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Abstract: Small vessel disease (SVD) is one of the most frequent pathological conditions which lead
to dementia. Biochemical and neuroimaging might help correctly identify the clinical diagnosis of
this relevant brain disease. The microvascular alterations which underlie SVD have common origins,
similar cognitive outcomes, and common vascular risk factors. Nevertheless, the arteriolosclerosis
process, which underlines SVD development, is based on different mechanisms, not all completely
understood, which start from a chronic hypoperfusion state and pass through a chronic brain inflam-
matory condition, inducing a significant endothelium activation and a consequent tissue remodeling
action. In a recent review, we focused on the pathophysiology of SVD, which is complex, involving
genetic conditions and different co-morbidities (i.e., diabetes, chronic hypoxia condition, and obesity).
Currently, many points still remain unclear and discordant. In this paper, we wanted to focus on new
biomarkers, which can be the expression of the endothelial dysfunction, or of the oxidative damage,
which could be employed as markers of disease progression or for future targets of therapies. There-
fore, we described the altered response to the endothelium-derived nitric oxide-vasodilators (ENOV),
prostacyclin, C-reactive proteins, and endothelium-derived hyperpolarizing factors (EDHF). At the
same time, due to the concomitant endothelial activation and chronic neuroinflammatory status,
we described hypoxia-endothelial-related markers, such as HIF 1 alpha, VEGFR2, and neuroglobin,
and MMPs. We also described blood–brain barrier disruption biomarkers and imaging techniques,
which can also describe perivascular spaces enlargement and dysfunction. More studies should be
necessary, in order to implement these results and give them a clinical benefit.

Keywords: small vessel disease; vascular damage; blood–brain barrier damage; reactive oxygen
species; endothelial dysfunction; metalloproteinases

1. Introduction

Small vessel disease (SVD) (also called cerebral small vessel disease, cSVD) relies on
the deep brain’s small vessels alterations. Small vessels are univocally defined as small
penetrating arteries, capillaries, and small veins. cSVD is strongly related to a chronic
hypoperfusion condition, which predisposes the entire brain to hemorrhagic events, white
(confluent or not) matter alterations, and lacunar events. SVD is the most important
and common cause of all the vascular forms of dementia (up to 45%), but as previously
underlined, it predisposes to a higher risk of vascular strokes (25–30% of cases) and 25–35%
of all the lacunar events [1,2]. The other crucial common characteristic of SVD is that its
pathological consequence could be represented by a silent lesion progression, which has its
clinical confirmation in dramatic radiological imaging, without apparent, evident acute
events. Thus, SVD is a clinical condition whose principal stigma is that the lesions may
progress over time, for imprecise rules, and above all, with or without clinical consequences,
in relationship with the extension and the confluency of the white matter alterations [3–5].

Generally, SVD clinical signs are concomitant psychological and behavioral sequelae,
summarized by an essential executive function disruption and standard neuropsychological
features (apathy and vascular depression) [1–4].
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In sporadic cerebral SVD, aging, diabetes, chronic hypoxia, and hypertension are the
most recognized clinical risk factors. Still, different hereditary forms of cerebral SVD have
also been described [6]. Small arterioles show significant disruptions in both cases, easily
described as arteriolosclerosis, lipohyalinosis, and severe endothelial disruption. Its princi-
pal consequence is a strong invalidation of the neurovascular coupling mechanisms and
vessel tone dysregulation [7,8], and even venules are interested in the ongoing process [9].
With the arteriolosclerotic process, SVD is characterized by a substantial increment in
cerebral amyloid angiopathy (CAA). This condition, which has been traditionally related to
Alzheimer’s disease, is, on the contrary, quite frequent in the normal aging process, and it is
dramatically evident in the SVD process. It is related to a consistent deposition of amyloid
b-peptide (Ab) in the walls of the small arterioles, and it increments the consequences of
altered neurovascular coupling in small parenchymal and leptomeningeal arterioles [9–11].

The principal consequence of arteriolosclerosis is the chronic hypoperfusive state,
which induces a perpetual neuro-inflammation state, and gives rise to an essential en-
dothelial activation. These conditions induce an overwhelming alteration of the oxidative
response, which potentiates the basal inflammation status of the deep brain structure,
expanding through different neural networks, principally the basal-forebrain ones [12].

In a recent review [12], we focused on the contribution of the complex and multifaceted
“vascular damage” in developing small vessel dementia, starting from small vessel disease
condition. We have written that the SVD is “an ongoing process, which begins with altered
microvessels and pial arteries and ends in subcortical dementia; CBF regional selective
decrease seems to be one of the critical factors for the progression from small vessel
disease to small vessel disease-related dementia, together with proved altered response to
inflammation, and oxidative stress” [12].

Neuroimaging is the main helpful diagnostic instrument for managing brain SVD.
Therefore, the main findings in SVD are subcortical infarcts, lacunes, white matter hy-
perintensities (WMHs), prominent perivascular spaces (PVS), and cerebral microbleeds
(CMBs) [13]. T2 or FLAIR MRI reports indicate confluent and symmetrical white mat-
ter hyperintensities [14–23] into the frontal and prefrontal-thalamus-basal forebrain net-
works [24–29]. Many instruments have been implemented to relate the number of lacunes,
the extension and the amount of surface of white matter hyperintensities, and their relation
to the subsequent cognitive and behavioral impairment [30–32]. The confluence between
clinical, neuropsychological, and neuroimaging findings helps to converge for a correct
diagnosis of the Vascular cognitive impairment, as stated in NINDS-AIREN criteria [33–35]
and the DSM-V R (Fifth Edition-revised) [36–39]. VCI refers to an ample spectrum of
vascular brain pathologies that contribute to cognitive impairment, ranging from mild and
subjective cognitive decline to overt dementia [40,41].

The state of the art in the VCI field is an ongoing definition [42], and many terms have
been employed, such as the descriptive ones of vascular cognitive disorder, subcortical
vascular dementia, and mild and major vascular neurocognitive disorders (Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) [36–39,43]. Others include
vascular cognitive disorder (VCD), while subcortical VAD (sVAD) has been employed
to define a circumscribed syndrome, related to small vessel disease [44–46]. However, it
is well defined that the difference between VaD subtypes may depend on the anatomi-
cal distribution of the vascular insults [47]. Usually, small artery disease is more often
associated with subcortical VaD than with cortical and cortical-subcortical VaD [47]. Execu-
tive dysfunctions and behavioral disorders (apathy and vascular depression, etc.) are the
commonest findings [48].

Very recently, excellent studies emerged on the potential role of transcranial doppler
findings in patients with white matter lesions, as possible markers for developing vascular
dementia. A significant example is the demonstration that patients with white matter
lesions, but without any other sign of cognitive impairment, showed a hemodynamic
patter of cerebral hypoperfusion and enhanced vascular resistance, as a distinctive marker
of a possible predictor factor of developing dementia [49]. Another significant result is
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the one obtained by a study using a transcranial Doppler, in which patients with ≥80%
unilateral internal carotid artery stenosis with no history of stroke were recruited [50];
this study demonstrated that cognitive impairment correlated linearly with lower flow in
the hemisphere fed by the occluded internal carotid artery, but only below a threshold of
MFV = 45 cm/s. [50]

Finally, transcranial doppler studies have shown that it could delineate a profile of
low perfusion and high vascular resistance in patients with a defined diagnosis of vascular
depression [49].

In this paper, we wanted to address the contribution of the chronic inflammatory brain
condition due to SVD and, starting from this situation, verify the possibility of finding new
biomarkers of endothelial dysfunction, inflammation, and oxidative damage, which could
be possible future targets of focused therapies.

2. Possible and Proved New Markers of Blood–Brain Barrier Leakage, Perivascular
Enlargements, and Mitochondrial Alterations

SVD has the small vessels (pial and the small penetrating) and white matter as a
significant definite target. Nevertheless, growing attention has been dedicated to disrupt-
ing perivascular spaces, astrocytic end-feet, capillaries, and veins. As a final point, the
blood–brain barrier (BBB) has been addressed as another potential target of the intrigued
mechanisms that underlie the small vessel brain pathology complex. BBB is not only a
solid defensive barrier but acts as an active and specific player of active selection crossover,
possessing cell-cell signaling with the end-feet of astrocytes and disclosure a potential role
of maintaining efflux pumps [51–55]. Thus, the disruption of the BBB is proportionately
increased by normal aging but progresses as a hallmark in different pathologies, i.e., mul-
tiple sclerosis or in primary inflammatory disease. Nevertheless, it is an expression of
white matter inflammation, even due to chronic hypoperfusion, such as the one which
occurs in small vessel disease [SVD], accomplishing the progression and the extension of
the white matter sufferance, named as white matter hyperintensities (WMH) [56–62], the
confluency of which is synonymous with SVD progression, leading to subcortical vascular
dementia (sVAD) [12,62]. In AD-prone patients, BBB disruption has been signaled even in
hippocampal degeneration, which occurs after a major stroke [61,62].

A dynamic contrast-enhanced MRI (DCE-MRI) [63] has been employed for in-vivo
quantification of the pathological passage of plasma through BBB [64,65]. Moreover, apart
from the BBB leakage, the possibility of estimating the vascular permeability-surface area
product (PS) and the plasma volume fraction (VP) in a given region of interest has also been
described [66,67]. The model suggested that PS increased with WMH severity, aging, and
other vascular risk factors, and at the same time, a lower blood vP [65]. The most promising
in-vivo demonstration is that BBB integrity is compromised in more severe WMH, even
beyond visible lesions [63] (Insert Figure 1).

Even if we know that BBB is disrupted in SVD, we do not know the reasons for BBB
leakage in this condition. The most disputed involvement is one of the pericytes. Pericytes
are capillary mural cells that stabilize newly formed vessels and induce repair. When a
pericyte-deficient adult mouse model has been employed [68], different transcriptional
changes in brain endothelial cells have been mapped due to a defective pericyte contact
at a single-cell level. In that conformation, endothelial cells, deprived of pericyte contacts,
seem to exhibit a “venous-shifted molecular pattern,” and therefore lack any capillary
specialization, and upregulate proteins which are typically expressed during developmental
stages, such as the Fibroblast Growth Factor Binding Protein (Fgfbp1), or those expressed
during pathological angiogenesis, such as Angiopoietin 2 (Angpt2). These aspects permit
a possible cell proliferation, with a very flawed arteriolar BBB regulation system, and
reduction of the angiogenesis process [68]. Fgfbp1 and Angpt2 levels could probably be
crucial markers of BBB leakage during SVD. More studies will be necessary to prove that.
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Figure 1. The vicious circle of SVD pathology.

Perivascular spaces (PVS) have gained an essential role in SVD pathogenesis; they
are no longer considered as virtual empty spaces, but as the most efficacious catabolites
clearance system [12]; they are resident sites of perivascular macrophages, pial cells, mast
cells, nerve fibers, and collagen fibers [69]. PVS are virtual spaces intimately connected
to deep arterioles [70]. Even in these conditions, they act as a lymphatic net, defined as a
glymphatic-perivascular territory [71].

Their malfunction, the hallmarks of which are the combined enlargement and widen-
ing, is the principal responsibility for perivascular accumulation of catabolites and toxic sub-
stances, which is determinant for enhancing ongoing neural damage until starvation [72,73].
The perivascular debris accumulation, together with the BBB leakage, potentiates and accel-
erates the perivascular inflammation, strongly favored by the stagnation-induced process
and by medical conditions which influence it, such as hypertension and diabetes [74–78].
PVS enlargement is responsible for an altered cerebrovascular reactivity (CVR) [12], due
to the extension of the constant inflammatory response [41] present as a constant marker
in SVD, due to the chronic hypoperfusion state. The PVS is never an isolated situation,
but it is accompanied by an altered BBB disruption and a significant perivascular in-
flammation [75,79–82]. More recently, new actors contribute with BBB leakage and PVS
enlargement to help the progress of SVD [83–86], such as the oligodendrocyte precursor
cells (OPCs), which generally help BBB stabilization [86,87] and the astrocytes, which exert
their fundamental role as regulating the signal of neuro-vascular coupling [12]. Oligoden-
drocytes are the first victims of chronic models of chronic cerebral hypoperfusion (CCH),
together with the precocious sufferance of the perineural space [88–90], and with a hyper-
activation of microglia, firstly in the hippocampus [91,92], then in the thalamus, up to
in the cortical neuronal population [93]. Secondary to oligodendrocytes, astrocyte death
occurs in proportion to the chronic ischemia condition’s length and severity [94,95], due
to the ongoing modifications of general and neuronal metabolic requests. Their death is a
consequence of chronic hypoxia, but it worsens neuronal death due to a lack of functions,
regulating the neurovascular coupling signal [96]. The process by which this occurs is
that during the entire process of chronic ischemia, microglia retract its branches, with
a consequent reduction of the length and strength of the microglial ramification, with a
concomitant degeneration of the soma [97]. The frontal activation of microglia occurs in a
two-step pattern: at the beginning, M1 activation upregulates TNF alpha, Il-23, IL-1beta,
and Il12 production, which attack neurons, and directly contribute to their injury; only
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after M2 activation occurs can the reparation process can begin [98]. In the SVD, due to
the chronic hypoxia-hypoperfusion condition [12], the passage through M1 towards M2
activation does not occur [98]. In SVD, there is a substantial augmentation of M1 activation,
together with a heavy reduction of M2 promotion [99,100]. The brisk oligodendrocyte
degeneration, associated with M1 activation, increases calcium currents and induces a
severe apoptosis process. The calcium increases, and the severe apoptosis is accompanied
by an augmentation of caspase-3 RNA and matrix-metalloprotease 2 (MMP-2) [101]. At
the beginning of the SVD process, these markers reflect the temptation reparation pro-
cess induced by a standard M1/M2 passage, as described above. Nevertheless, until the
chronic inflammatory condition occurs in SVD ongoing development, there is an alter-
ation of the M1/M2 passage, with a predominant M1 event; therefore, in SVD patients’
cerebrospinal fluid (CSF), there is a constant growth of oligodendrocyte-derived myelin
sheath-like myelin lipid sulfatide (ODMSMS) and myelin essential protein (MBP) due to the
massive oligodendrocytes death [102–105]. For similar reasons, markers of axonal damage,
i.e., neurofilament light chain (NFL), together with CSF α-1 antitrypsin, tissue inhibitor of
metalloproteinase-1 (TIMP-1), plasminogen activator inhibitor-1 (PAI-1), and apolipopro-
tein H (ApoH) have been found to increase very early in the CSF in SVD [106–108]. Finally,
due to the BBB leakage, ultrastructural studies find that in older animals as well as in those
affected by SVD, there are severe alterations of the capillary basement membrane of the
deeper arterioles, inside the white matter, filling plasma proteins into vascular bagging
and collagen deposition inside PVS, in a phenomenon described as microvascular fibro-
sis [55,98,109]. Many studies have testified that microvascular fibrosis and BBB splitting
have a higher CSF/serum albumin (SA) ratio in patients with SVD [109]. Matrix remod-
eling pathway (TIMP-1 and matrix metalloproteinases) as an expression of endothelium
disruption in SVD has been described [109] (Insert Table 1 here).

Table 1. Possible hematic or CSF markers of SVD.

Functional Domain Markers Effectiveness on SVD

BBB Leakage

DCE-MRI technique:
Increase in permeability
surface area
Increase in white
matter alterations
Lower blood plasma volume in
white matter altered regions

Demonstrate
diagnostic confirmation
Demonstrate the amount and
the progression of SVD
Determine the PS increasing
together with a lowering of
blood vP

Loss of pericytes: upregulation
of FGFBP1 and ANGPT2

Altered angiogenesis and
demonstration of a
venous-shifted molecular
pattern of BBB, due to the
altered arterial
regulatory properties

Enlargement of PVS Alteration of the
glymphatic system

M1 activation: increase in
TNF-alpha, Il-23, IL-1 beta,
and IL-12

Strong and chronic
neuroinflammatory condition,
shifted to a M1 vs.
M2 activation

General increment in caspase-3
RNA; of MMP-2

Promoting and overwhelming
the active
neuroinflammation condition
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Table 1. Cont.

Functional Domain Markers Effectiveness on SVD

Endothelial dysfunction
Decrease in ENOV,
prostacyclins, NO, eNOS,
and VE-cadherins

Altered production of NO, due
to decrease in its production
and increment in its
consumption, due to increment
in ROS

Increase in C-protein, EDHF,
VEGF, ICAM-1, sTM, Il-6, PA-1,
von Willebrand Factors, HIF-1
alpha; VEGFR, and Neuroglobin

Expression of endothelial
altered activation, with
important flawless permeability
and activation of
thrombotic pattern

Increase in homocysteine
Endothelial toxicity, promotion
of oxidative and
inflammatory damages

Increase in CSF/plasma
albumin ratio

Proof of endothelial
altered permeability

albuminuria Indirect proof of endothelial
altered permeability

Oxidative damage

Increase in SOD, prostacyclin,
and Hydrogen peroxide

Altered response to oxidative
stress, with damages to
mitochondria, altered oxygen
delivery, and endothelial
degeneration promotion

Decrease in NOX2
NADPH oxidase

Further reduction of proper
response to ROS accumulation;
their decrease is proportional to
endothelial inflammation
and alteration

APOE4 Promotion of endothelial
reduced resistance to ROS

3. Markers of Endothelial Dysfunction

As previously described [12], there is a global endothelial altered function in
SVD [110,111], which could be synthesized in an alteration of normal endothelial
response to endothelium-derived nitric oxide-vasodilators (ENOV) [112], prostacy-
clin [113], C-reactive proteins [114], and endothelium-derived hyperpolarizing factors
(EDHF) [115].

NO is rapidly removed in SVD for the mitochondrial alterations, with a consequent
anti-oxidative response and consumed by peroxynitrite (O2 anions plus NO) [116]. How-
ever, it can also be reduced in its production, as it occurs in normal aging [117], in an
accelerated way, in SVD, with a consistent down-regulation of endothelial NO synthase
(eNOS). Moreover, in SVD, there is an evident dysfunction of the Rho-associated protein ki-
nase (ROCK) [118] and the related ERM proteins (ezrin, radixin, and moesin), fundamental
for barrier properties’ integrity [118–120] and their induction of the downregulation of the
vascular endothelium cadherins (VE-cadherins) [121].

In diabetes, where SVD is a constant presentation form with a crucial endothelial
hyper-permeability, a concomitant increase in arteriolar deposition of advanced glycation
end products has been observed, which helps and maintains the increase in endothelial
permeability through Rho activation and an upregulation of the vascular endothelial
growth factor (VEGF) [122,123].

The superimposition of BBB disruption, endothelial dysfunction, and microvascu-
lar fibrosis causes a substantial permeability alteration, with albumin extravasation; the
increased CSF/plasma albumin ration is a proven witness of a severe progression of con-
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fluency of white matter lesions in SVD [124–127], together with albuminuria (even if not
well-accepted) [128–131].

Other important markers of endothelial altered activation [12,132–134] in SVD are
intercellular adhesion molecule-1 (ICAM-1), which has been considered as a generic expres-
sion of white matter progression [95], soluble thrombomodulin (sTM), interleukin-6 (IL-6),
plasminogen activator inhibitor-1 (PAI-1), and von Willebrand factor [129–134]. Others,
such as HIF 1 alpha, VEGFR2, and neuroglobin, are more evident when the confluency of
different WMH becomes constant in different models [135,136].

4. Markers of Oxidative Damages in SVD

Reactive oxygen species (ROS) is an umbrella term for many ordinary derivatives of
molecular oxygen, and their accumulation leads to a complex phenomenon called oxidative
distress. There are two species, hydrogen peroxide (H2O2) and the superoxide anion radical
(O2
−), which are key redox signaling agents generated under the control of growth factors and

cytokines by more than 40 enzymes, prominently including nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases [12] and the mitochondrial electron transport chain [126]. When
mitochondrial cells usually function, the active process of oxidative phosphorylation converts
oxygen to superoxide by oxidase enzymes, and superoxide can be transformed by superoxide
dismutase (SOD) or to non-radical hydrogen peroxide [126,136,137], i.e., from glutathione
peroxidase (Gpx), or when catalase enzymatically metabolizes hydrogen peroxide to water
and oxygen [136].

Chronic cerebral conditions of constant hypoxia are the principal inductors of the
uncontrolled production of ROS [138,139].

NADPH oxidase activity and mitochondrial are significantly higher in cerebral arteries
when compared with systemic arteries in blood vessels from healthy animals (mouse, rat,
pig, and rabbit) [140,141]. Thus, brain vessels are one of the most prominent productions
of ROS, suggesting that there could be fundamental ROS-dependent signaling in cerebral
arteries, which might be indispensable for vasoactive regulation properties.

Thus, the accumulation of ROS species, associated with mitochondrial dysfunction,
BBB disruption, and chronic inflammatory status are three conditions in SVD and are
proportionate to WMH extension. They lead to an altered endothelial further altered
activation, which is reflected in a decoupling of the neurovascular coupling system, with
significant sub-cortical and cortical signal alteration, with consequent reflex in oligodendro-
cytes astrocytes and finally to neurons [12,142]. An active role of flow-dependent responses
in rat cerebral arteries has been recently demonstrated in vivo, directly exerted by the
NADPH-oxidase reactions [143]. Specifically, Nox2-NADPH oxidase dysfunction is related
to the propagation of the ischemic brain injury, derived by the occlusion of larger pial
arteries; Nox2/NOx2 knock-out mice, in the same condition, show the minor extension of
brain injury after an ischemic infarct [144].

The induced alterations of mitochondrial DNA by ROS attacks and chronic ischemic
conditions are some of the most critical contributors to neuronal aging and degeneration,
either considering oxidative damage as a promoter or as a consequence of it [145–147].

The decline of mitochondrial functioning has been largely implicated in the aging
process and is characterized by a reduced density of mitochondria and reduced mitogene-
sis [148–152]. Such changes, which originate as replication errors, accumulate in postmitotic
tissues during aging, leading to increased proportions of impaired mitochondria [152].
In the aging brain, there has been a sufficient demonstration of impairment of synaptic
mitochondria leading to impaired neurotransmission and cognitive failure [149–155]. Pre-
cocious forms of small vessel disease, leading to vascular dementia, have been described in
specific mitochondrial point mutation [156]. Other mitochondrial mutation phenotypes
have been described as pure brain involvement, including fluctuating encephalopathy,
seizures, dementia, migraine, stroke-like episodes, ataxia, and spasticity [149,153–155].
Growing attention should be paid to mitochondrial DNA mutations for brain pathologies,
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in order to gain more robust data on their possible relevance, and their correlation with
postmortem neuropathologic features, to advance our understanding [156–161].

Oxidative stress potentiates the disorders of the endothelium-dependent NO signal-
ing [162,163]. Uncoupling endothelial NO synthase (eNOS) (i.e., in relation with lower
levels of tetrahydrobiopterin) switches the production of NO to that of superoxide, caus-
ing an overwhelming potentiation of ROS production, accelerating the oxidative stress,
lowering the NO anti-inflammatory properties [164,165], and reducing NO modulation of
Rho-kinase activity, inhibiting vascular tone control [166]. Rho-kinase, as a counterpart,
influences mRNA-stability of eNOS [167].

The induction of oxidative stress is one of the most important promoters of patho-
logical angiogenesis, by lipid oxygenation, thickening the blood vessel walls [168,169].
Moreover, the ApoE4 allele and the AD process seem to be involved in promoting vascular
alterations independently of other recognized factors, i.e., age, diabetes, hypertension, and
obesity, etc. However, it is supposed to worsen the confluency of WMH, probably somehow
linked to ROS augmentation, without any other positive data [170–172].

5. Inflammation and SVD

As above written, neuroinflammation is a common finding in SVD models; it is tightly
related to chronic hypoperfusion condition and defined as located hypoxia condition, the
common finding of SVD. The pivotal role of neuroinflammation in SVD could accelerate the
lipid peroxidation precipitation of the redox system and promote a more robust activation
of M1 than M2 [173].

It has been demonstrated that NO-related metabolite, citrulline, and dimethylarginine
(DMA) concentrations were significantly higher in patients with strategic infarcts [174].
Arginine depletion was an independent predictor of VaD [174]. S100B (calcium-binding
protein B) is a protein that stimulates the expression of pro-inflammatory cytokines. SomIt
has been described to have a significant correlation between S100B/asymmetric dimethy-
larginine levels and cognitive decline in patients with leukoaraiosis [175,176].

Homocysteine could be a potential marker of neuroinflammation inside SVD, pro-
moting the increase in TNF-alpha and IL1-beta, upregulating the transcriptional fibroblast
growth factor-2, IL-6, and IL-8, [177,178], and enhancing the VEGF/ERK1/2 signaling
pathway [179,180], which can be seen frequently in the atherosclerosis process. Homocys-
teine is directly linked to the B-inflammatory pathway through a direct upregulation of
pyruvate kinase muscle isoenzyme 2 (PKM-2), B-mediated, which mainly promotes the
inflammatory basis of atherosclerosis cascade [181,182].

Homocysteine accumulation promotes an increase in the endoplasmic reticulum (ER)
stress, upregulating metalloproteinases-9 (MMP-9), and inducing apoptosis [183]. Defini-
tively, the accumulation of homocysteine in animal models enhanced the expression of the
AGEs or vascular cell adhesion molecule [184] and MMP-9 [185]. The inflammation cascade
could be mediated by the effects on smooth muscle cells rather than on the endothelium
alterations [186,187].

Chronic inflammation and oxidative stress have been suggested as concurrent mech-
anisms of SVD. A possible link between accumulation products (i.e., homocysteine) and
other markers could be the circulating metalloproteinases (MMPs) and the tissue inhibitors
of metalloproteinases (TIMPs) [188].

MMPs, some of the Ca2+-Zn endopeptidase, have been described as having six dif-
ferent properties: collagenase, gelatinases, stromelysins, matrilysin, membrane-specific
metalloproteinases, and no other specified. Their specific role inside the brain is complex
and multifaceted; it begins with the neuronal networks remodeling throughout the integrity
of the BBB [189]. MMP remains inside the brain, probably in inactivate form, and is active
only under special conditions, such as chronic hypoperfusion or chronic inflammatory
status. The significant components are MMP2 and MMP14, which are present specifically
inside astrocytes, whereas microglia present the MMP-3 and the MMP9, which, by defini-
tion, are called inflammatory metalloproteases. Their expression is more severe in acute
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damage and gradually decreases in the reparation phases. They can be found near the
damaged areas and in the propinquity vessel-related areas [190].

There are four possible mechanisms which have been related to MMP involvement in
SVD and, in general, in the neuroinflammation process. The most obvious and well-studied
MMP directly activates signaling cytokines, cell-receptors, and adhesion molecules. There
are essential works that testify that, even directly, MT4-MMP upregulates a TNF-alpha
convertase, and is able to activate TNF-alpha, in its soluble and active [191,192]. Secondly,
there are many pieces of evidence in different clinical cases (neurological bacterial infection
and PD, etc.), in which there is a direct activation, probably mediated by lipopolysaccha-
rides, calcium currents and other apoptotic signals, and alpha-synuclein deposits, which
activate MMP-3 into the interstitial brain fluid, and there, it triggers M1 activation, with a
consequent (and above-described) M1 activation [193,194].

Thirdly, MMP seems to be tightly involved in the so-called Fas-FasL system. This
system has been known as an inducer of extrinsic cell death responsible for cell-mediated
cytotoxicity and peripheral immune regulation. MMP might improve the FAS system,
probably through an intrinsic possibility of modulating chloride channel activity, inducing
and promoting glutamate excitotoxicity currents, or altering the interactions between
neuronal cells and extracellular matrix compounds [195].

Finally, the MMPs participate in many digestive processes at the BBB, particularly the
tight junctions and the basement membrane. It has been proposed that MMPs digest tight
junctions and basement membrane proteins, thus contributing to BBB leakage [196]. The
increased activity of MMP, tightly associated with a higher permeability at the BBB, has
been demonstrated in vivo during the reperfusion process through an increase in MMP-2
and MMP-9 mRNA activity [197]. The induction of BBB leakage has, as an indirect effect,
an increment in the vasogenic edema, inside the WM, with a drastic increment in vascular
demyelination process (Insert Figure 2).

Int. J. Mol. Sci. 2022, 23, 3508 9 of 22 
 

 

inside astrocytes, whereas microglia present the MMP-3 and the MMP9, which, by defini-
tion, are called inflammatory metalloproteases. Their expression is more severe in acute 
damage and gradually decreases in the reparation phases. They can be found near the 
damaged areas and in the propinquity vessel-related areas [190]. 

There are four possible mechanisms which have been related to MMP involvement 
in SVD and, in general, in the neuroinflammation process. The most obvious and well-
studied MMP directly activates signaling cytokines, cell-receptors, and adhesion mole-
cules. There are essential works that testify that, even directly, MT4-MMP upregulates a 
TNF-alpha convertase, and is able to activate TNF-alpha, in its soluble and active 
[191,192]. Secondly, there are many pieces of evidence in different clinical cases (neuro-
logical bacterial infection and PD, etc.), in which there is a direct activation, probably me-
diated by lipopolysaccharides, calcium currents and other apoptotic signals, and alpha-
synuclein deposits, which activate MMP-3 into the interstitial brain fluid, and there, it 
triggers M1 activation, with a consequent (and above-described) M1 activation [193,194]. 

Thirdly, MMP seems to be tightly involved in the so-called Fas-FasL system. This 
system has been known as an inducer of extrinsic cell death responsible for cell-mediated 
cytotoxicity and peripheral immune regulation. MMP might improve the FAS system, 
probably through an intrinsic possibility of modulating chloride channel activity, induc-
ing and promoting glutamate excitotoxicity currents, or altering the interactions between 
neuronal cells and extracellular matrix compounds [195]. 

Finally, the MMPs participate in many digestive processes at the BBB, particularly 
the tight junctions and the basement membrane. It has been proposed that MMPs digest 
tight junctions and basement membrane proteins, thus contributing to BBB leakage [196]. 
The increased activity of MMP, tightly associated with a higher permeability at the BBB, 
has been demonstrated in vivo during the reperfusion process through an increase in 
MMP-2 and MMP-9 mRNA activity [197]. The induction of BBB leakage has, as an indirect 
effect, an increment in the vasogenic edema, inside the WM, with a drastic increment in 
vascular demyelination process (Insert Figure 2). 

 
Figure 2. A synopsis of the metalloproteinases action inside the brain, redirecting in SVD pathology. 

These data have been evoked in animal models and rare human models, and there is 
a substantial lack of information, i.e., on the possible relationship between MMP levels 
and extension and repairing of stroke lesions [198,199].  

Metalloproteinases

promoting  
neuroinflammation

Activation of 
neurosgnals (clotting 

factors, cell-cell signals)

modulation of GABA/ 
glutamtete and calcium 

currents

promoting alterations of 
barrier permeability

proteolyzation of   
cerebrovascular 

basement and  alteration 
of tight junctions

Figure 2. A synopsis of the metalloproteinases action inside the brain, redirecting in SVD pathology.

These data have been evoked in animal models and rare human models, and there is a
substantial lack of information, i.e., on the possible relationship between MMP levels and
extension and repairing of stroke lesions [198,199].

Nevertheless, some interesting points shed some light on the topic: increased conflu-
ency of WMH could be related to higher levels of TIMP-4, after three months of a primary
stroke [199].

In a recent study, Arba et al. showed that increasing the grade of SVD sustains higher
levels of TIMP-4 and supports the involvement of TIMP-4 in the pathologic process of SVD;
they studied a population of an ischemic stroke patient, reporting that brain atrophy was
associated with baseline TIMP-4 levels and leukoaraiosis was associated with 90-day TIMP-
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4 levels. A global SVD score, expressed as a combined product of leukoaraiosis, lacunes,
and brain atrophy, was associated with TIMP-4 levels at 90 days with a dose-response
effect [199].

Increased levels of MMP have been associated with severe white matter alterations
and a cognitive profile that resembles sVAD [200,201]. In particular, a positive relationship
between MMP2 lower levels has been found, together with an increase in albumin index in
CSF of SVD patients, as above written [202–204].

Due to lipohyalinosis substitution of smooth muscle cells in arterioles (as described
in 12), there is an inverse correlation between TIMP-4 elevated levels (only in animal
models) and reduction of lipohyalinosis and collagen bagging through an undescribed and
uncertain mechanism [205–207].

All these aspects accounted for, MMPs and tissue inhibitors of metalloproteinases-1
(TIMP-1) could be promising SVD biomarkers [208,209].

6. Potential Future Therapies Approach

Different approaches can be employed to offer potential treatment for VCI, at the
moment these are only symptomatic; many data have been obtained from cholinesterase
inhibitors and memantine [210].

Potential treatment strategies for brain SVD might include those that target antioxidant
effects for the endothelium of small cerebral vessels and the BBB. Due to the major decrease
in NO bioavailability in SVD, NO donors could help release the functioning endothelium of
small vessel disease, limited by their susceptibility to tolerance development. The apparent
strategy, in the same manner as the administration of potent antioxidants such as Vitamins
C and E, has shown to be beneficial for vascular function in several experimental and small
clinical trials [211].

Disappointingly, the results of large clinical trials of antioxidant supplementation
have largely failed to show any benefit. The ROS scavenger tempol is cell-permeable and
has been used in experimental studies, as well as edaravone (O2-scavenger). The ROS
scavenger tempol is cell-permeable and has been used in experimental studies, as well as
edaravone (O2-scavenger). Problems derived from NADPH oxidase activity, particularly
its primary contributor, Nox2. It can be argued that prolonged selective therapies could
help prevent brain SVD but invariably lead to an immunosuppression condition and many
other side effects derived by other different Nox oxidases [137,145,212].

Notably, three of the most influential and frequently prescribed classes of drugs
for the treatment of vascular risk factors, which have been shown to inhibit NADPH
oxidases, reducing oxidative stress, are the Angiotensin-converting-enzyme inhibitors
(ACE inhibitors), Angiotensin II receptor type 1 (AT 1) antagonists, and the statins [3,4].
There are no impressive studies on these drugs as primary NADPH inhibitors, rather than
their well-known function per se.

Many other trials have been conducted and are still ongoing [213].
Phenolic acids (or phenolcarboxylic acids) are aromatic acid compounds contain-

ing a phenolic ring and an organic carboxylic acid function [214]. Among the most
studied molecules belonging to this group, caffeic, chlorogenic, o-coumaric, p-coumaric,
m-coumaric, ferulic, and cinnamic acids are the most commonly consumed in the hu-
man diet, being contained in coffee [215], together with gallic, p-hydroxybenzoic, vanillic,
syringic, and protocatechuic acids. They can be found in bran, grain brown rice, olive
oil, tea, cherries, plums, gooseberries, and red wine [216]. These substances have been
studied among middle-aged adults, showing a benefit of their intake in different cognitive
domains [217–224].

In the same way, rosmarinic acid induced a promotion of oxidative stress response
and a reduced lipid-peroxidation [225], but also reduced the gene expression of inducible
nitric oxide synthase [225,226], and promoted neuroprotection, reducing matrix metal-
lopeptidase 2 (MMP2), and IL-1 beta [225–227]. Myrtenal has been recently employed
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as a multi-property substance (anti-inflammatory and anti-oxidant) [228] but results are
only promising.

Apart from physical aerobic activity and avoiding vascular risk factors (smoking, high
quantities of carbohydrates, and alcohol consumption, etc.), even external stimuli have
been applied in studies; in order to implement cognitive abilities on vascular deterioration,
transcranial magnetic stimulation has been studied, which it is still under debate, because
its activity on the dorsal striatum with the consequential increase in dopamine release
may contribute to the clinical and neurophysiological outcome in vascular depression and
vascular cognitive impairment [229] (Insert Scheme 1).
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7. Conclusions

In the last few decades, the concept of vascular contributions to cognitive impairment
and dementia has been emphasized. Cerebral small vessel disease is a common neurocog-
nitive disorder and source of disability. Pathophysiology of cSVD is complex, involving
multiple pathways, as described before. Several risk factors, including genetic, co-morbid
complications, and environmental factors, contribute to the pathogenesis or exacerbate
the complications. Inflammation, chronic hypoperfusion, oxidative damage, glymphatic
alterations, and BBB disruption might be potential contributors to the pathogenesis of
this complex phenomenon. MMPs, ROS, and other reactive factors trigger inflammatory
responses, leading to the abnormalities in small vessels and endothelium dysfunction
associated with CSVD.

This study has several limits: Although comprehensive, the approach used in the
examined investigations in the attempt to disentangle the complex pathomechanisms of
VCI has a number of caveats and potential criticisms. So far in our study, we have tried
to have the most homogenous definition, but otherwise, just examining different animal
models could represent not a constant level of clinical reversibility. Therefore, the available
results on a relatively small sample size might not be confirmed on larger populations,
although most of them were obtained from homogeneous samples.

Another limitation is that the correlation between different techniques and the anatom-
ical distribution and severity of vascular lesions has been rarely systematically investigated;
therefore, without the contribution of advanced imaging, blood samples, cerebrospinal
fluid, laboratory models, or the combination of techniques, the conclusions that can be
reached cannot be sufficiently powerful.

Finally, results do not usually provide specific clinical information, although they are
sensitive to the “global weight” of several biochemical pathways and neurotransmitter
activities. Consequently, a panel of changes, rather than a single marker of disease, should
be considered.

More detailed investigations are required to understand the pathophysiology of SVD.
Several fluid biomarkers that might be used in diagnostic settings have been identified.
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Thus, currently, there is little value in blood tests. CSF biomarkers may help physicians
separate vascular and neurodegenerative causes based on BBB disruption and extracellular
matrix breakdown. Alongside the need for a correct diagnosis of the disease, biomarkers
could be valuable tools to monitor the progression of the disease itself and the possible
response to treatment. In this work, we have tried to underline the importance of the inflam-
matory response in disease pathogenesis. Much further work needs to be conducted along
with these positions. The search for an optimal panel of biomarkers with high sensitivity
and specificity will provide the crucial tools to enhance success in identifying valid biomark-
ers in SVD. A combination of biochemical and imaging markers and psychometrics will be
necessary to improve the diagnostic accuracy progression of the pathology and finally to
monitor response to possible treatment. We believe that the contribution of inflammation
on SVD is significant and should be further studied to identify new therapeutic possibilities.
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Abbreviations

Ab Amyloid b-peptide
AD Alzheimer′s Disease
Angpt2 Angiopoietin 2
ApoH Apolipoprotein H
BBB Blood—brain barrier
CAA Cerebral amyloid angiopathy
CBF Cerebral blood flow
CCH Chronic cerebral hypoperfusion
CNS Central Nervous System
COX Cyclooxygenase
CSF Cerebrospinal fluid
cSVD Cerebral small vessel disease
CVR Cerebrovascular reactivity
EC Endothelial cells
EDHF Endothelium-derived hyperpolarizing factors
eNOS Endothelial NO synthase
ENOV Endothelium-derived nitric oxide-vasodilators
Fgfbp1 Fibroblast growth factor binding protein
GABA Gamma-aminobutyric acid
GPx Glutathione Peroxidase
GSH Glutathione
ICAM-1 Intercellular adhesion molecule-1
IL Interleukin
ISF Interstitial fluid
MBP Myelin basic protein
MMPs Matrix metalloproteinase
NADPH Nicotinamide adenine dinucleotide phosphate
NfL Neurofilament light chain
NO Nitric oxide
ODMSMS Oligodendrocyte-derived myelin sheath-like myelin lipid sulfatide
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OPCs Oligodendrocyte precursor cells
PAI-1 Plasminogen activator inhibitor-1
PS Permeability-surface area product
PVS Perivascular spaces
ROCK Rho-associated protein kinase
ROS Reactive oxygen species
SA Serum albumin
SVD Small vessel disease
SOD Super Oxide Dismutase
sTM Soluble thrombomodulin
TIMPs Tissue inhibitors of metalloproteinases
TNF-α Tumor necrosis factor-α
VCI Vascular cognitive impairment
VE-cadherins Vascular endothelium cadherins
VEGF Vascular Vascular endothelial growth factor
vP Plasma volume fraction
WMH White matter hyperintensities
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