense components:

04 ~ nGa(a, 0;,) + (1 — m)3(4y), (18)

where the hidden variable z;, which indicates whether or not loading k is sparse (1) or dense
(0), is generated from the following beta-Bernoulli distribution:

o, B ~ Be(a, ) (19)

z|m ~ Bern(n), k= {1,---,K}. (20)

Hierarchical structure for X. The hierarchical structure inducing sparsity in X, which is
structurally identical to that for A, is:

¢ ~ Ga(fy, ©), (21)
%~ Galey, 9), (22)
K ~ Ga(dy, %), (23)
o, ~ Ga(cy, k) (24)
Pri ~ Galby, @), (25)
o ~ nGa(ay, pi,;) + (1 —1)d(wy) (26)
%, ~ N(0,0,,), (27)

with oy ; generated from a two component mixture. Here, the hidden variable o4, which indi-
cates whether or not the factor is sparse (1) or dense (0), has the following beta-Bernoulli
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distribution:

nx|“xa ﬁx ~ Be((xxa ﬁx) (28)

o.|n, ~ Bern(my), k={1,---,K}. (29)

Variational expectation maximization

Because of the large dimension of matrices to which we apply BicMix, we used approximate
methods for parameter estimation. In particular, we used variational expectation maximization
(VEM) to estimate values for latent variables and parameters directly from the data in an approx-
imate way. Extending previous work [60], the posterior probability P = p(A, X, z, 0, O|Y) is
written as:

P o p(Y[A, X)p(Alz, ©,)p(X]0, O4)p(z]©,)p(0|Ox)p(©,)p(O) (30)
o p(Y[A, X)P(A)P(X),
where we used @, and Oy to denote the set of parameters related to A and X, respectively. Then,

P(A) = p(Alz,0,)p(2[0,)p(©,)

r K Iy=1
lHHN ]k|6]k )Gal( ]k|av ]k)ga(aj,k|b7¢k)]

j=1 k=1

P K Ly=o [ k 31)
X [HHN Ailoy) [HBern(zAn)] Beta(r|o, f§) (
x l Ga(¢ylc, 1) Ga(t,|d, n)] Ga(nle,7)Ga(y[f,v)
and
P(X) = p(Xl|o,04)p(0|0)p(Oy)
= [HﬁN(xk.i|ak,i)ga(ak,i|aX’ pk,i)ga(pk,i|bxa wk)‘|
. ()

x [HﬁMxk.,wwk)] 7

k=1 i=1

HBern(ok|nx)] Beta(my|oy, fy)

[Hg“ wley, 1) Gali|dy, )‘| Ga(xlex, p)Ga(plfy, €)

To derive the variational EM algorithm, we expanded the posterior probability (Eq (30))
and wrote the expected complete log likelihood for parameters related to
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A: Q((")A) = <€c(@A,A|Z,X,Y)> as

P n

QO,) x> (logp(y,IA.X.0,,2))

j=1 i=1
P K
> > (p(al0,)log ]k|@mzk>>+logp<@u

=1 k=1

+

B e 8

j=1 i=1 J‘] ]1k1

K 1 A?k (33)
+Zz<zk> —ilnﬁj‘k—ﬁjj’(+aln5jvk+(a— 1)n0,, — 0,0,
- .

K

+Zp:z<zk>{bln et (b—1)Ins, — ¢k5]_k} +3 (e lnn+ (1 - (5)In (1 - n)}

j=1 k=1 k=1

K
+Z{cln‘ck+ (c—=1)In¢, —1,¢, +dlnn+ (d—1)Int, — 57, }
+elny+(e—D)Inn—yp+flnv+(f—1)Iny—vy+oalnz+ fln (1 —n),
where we used (X) to represent the expected value of X.

Similarly, the expected complete log likelihood for parameters related to X takes the follow-
ing form:

00 x 33 (logply,IA.X.0,.0))

=1 i=1

"‘ZZ (0,/©)log p(x,,|©y, 0,)) + log p(Oy)

k=1 i=1

2
y i Z <x l> K n 1 x2.i
o<——1n|‘l’|—zz(] - ¢ ) +ZZ<1_0/<> ——lnwk—<2;>
j=1 i=1 J»J k=1 i=1 k
34
S 1 <xlii> (34)
+ZZ<Ok> ) Ino,, — 9 +axInp; + (ax — 1) Inoy; — pr0y,
k=1 -1 O
K n K
+ZZ<Ok>{bX Inw, + (by — 1) Inp,; — wkpk,i} + Z{<Ok> Inmy + (1= (o)) In (1 —my)}
k=1 =1 pa

K
+Z{cx Ink, + (¢ — 1) Inw, — ko, +dyln g+ (dy — 1) Ink, — yx,.}

texIng+(ex —1)Iny—pr+filnl+ (fy —1)Ing—Cp+ayInmy + By In (1 —my).

To simplify the calculation, we assumed that the joint distribution p(ox,xy ;) factorizes as p(ox)p(xx,:)
implying that corresponding factors” and loadings’ sparsity statuses are independent.
We computed the MAP estimates for the parameters that encourage sparsity in the A

matrix, ©, = argmaxg Q(O,). Specifically, we solved equation =™ 8 0") = 0 to find the closed
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form MAP estimates. The MAP estimate for the jth row of A, A; , in matrix form, is:

Ay =, X (X0, )XT) + 20" 4+ (1 - (Z))@) (35)
where
0, 0 0 6 0 0
0 0, 0 0 ¢, 0
0= , ®= : (36)
0 0 0,5 0 0 bx
and
(z)y O 0
0 (z,) 0
Z= (37)
0 0 - (z)

and I is the identity matrix.
We computed the expected value of X, (X), which has the following form:

(X,)=A"Y'A+(O)Z +(1-(0)Q ") AP 'Y, (38)
where
o,; O 0 o, 0 0
0 oy, 0 0 w, 0
T = , Q= ; (39)
0 0 oy 0 0 Wy
and
(0,) O 0
0 (o) 0
0= (40)
0 0 (0g)

We computed the expected value of lej_jXT:
(Xy;, X" =y ((X)X) + %) (a1)

where X x denotes the covariance matrix of X.
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Parameter 6;; has a generalized inverse Gaussian conditional probability [60, 61], and its
MAP estimate is:

2a—3+/(2a—3)" +8A%0,,

0, = 42
jk 45]‘,1( ( )
Similarly, the MAP estimate for oy ; has the following closed form:
2ay — 3+ \/(2’1)( - 3>2 + 8<x£.i>pk4i
6= —. (43)
' 4Pk,i
The MAP estimate for &j is:
A a+b-1
L= 44
jik Bj,k + ¢k ( )
Correspondingly,
ay+by—1
Pri = — : (45)
Oy + O

Parameter ¢ generates both sparse and dense components, and its MAP estimate takes the

form:
- H+ vH? + MT
b= (46)
where
H=pb(z;) +c—1—-5(1—(z)) (47)
)
M =2 (z) Z O T 74 (48)
=1
- 2
T=Y A (49)
=1
Correspondingly,

H, +/H. + M,T
(b — X+ X+ XX (50)
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where

Hy = nby(0) + ¢, — 1= 3(1 - (0,)) (51)

My =2 <<ok> > it ) (52)

n

T,= <x,§7,.>. (53)

i=1

The following parameters have similar updates to &, with simple closed forms because of
the conjugacy of the distributions:

d—1
fo=4 2 (54)
¢+
. Kd+e—1
=< (55)
7+ 2T
-1
L (56)
n+v
The corresponding parameters related to X have similar forms:
dy —1
i, = Ghax—1 (57)
o+ 1
. Kd,+e —1
7= X X - (58)
¢+ D 4K
et fi—1
= . 59
A (59)

The expected value of z;|© is computed as:
(2]0,) =p(z,=1]0,)
n Hf:l N(Aj.kw;gk)ga(Hj,k |a, 5j,k)ga(5j.k|b7 b) (60)
(1 = m) (T N (Ald) + n T N (A410,,)Ga(04]a, 6;,)Ga(d,,1b, ¢5)

The prior on the indicator variable for sparse and dense components, 7, has a beta distribu-
tion, and its geometric mean is the following:

K

(In ) ¢<Z<zk>+a> — (K +oa+p) (61)

k=1

where v is the digamma function.
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The corresponding parameters related to X are

<Ok|@X> :P(Ok = 1|®X)
T H:l:l N(xk,i|gk,i)ga(6k,i|axv pk,i)ga(pk‘iwxa @) . (62)
(1- n)(H?le(xk,i|wk)) + ”H?:l N(xk,i|ak‘i)ga(ak,i|axa pk‘i)ga(pk,i|bxv ;)

(Inmy) = iok"_ax — Y (K + oy + By) (63)

Assuming that the residual precision has a conjugate (gamma) prior, WL ~ Ga(1,1), then we
I

have

(64)

YY" - 2Y(X)AT + AXXT)AT + 21)
n+2 '

Y= diag(

In estimating the factors, we invert a K x K matrix for each sample, and, in estimating the
loading matrix, we invert a K x K matrix for reach gene, so the main source of computational
complexity in our algorithm is O((n + p)K* ). To summarize the description above, we write
the complete VEM algorithm for parameter updates:

Algorithm 1: Variational expectation maximization for BicMix

Data: Y, K, n_itr, a, b, ¢, d, e, £, ax, bx, Cx, dx, €x, £x, &, B, dx, Bx
Initialize startingvalues:
Samplen, vy, x, ¢ — Ga(1,1)
Sample < Beta(a, ), 11— Beta(oy, fx),
for j— 1topdo
Sample ¢, ;  Ga(1,1)
for k+— 1 to Kdo
Sample z, <« Bern(n), oy« Bern(my)
Sample ¢y, Ty, Wi, Kx— Ga(1,1)
for j— 1 topdo
Sample D\, < N(0,1), Sample 65,1, 65, < Ga(1,1)
for i+ 1tondo
Sample xx, ; — N(0,1), Sample oy, ;, ok, : — N(0,1)
fort«—1lton itrdo
for j— 1 topdo
Update N;, .« Eqg (35)
for k— 1 toKdo
Update 65, x < Eq (42), &4, k< Eq (44)
for k+— 1 to Kdo
Update ¢« Eq (46), 1« Eq (54), zx < Eqg (60)
Updaten<«Eqg (55), y«<—Eqg (56), m«< Eqg (61)
for i« 1tondo
Update X, ; < Eqg (38)
for k< 1 to Kdo
Update ok, ; < Eq (43), pk,; < Eq (45)
for k— 1 to Kdo
Update wy +— Eqg (50), k<« Eq (57), ox«< Eqg (62)
Update x < Eq (58), @« Eq (59), mx+« Eg (63)
for j«— 1 topdo
Update ¢4, 5 < Eq (64)
Outputh, X, z, o
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Across hundreds of runs, we found that the number of recovered factors was stable within
each application with low variance. As a rule of thumb, we initialized the number of latent fac-
tors to K = 2 x min(#, p), and, if we find that the number of factors recovered is not reduced by
approximately a third, we increased the number of initial factors until we saw this substantial
reduction in K.

MCMC: Conditional distributions of BicMix parameters

We derive below the conditional distributions that capture the MCMC approach that we
implemented for BicMix. In our manuscript, we used MCMC to compute the warm start
parameter settings in the simulations.

We updated the loading matrix A one row at a time, where each row consists of values
across the K components. The jth row of the loading matrix, A; , has the following posterior
distribution,

-1
—I~T —1~T -1 —1~T -1
A]..,|Y].‘.x,@,.,lpﬁ.~/\/<Yj,¢j_jx (X, X"+ V) Xy X 4V, ) (65)

where V; is a K x K diagonal matrix. If we used V; x to denote the (k, k)th element for V;, then
we sampled V. and its related parameters as follows:

0, if z, =1
Vikx = (66)
¢, if z, =0.

Similarly, each column of X consists of values across the K components; the ith column of
the factor matrix, X ;, has the following posterior distribution,

XY A Z Y~ N(AP T A+W ) TATPTY AT A+ W, (67)

where W; is a K x K diagonal matrix. If W, ;. denotes the (k, k)th element of W, then we sam-
pled the value of W, as follows:

o, if o, =1,
Wik = (68)

o, if 0,=0.

We sampled values for the parameters conditional on sparse and dense state as follows. If z; = 1,

1 .
Ol 8~ 6760320, A7, (®)

5j,k|0j,k7 ¢, ~ Ga(a+b, Gj‘k + &) (70)

»
G0y, T ~ Ga (Pb +¢ Z O + Tk) : (71)

=1

Ika =0,

»
Dil T Ay~ G1G (C - g 21, Z Ajk) ‘ (72)
=
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Correspondingly, the following parameters related to X were sampled as follows. If 0, = 1

1 .
O-k.ilxk.ﬁ pkﬁi ~ ng <ax - 5 ’ 2pk.i’ x}f,i) (73)
pk.i|o-k,i7 Wy ~ ga(“x + bxa Pri T+ wk) (74)
0Py 0 ~ Ga (an + ¢y, Z P T cok) . (75)
i=1

If O = 0
n n
i, x; ~ GIG (Cx 5 2Ky szz> : (76)
P

The following parameters are not sparse or dense component specific; they each have a
gamma conditional distribution because of conjugacy:

Tl b n ~ Gale + d, ¢+ 1) (77)

K
nly, t, ~ ga<Kd+e,y+Zrk> (78)

k=1

vin, v~ Gale +f,n +v). (79)
Parameters related to X were sampled as,

Ky ~ ga(cx + dxv W + X) (80)

¥y~ Qa(KdXJrex,(erZKk) (81)
k

¢ ~ Galex +fo, 1 + &) (82)
The conditional probability for z; has a Bernoulli distribution:

T H;; N(Aj.k|0j7k)ga<0j,k|a7 5j,k)ga(5j,k|b7 o)
(1- ”)(Hf:1 N(Aj.k|¢k)) +n H;; N(Aj,kwjk)ga(gj,k'a? 5j7k)ga<5j,k|b7 o) ‘

p(z, =10,) =

Let p, = p(zx = 1|@,); then the conditional probability for zy is
Zk|Pz ~ Bern(pz)' (83)

The mixing proportion m has a beta conditional probability:

K K
ntlot, B, z, ~ Beta (oc + Z 1,_,,K- Z 1+ ,[3) (84)
k=1 k=1

where 1 is the indicator function.
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Similarly for X, the conditional probability for o, has a Bernoulli distribution:

plo, = 1]0y)
_ T H:’:1 N(xk,i|ak.i)ga(ak,i|ax> pk_i)ga(pk,i|bxa ) (85)
(1—-m) (1, N(xk.i|wk)) +n H?:l N(xk.i|0'k,i)g“(‘7k.i|“x7 pk,i)ga<pk.i|bx7 )

Let px = p(ox = 1|@y); then the conditional probability for oy is
Oklpx ~ Ber”(px)' (86)

The mixing proportion 7 has a beta conditional probability:
K K
nx‘o‘xa By, Oy ~ Beta| oy + Z ]]'Dk:17K - Z ]]-ok:(] + Py (87)
k=1 k=1

where 1 is the indicator function.
Finally, we have,

2
n Z?:l ()’j.i - 25:1 Aj,kxk,i)

+1]. (88)

We implemented the following MCMC algorithm for sampling the parameters of the Bic-
Mix model.

Algorithm 2: MCMC algorithm for BicMix

Data: Yp x ngene expressionmatrix, K, n_itr
Initialize parameters
fort«+—1lton itrdo
for j«— 1 topdo
for k< 1 to Kdo
Sample V; g, raccording toEg (66)
Sample N\, .according to Eg (65)
for k< 1 to Kdo
if z, =1 then
Sample ¢, according to Eq (71)
for j— 1topdo
Sample 05, yaccording toEq (69), &5, raccording toEqg (70),
if z, =0 then
Sample ¢, according to Eq (72)
for k< 1 to Kdo
Sample 1 accordingtoEq (77), zxwithEqg (83)
Sample naccording toEq (78), ywithEqg (79), nwithEqg (84)
for i< 1ltondo
for k< 1 to Kdo
Sample W;, x,xaccording to Eqg (68)
Sample X, ; according toEqg (67)
for k< 1 toKdo
if o, =1 then
Sample w, according to Eg (75)
fori+— 1tondo
Sample oy, ; according to Eq (73), pg,; according toEqg (74),
if 0, =0 then
Sample wy according to Eq (76)
for k< 1 to Kdo
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Sample x,according to Eq (80), oraccording to Eq (86)
Sample x according to Eqg (81), ewithEqg (82), nywithEqg (87)
for j«— 1 topdo

Sample /5, yaccording to Eq (88)
Outputh, X, z, o

Data processing and comparative methods

Processing the breast cancer gene expression data. The breast cancer data set is main-
tained by Dana-Farber Cancer Institute at Harvard University, and is available through their R
package: breastCancerNKI version 1.3.1 [70]. We removed genes with > 10% missing values.
We imputed the remaining missing values using the R package impute (version 1.36.0) [71,
111]. We projected the gene expression levels of each gene to the quantiles of a standard nor-
mal. There were 24,158 genes remaining in the data set after filtering.

Processing the CAP gene expression data. The Cardiovascular and Pharmacogenetics
(CAP) gene expression data were generated from the Krauss Lab at the Children’s Hospital
Oakland Research Institute and is publicly available at Gene Expression Omnimbus (GEO),
GSE36868. We used expression levels from 8,718 expressed genes measured in a sample of 480
human immortalized blood cell lines (LCLs) [45]. The data were processed according to previ-
ous work [45, 60], including filtering unexpressed genes; however, neither known covariates
nor PCs were controlled for before quantile normalization. We also removed genes with probes
on the gene expression array that aligned to multiple regions of the genome using a BLAST
analysis and human reference genome hgl9 in order to remove gene pairs that appeared well
correlated due to a co-hybridization effect. We did this because pairs of genes that were artefac-
tually correlated due to co-hybridization were incorrectly identified by BicMix as co-regulated
genes, and we wanted to control this artifact.

Processing the GTEx gene expression data. We downloaded from dbGaP the Genotype-
Tissue Expression (GTEx) project v4 pilot data [46]. The subset of gene expression data that
we used contained p = 20,134 genes measured in n = 446 samples across four tissues: adipose
(ng=103), artery (n, = 118), lung (n; = 122) and skin (n, = 106). We preprocessed these RNA-
seq data as in earlier work and recapitulated here [104].

We trimmed the RNA-seq reads from the GTEx pilot data v4 [46] using Trimmomatic
(v.0.30) [112]. We also trimmed the adapter sequences and overrepresented contaminant
sequences that are identified by FastQC (v.0.10.1) [113] with 2 seed mismatches and a simple
clip threshold of 20. For all reads, we trimmed the leading and trailing nucleotides (low quality
or Ns) until a canonical base was encountered with quality greater than 3. For adaptive quality
trimming, we scanned the reads with a 4-base sliding window and trimmed when the average
quality per base dropped below 20. We discarded sequences shorter than 30 nucleotides. We
were left with 3.65 B read pairs in adipose, 4.02 B read pairs in artery, 4.63 B read pairs in lung,
3.63 B read pairs in skin after trimming.

Before mapping the RNA-seq reads to human reference genome assembly GRCh37.p13, we
prepared the genome with STAR aligner genomeGenerate mode by setting the splice
junction database (s jdbGTF£file) to GENCODE v.19, and setting the splice junction data-
base overhang (sjdbOverhang) to 75 bp. We used default settings for the rest of the param-
eters. We ran STAR aligner alignReads using default settings except setting
outFilterMultimapNmax to 1. We mapped 14.52 B read pairs (91%) uniquely, and we
discarded the 1.2 B read pairs (7.5%) that mapped to multiple loci.

We converted the mapped reads to read counts (one read pair per read count) using the soft-
ware featureCounts [114] on settings that discounted multi-overlapping and chimeric
reads. We also required both ends of a read pair to be mapped to the same gene. After filtering all
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genes with > 25% non-zero values across all tissues, we were left with 20,134 genes. We normal-
ized the read abundance by gene length, GC-content, and library size using the Bioconductor
R package cgn [115], and the resulting gene expression values were mapped to the quantiles of
the standard normal distribution. Note that we did not correct for confounding factors nor
known covariates before quantile normalization. We concatenated these gene expression data

sample-wise to create a single response matrix Y € RP<(+ 1+ i+ n),

Simulation comparison

Using these simulated data, we compared BicMix to five other methods: Fabia, Plaid, CC,
Bimax, and Spectral biclustering. We ran these methods using the following settings.

For Sim1, we set the number of components to the correct values, and ran each method as
follows.

o We ran Fabia (version 2.10.2) using its default parameter settings.

o We ran Fabia-truth using default parameter settings. We set the sparsity threshold in Fabia
to the number (from 100 quantiles of the uniform distribution over [0.1, 5]) that produced
the closest match in the recovered matrices to the number of non-zero elements in the simu-
lated data.

We ran Plaid (implemented in the R package biclust [116] version 1.0.2) using
background = TRUE to capture the noise, maximum layers were set to 10, number of iter-
ations to find starting values was set to 10, and the number of iterations to find the layers was
set to 100.

We ran CC (implemented in the R package biclust [116] version 1.0.2) by setting the
maximum accepted score delta = 1.5 and the scaling factor alpha =1.0.

o We ran Bimax (implemented in the R package biclust [116] version 1.0.2) by setting the
minimum number of rows and columns to 2.

o We ran Spectral biclustering (implemented in the R package biclust [116] version 1.0.2)
by setting the normalization method to bistochastization, the number of eigenvalues
for constructing the biclusters was set to 10, and the minimum number of rows and columns
for the biclusters were set to 2.

For Sim2, we corrected the simulated data for the dense components by controlling for five
PCs in the simulated gene expression data, and we ran the methods on the residual matrix as in
Sim1l, setting the number of components to 10.

Redundancy of components

We calculated a simple statistic to check the redundancy of the multiple components recovered
across multiple runs as follows. For every component in all runs, we counted the number of
genes with non-zero values, denoted as n,, and the number of samples with non-zero values,
denoted as n; for each component. We then grouped the components that share the same 7,
and n,. For each pair of components in the same group, we counted how many components
have non-zero values for the same genes and the same samples (i.e., the £, norm between com-
ponents, or the Manhattan distance). Redundant components corresponded to pairs of factors
and loadings for which the Manhattan distance is zero.
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Algorithm for identifying gene co-expression networks from BicMix

We write out the algorithm we used to build the gene co-expression networks using the fitted
BicMix model. Note that the sparsity-inducing prior on the covariance matrix of the factors
increases the difficulty of computing the gene-wise covariance matrix relative to the common
identity matrix covariance in the prior of the factors; however, all of the elements necessary to
compute an estimate of the factor covariance matrix have been explicitly quantified in the
VEM algorithm already.

Algorithm 3: Algorithm to construct gene co-expression network

Data: px Kloadingmatrix and Kx n factormatrix; ¥; net type, rep, ¢, (d) .
for i< 1ton runsdo
fork,+— 1toK-1do
for k, — K, + 1 to Kdo
if cor (Mg, Ny,) x cor (g, Xx,)> 0.5 then
discard run
if net type =subset specific then
Add component to Awhen non-zero factorsareonly incontext c
if net type =subsetdifferential then
Compute Wilcoxon signed-rank test for non-zero factor values across con-
texts ¢, dAdd component to Awhen p< 1 x 1071°
Construct the covariancematrix for Xas s« (XX*) - (X) (X)T (Egs 41 and 38)
Calculate the variance for the residual as ¥« Eq (6

4)
Construct the precisionmatrix for subset AasA' = ( aZa N T + ‘P)

Run GeneNet [63] on Al to test significance of edges
Store edgeswithprobability of presence > 0.8
Count number of times each edge is found across all runs
Keep edges that are found > rep times
Output the nodes and edges
Draw graph using Gephi[117]

Quantifying the expected number of edges using ensemble method

We computed the (approximate) expected number of edges to appear r or more times at ran-
dom using our ensemble method as follows. Let R represent the total number of runs, r repre-
sent the threshold for number of runs an edge must appear, E represent the total number of
possible edges, and é represent the average number of edges per run. Note that this is an
approximate expectation because we are using é instead of the true number of edges recovered
in each run; this expectation has a noticeable impact on the result when the variance in edges
per run is large (this was the case only in the breast cancer data set), but otherwise lead to a rea-
sonable approximation.

We computed the probability of a single edge occurring in at least r networks as follows:

Pr(le|>1) = 1= Pr(le|=})

Pr(le =j) = j (E)QE)

Then the expected number of edges that will occur r or more times at random was
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approximated as follows, assuming edge independence:

Ellell = E - Prle] = ). (89)

Supporting Information

S1 Fig. Correlation between the sparse loadings (genes), dense factors (samples), and exper-
imental covariates in the breast cancer data. The x-axis represents 30 recovered factors; the
y-axis represents the observed covariates; darker blue and red represent large magnitude corre-
lations, whereas white represents no correlation.

(PDF)

S2 Fig. Correlation among the known covariates in breast cancer data. The x- and y-axes
represents the observed covariates; darker blue and red represent large magnitude correlations,
whereas white represents no correlation.

(PDF)

$3 Fig. Gene co-expression network specific to ER- samples. Node size corresponds to
betweenness centrality.
(PDF)

S4 Fig. Gene co-expression network specific to ER+ samples. Node size corresponds to
betweenness centrality.
(PDF)

S5 Fig. Heatmap of genes identified in the ER+ specific and ER- specific networks. There is
evidence of differential expression levels across the two sample types for these genes that are in
the ER+ and ER- specific networks.

(PDF)

S6 Fig. Correlation among the known covariates in the CAP data. The x- and y-axes repre-
sents the observed covariates; darker blue and red represent large magnitude correlations,
whereas white represents no correlation.

(PDF)

S7 Fig. Smoking status specific gene co-expression networks in the CAP data. Panel a: Gene
co-expression network specific to smokers. Panel b: Gene co-expression network specific to
non-smokers.

(PDF)

S8 Fig. Distribution of the number of genes in loadings and the number of samples in the
factors for the GTEx data. Both the sparse and dense loadings and factors are shown. Left:
number of genes for all loadings; Middle: number of samples for all factors; Right: a summary
of the PVE explained by the components across all runs, where upper bound and the lower
bound of the ribbon correspond to the maximum and minimum PVE, and the solid line corre-
spond to the median. The components are inversely sorted by the median.

(PDF)

$9 Fig. Principal components analysis applied to the GTEx pilot data. PC1 effectively sepa-
rates the four tissue types.
(PDF)
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S$10 Fig. Plaid applied to the GTEx pilot data. Each sample point is plotted with jitter to
denote the density of each tissue in each included or excluded component. The four factors
each capture variation in one (or a subset of one) of the tissues reasonably well, except for adi-
pose.

(PDF)

S11 Fig. Fabia with four components applied to the GTEx pilot data. Across factors 1, 2, and
3, the four tissue types are effectively separated.
(PDF)

S$12 Fig. Fabia with twenty components applied to the GTEx pilot data. With 20 factors,

Fabia is no longer able to separate the four tissue types because of limited sparsity.
(PDF)

$13 Fig. BicMix applied to the GTEx pilot data. The substantial sparsity induced in BicMix is
illustrated in these panels. Note that BicMix separates all four tissues in the first four factors.
(PDF)

S1 Table. Genes that are specific to ER- patients. The importance of the genes are ordered by
their betweenness centralities.
(TEX)

S2 Table. Genes that are specific to ER+ patients. The importance of the genes are ordered by
their betweenness centralities.
(TEX)

$3 Table. Genes that are differential between ER+ and ER- patients. The importance of the

genes are ordered by their betweenness centralities.
(TEX)

$4 Table. Genes that are in the adipose-specific network. The genes are ordered by their
betweenness centralities.
(TEX)

S5 Table. Genes that are in the artery-specific network. The genes are ordered by their
betweenness centralities.
(TEX)

S6 Table. Genes that are in the lung-specific network. The genes are ordered by their
betweenness centralities.
(TEX)

S7 Table. Genes that are in the skin-specific network. The genes are ordered by their
betweenness centralities.
(TEX)

S8 Table. Gene Ontology enrichment analysis across recovered factors for adipose tissue.
All term enrichments are for a cutoff of FDR < 0.05. Gene names are suppressed, but the num-
ber of genes in each factor is shown.

(TEX)

$9 Table. Gene Ontology enrichment analysis across recovered factors for artery tissue. All
term enrichments are for a cutoff of FDR < 0.05. Gene names are suppressed, but the number
of genes in each factor is shown.

(TEX)
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$10 Table. Gene Ontology enrichment analysis across recovered factors for lung tissue. All
term enrichments are for a cutoff of FDR < 0.05. Gene names are suppressed, but the number
of genes in each factor is shown.

(TEX)

S11 Table. Gene Ontology enrichment analysis across recovered factors for skin tissue. All
term enrichments are for a cutoff of FDR < 0.05. Gene names are suppressed, but the number

of genes in each factor is shown.
(TEX)

S12 Table. eQTLs for adipose tissue. Associations are listed in the order of the significance of
p values.
(TEX)

$13 Table. eQTLs for artery tissue. Associations are listed in the order of the significance of p
values.
(TEX)

S14 Table. eQTLs for lung tissue. Associations are listed in the order of the significance of p
values.
(TEX)

S15 Table. eQTLs for skin tissue. Associations are listed in the order of the significance of p
values.
(TEX)
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