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Abstract
Background and Objectives
Very poor outcome despite IV thrombolysis (IVT) and mechanical thrombectomy (MT)
occurs in approximately 1 of 4 patients with ischemic stroke and is associated with a high logistic
and economic burden. We aimed to develop and validate a multivariable prognostic model to
identify futile recanalization therapies (FRTs) in patients undergoing those therapies.

Methods
Patients from a prospectively collected observational registry of a single academic stroke center
treated with MT and/or IVT were included. The data set was split into a training (N = 1,808,
80%) and internal validation (N = 453, 20%) cohort. We used gradient boosted decision tree
machine learning models after k-nearest neighbor imputation of 32 variables available at ad-
mission to predict FRT defined as modified Rankin scale 5–6 at 3 months. We report feature
importance, ability for discrimination, calibration, and decision curve analysis.

Results
A total of 2,261 patients with a median (interquartile range) age of 75 years (64–83 years), 46%
female, median NIH Stroke Scale 9 (4–17), 34% IVT alone, 41% MT alone, and 25% bridging
were included. Overall, 539 (24%) had FRT, more often in MT alone (34%) as compared with
IVT alone (11%). Feature importance identified clinical variables (stroke severity, age, active
cancer, prestroke disability), laboratory values (glucose, C-reactive protein, creatinine), im-
aging biomarkers (white matter hyperintensities), and onset-to-admission time as the most
important predictors. The final model was discriminatory for predicting 3-month FRT (area
under the curve 0.87, 95% CI 0.87–0.88) and had good calibration (Brier 0.12, 0.11–0.12).
Overall performance was moderate (F1-score 0.63 ± 0.004), and decision curve analyses
suggested higher mean net benefit at lower thresholds of treatment (up to 0.8).

Conclusions
This FRT prediction model can help inform shared decision making and identify the most
relevant features in the emergency setting. Although it might be particularly useful in low
resource healthcare settings, incorporation of further multifaceted variables is necessary to
further increase the predictive performance.
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Even with the outstanding efficacy of mechanical thrombec-
tomy (MT) for treatment of large-vessel acute ischemic
stroke (AIS), 1 in 5 patients in the randomized controlled
trials1 and 1 in 3 patients in real-world settings2 have very
poor long-term outcome (modified Rankin Scale [mRS] 5–6
at 90 days) despite a technically successful intervention. The
term futile intervention was coined to elucidate this issue.3-5

Similarly, 1 in 5 patients receiving IV thrombolysis (IVT) has
very poor long-term outcome despite best available treatment
with even higher prevalence rates in elderly patients.6

Given the need for informed shared decision making and the
high societal and health economics burden of both treatments,
there is a need to proof that MT remains (cost-)effective in
patients at high risk for futile recanalization therapies (FRTs).4,7

Although individual patients’ preferences may vary, the 5-year
quality-adjusted life expectancy in stroke survivors reachingmRS
5 is minimal (0.06).8-10 Several clinical and imaging biomarkers
associated with FRT have been identified.4,11-18 However, the
models developed for MT are insufficient to reliably inform
patient and proxies and to guide the decision-making in in-
dividual patients.19-22 Besides the MR PREDICT tool,23 which
can be used for patients undergoing bridging IVT, no model for
IVT-only patients not fulfilling endovascular trial criteria has
been developed in the context of contemporary MT. A reliable
prediction algorithm to identify patients who will have FRTwith
variables available at baseline is missing. Such an algorithm is
needed to realistically inform patient and proxies about the po-
tential risk/benefits of treatment and facilitate patient-oriented
informed decision (e.g., withholding maximal therapy if ad-
vanced directives state that the patient does not wish to live with
severe dependency). In addition, because, in several countries,
access toMT and qualified personnel is limited,24 but with rising
strain and workload,25 reliable FRT prediction could accom-
modate the rising demand and increasing healthcare costs.

We hypothesized that the combination of several clinical, lab-
oratory, imaging, and workflow variables would enable accurate
prediction of FRT after both IVT and MT to better inform
shared decision making and possibly even to avoid futile
therapies. In addition, we wanted to perform internal validation
of the developed model, analyze the clinical utility of the final
model, and analyze potential differences in predictors of FRT
between patients with and without detectable vessel occlusion.

Methods
This study adheres to the transparent reporting of a multi-
variable prediction model for individual prognosis or di-
agnosis statement.26,27

We included consecutive adult patients from the registry
treated with IVT and/or MT between January 2015 and Oc-
tober 2020 and excluded patients with missing outcome at 3
months (12%, n = 322). Patients with missing outcome had a
slightly worse prognostic profile with a higher stroke severity,
more history of transient ischemic attack, longer onset-to-
admission times, and more frequent MT (see eTable 1, links.
lww.com/WNL/C129 for full comparison). Patients had to
receive IVT alone, MT alone, or a combination (bridging ap-
proach). At our center, we have a liberal approach of IVT and/
or MT indications performing treatment also in borderline
indications such as low stroke severity, distal occlusions, ex-
tended time window, and prestroke impairment (see our
guidelines for detailed indications/contraindications).28

The purpose of the developed model is the prospective pre-
diction of very poor 3-month functional outcome in patients
with AIS who are potential candidates for IVT and/or MT.
The intended use of the machine learning (ML) algorithm in
the acute stroke workflow has been published and is presented
in Figure 1.29 In brief, it is intended to inform shared decision
making with the patient and next of kin based on the proba-
bility of FRT, after the decision for IVT and/or MT treatment
has beenmade, but before treatment has been actually started.

Standard Protocol Approvals, Registrations,
and Patient Consents
Approval by local ethics committee was granted (Kantonale
Ethikkommission, Bern, Switzerland: ID 231/2014 and ID
2020-01696) waiving consent of participants in accordance
with Swiss Law.

We randomly split the final data set (n = 2,261) in the training
set (80%, n = 1,808) used for development and internal val-
idation (20%, n = 453). The flowchart showing patient in-
clusion and the study design is shown in eFigure 1 (links.lww.
com/WNL/C129).

Clinical, laboratory, imaging, and workflow variables were
collected prospectively by dedicated research staff, and
missing values completed by using the clinical information
system. Initially, 32 baseline admission variables were con-
sidered, but we dropped input variables (features) that were
not routinely registered when more than 25% of the values
were missing. Dropped variables included D-dimer, high-
density lipoprotein cholesterol, hemoglobin A1c, triglycer-
ides, troponin, and activated partial thromboplastin time. See
eTable 2 (links.lww.com/WNL/C129) for a full list of fea-
tures considered and their respective definitions. The choice
of independent variables was based on existing literature on
pathophysiologically plausible associations with FRT that

Glossary
AIS = acute ischemic stroke; AUC = area under the curve;CRP =C-reactive protein; FRT = futile recanalization therapy; IVT =
IV thrombolysis; ML = machine learning; MT = mechanical thrombectomy; ROC = receiver operating characteristic.
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were available and documented in a sufficiently high data
quality at our institution.

FRT was defined as mRS 5–6 at 3 months dichotomizing the
outcome as a binary target variable and was assessed by
certified physicians during routine clinical visits or certified
study nurses by semistructured telephone interviews. Death
was assessed through linkage with the national mortality
registry. Assessors were not blinded but unaware of this
project at the time of assessment. Classes of FRT were im-
balanced (24% mRS ≥5, 76% mRS <5, ratio 3.2:1). We
imputed missing data with k-nearest neighbor (k = 15
neighbors) imputation on normalized data of the training
and validation separately. We normalized features to [0,1]
interval with min-max normalization.

We implemented Gradient Boosting (XGBoost classifier) by
means of Python (3.7.7) scikit learn30 (0.22.1), XGBoost31

(1.2.0, for XGBoost classifier) based on a previous project
showing that this algorithm had good overall performance and
high robustness.29

We used a nested, stratified 10-fold cross-validation strategy
for model development (XGBoost classifier).29 In the outer
cross-validation loop, the training data set was split into 10
equally sized subsets.29 Nine of the 10 subsets were used for
training and 1 for validation. In the inner loop, hyper-
parameter optimization was performed based on maximiza-
tion of F1-score in a 10-fold randomized grid search using the
data of the previously formed 9 folds.29

For validation, we trained ML algorithms using the setting of
the nested cross-validation’s inner loop on the complete
training data (10-fold randomized grid search) and applied the
resultingMLmodel to separate validation data (n = 453).29We

repeated this process 20 times using a different random seed for
algorithm initialization in each run.

Statistical Analysis
We assessed univariate associations of clinical variables with
FRT in the overall cohort as well as training and validation
data separately using standard descriptive statistics: χ2 and
Fisher exact tests for categorical variables, the Mann-Whitney
U test for non-normally continuous or ordinally scaled vari-
ables, and the Welsch t test for independent normally dis-
tributed data. We used the pmsampsize Stata Package (Stata
Statistical Software: Release 16; StataCorp, College Station,
TX) to calculate the minimum sample size required using 40
candidate predictors based on an assumed outcome preva-
lence of 25% and a lower bound for the new model’s R2 value
of 0.25.32 This resulted in a final sample size of 1,230 patients.

We report model discrimination, calibration, and clinical
utility. For discrimination of themodels at the threshold of p =
0.5, we report precision, recall, F1-score, accuracy, balanced
accuracy, specificity, and Matthew correlation. Furthermore,
we report the area under the curve (AUC) of the receiver
operating characteristic (ROC) and the average precision
score throughout all possible thresholds. For calibration of the
model, we report Brier score and expected calibration error
grounded on 10 bins. We computed feature importance using
Shapley values for the XGBClassifier. Permutation feature
importance was defined as a decrease in F1-score by shuffling
the values of a single feature randomly. Decision curve anal-
ysis33 is reported to quantify the clinical utility of themodel on
validation data. Because the a priori probability threshold will
vary according to healthcare resources, we did not define a fix
a priori threshold for risk of FRT to assess the net benefit. The
results are reported as mean and CI based on 10-fold cross-
validation (model development). Performance on validation

Figure 1 Intended Use of the Model in a Stroke Workflow

IVT = IV thrombolysis; ML =machine learning; mRS =modified Rankin scale; MT =mechanical thrombectomy. TheMLmodel outputs a probability (risk score)
for mRS 5–6 based on variables available ahead of recanalization therapies. This information is provided to the treating physicians after selection of patient
for recanalization and could serve as a marker for futile recanalization. Workflow derived from Meier et al. with permission.29
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Table 1 Baseline Characteristics of all Included Patients

Feature Unit/definition

Training data (n = 1,808) Validation data (n = 453)

No FRT
(n = 1,377)

FRT
(n = 431) p Value

No FRT
(n = 345)

FRT
(n = 108) p Value

Clinical variables

Age 72.6 (61.6–81) 82.4 (74.5–87.7) <0.001 72.2 (62.4–80.9) 83.6 (75.5–88.1) <0.001

Sex Male 774 (56.2) 206 (47.8) 0.002 190 (55.1) 55 (50.9) 0.45

Female 603 (43.8) 225 (52.2) 155 (44.9) 53 (49.1)

NIH Stroke Severity Scale 7 (4–14) 17 (11–22) <0.001 8 (4–15) 17 (11–21) <0.001

Active cancer 63 (4.6) 65 (15.1) <0.001 15 (4.3) 19 (17.6) <0.001

Prestroke disability Modified Rankin scale 0 (0–1) 1 (0–2) <0.001 0 (0–1) 1 (0–2) <0.001

Prestroke living situation Home 1,303 (94.6) 354 (82.1) <0.001 331 (95.9) 90 (83.3) <0.001

Nursing home 57 (4.1) 70 (16.2) 11 (3.2) 13 (12.0)

Other medical facility 12 (0.9) 5 (1.2) 2 (0.6) 5 (4.6)

Rehabilitation hospital 5 (0.4) 2 (0.5) 1 (0.3) 0 (0.0)

Systolic blood pressure mm Hg 156 (139–176) 161 (135–180) 0.40 160 (142–178) 156 (131.5–184) 0.61

Diastolic blood pressure mm Hg 84 (71–97) 81.27 (69–95) 0.059 83 (74–95) 78 (69–93.5) 0.028

Medical history

Atrial fibrillation/flutter 423 (30.7) 185 (42.9) <0.001 100 (29.0) 49 (45.4) 0.002

Coronary heart disease 218 (15.8) 100 (23.2) <0.001 53 (15.4) 25 (23.1) 0.061

Diabetes mellitus 215 (15.6) 101 (23.4) <0.001 54 (15.7) 24 (22.2) 0.11

Hyperlipidemia 903 (65.6) 252 (58.5) 0.007 236 (68.4) 58 (53.7) 0.005

Arterial hypertension 1,010 (73.3) 350 (81.2) <0.001 248 (71.9) 86 (79.6) 0.11

History of intracranial
hemorrhage

23 (1.7) 6 (1.4) 0.69 3 (0.9) 2 (1.9) 0.39

Peripheral artery disease 50 (3.6) 35 (8.1) <0.001 16 (4.6) 6 (5.6) 0.70

Prosthetic heart valves None 1,329 (96.5) 415 (96.3) 0.93 337 (97.7) 101 (93.5) 0.10

Biological 28 (2.0) 10 (2.3) 5 (1.4) 4 (3.7)

Mechanical 20 (1.5) 6 (1.4) 3 (0.9) 3 (2.8)

Smoking 324 (23.5) 46 (10.7) <0.001 83 (24.1) 12 (11.1) 0.004

History of stroke 179 (13.0) 80 (18.6) 0.004 37 (10.7) 13 (12.0) 0.70

History of transient ischemic
attack

57 (4.1) 17 (3.9) 0.86 19 (5.5) 5 (4.6) 0.72

Neuroimaging

White matter disease 0 355 (25.8) 48 (11.1) <0.001 105 (30.4) 15 (13.9) <0.001

1 555 (40.3) 127 (29.5) 147 (42.6) 34 (31.5)

2 304 (22.1) 131 (30.4) 60 (17.4) 34 (31.5)

3 163 (11.8) 125 (29.0) 33 (9.6) 25 (23.1)

Detectable vessel occlusion 645 (46.8) 121 (28.1) <0.001 169 (49.0) 24 (22.2) <0.001

Treatment

Intra-arterial treatment 834 (60.6) 364 (84.5) <0.001 205 (59.4) 94 (87.0) <0.001

IV thrombolysis 874 (63.5) 184 (42.7) <0.001 234 (67.8) 43 (39.8) <0.001

Continued
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data was reported as mean ±1 SD over 20 runs with different
random seeds for algorithm initialization.

Data Availability
Investigators may request access to anonymized individual
patient data including analysis-ready data sets, and data set
specifications, after publication. Before using the data, pro-
posals need to be approved by an independent review panel at
swissethics.ch/basec, and a signed data sharing agreement will
then be approved.

Results
Baseline Characteristics
The final cohort included 2,261 patients: median (interquartile
range) age 75 years (64–83 years), 46% female, andmedianNIH
Stroke Scale 9 (4–17). In total, 34% of patients received IVT
alone, 41% MT alone, and 25% both acute recanalization
treatments (bridging approach). FRT occurred overall in 24% of
patients andmore often in patients receivingMT alone (34%) as
compared with bridging patients (26%) and IVT alone (11%).

Baseline characteristics of patients in training and validation
set are presented in Table 1. Taken together, older age, higher
stroke severity, active cancer, and a higher cardiovascular risk
profile were associated with FRT on univariate analysis.

Discrimination of ML methods was good. Performance and a
complete overview of the results are presented in Table 2.
Overall, discrimination for predicting FRT (AUC 0.87 95% CI
0.87–0.88) and calibration (Brier 0.12, 0.11–0.12) was good,

and overall performance was moderate (F1-score 0.63 ± 0.004)
in the validation data set (see eFigures 2 and 3, links.lww.com/
WNL/C129, for ROC curves of the full model in the derivation
and validation cohort).

Shapley values feature importance revealed that the most impor-
tant features included clinical variables (higher stroke severity, older
age, active cancer, prestroke disability), laboratory values (higher
glucose, higher C-reactive protein [CRP], less dyslipidemia), im-
aging biomarkers (more whitematter hyperintensities), and longer
onset-to-admission time. The feature importances are shown in
Figure 2 (see eFigures 4 and 5, links.lww.com/WNL/C129, for all
features in patients with and without detectable vessel occlusion).

In patients without detectable vessel occlusion, higher in-
ternational normalized ratio and atrial fibrillation seemed to
be more important, whereas white matter hyperintensity se-
verity and active cancer seemed to be less important.

The decision curve for XGBClassifier is shown in Figure 3. The
mean net benefit for p = 0.8 was minimal (0.02 ± 0.01), and
relevant net benefit was only present in lower a priori thresholds.
The net benefit—in this context—is weighing the profit obtained
by classifying an individual with the outcome and the loss caused
by falsely classifying an individual without the outcome.34 No
evidence for harm was present throughout all thresholds.

Discussion
The development and validation of a multivariable prediction
model for futile thrombolysis and thrombectomy showed the

Table 1 Baseline Characteristics of all Included Patients (continued)

Feature Unit/definition

Training data (n = 1,808) Validation data (n = 453)

No FRT
(n = 1,377)

FRT
(n = 431) p Value

No FRT
(n = 345)

FRT
(n = 108) p Value

Symptom onset to admission
time

min 157 (82–321) 190 (107–400) <0.001 135 (74–254) 215 (126–539) <0.001

Laboratory values

Serum creatinine μmol/L 79 (67–92) 85 (66–108) <0.001 80 (67–93) 85 (70–104) 0.18

C-reactive protein mg/L 3.93 (3–8.6) 8 (3–19) <0.001 2.5 (1.88–3.18) 2.4 (1.9–2.9) 0.10

Plasma glucose mmol/L 6.4 (5.7–7.5) 7.1 (5.9–8.5) <0.001 6.4 (5.8–7.4) 7.05 (6–8.65) <0.001

Low-density lipoprotein
cholesterol

mmol/L 2.6 (1.98–3.25) 2.4 (1.99–2.99) 0.006 2.5 (1.88–3.18) 2.4 (1.9–2.9) 0.10

Total cholesterol mmol/L 4.66 (3.9–5.3) 4.34 (3.8–5.0) <0.001 4.62 (3.9–5.3) 4.4 (3.9–4.9) 0.049

Hemoglobin mg/L 137 (128–146) 127 (116–137) <0.001 136 (128–144) 127 (116–138) <0.001

International normalized
ratio

1.02 (1–1.08) 1.06 (1.01–1.16) <0.001 1.02 (1–1.06) 1.06 (1.02–1.13) <0.001

Platelet count g/L 222 (190–256) 224 (185–264) 0.82 224 (195–259) 225 (187–257) 0.45

Abbreviation: FRT = futile recanalization therapy.
Values are reported as median (interquartile range) or n (%).
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following main findings: (1) FRT overall occurs in 1 in 4
patients andmore often in patients receivingMT alone (34%)
as compared with IVT alone (11%). (2) The most relevant
predictors of FRT included clinical variables (higher stroke
severity, older age, active cancer, prestroke disability), labo-
ratory values (higher glucose, higher CRP, higher creatinine),
imaging biomarkers (more white matter hyperintensities),
and longer onset-to-admission time. (3) The combination of
several clinical, laboratory, neuroimaging, and workflow var-
iables at baseline showed good discrimination for prediction
of FRT. (4) Our model will help to inform shared decision
making, but its usability to withhold treatment is uncertain
and depends on healthcare resources. (5) Potential differ-
ences for prediction of FRT between patients with and
without detectable vessel occlusion were identified.

Despite the success of IVT and MT in improving stroke
outcome, rates of FRT remain considerable for both treat-
ments.26 Given more liberal indications in the real-world as
compared with the patients included in the original ran-
domized controlled studies,35,36 for both treatments, there is a
gradual shift from selecting patients to deselecting patients.
However, this development is likely to cause an increase in
FRT. Although the costs of IVT and EVT are much lower as
compared with established treatments, for example, for pal-
liative cancer, the treatments pose enormous logistic, eco-
nomic, and ethical challenges in acute stroke treatment.

With this analysis, we have developed and internally validated
a multivariable prediction algorithm to discriminate between
patients who are likely or unlikely to have a very poor clinical
outcome despite best available treatment with IVT and/
or MT.

The lower rate of FRT in IVT patients might be related to the
fact that patients meeting IVT criteria are early presenters,

without extensive hemorrhagic changes. Some features in-
cluded in our model have been partially described
before,14,37-40 but several are novel and their relative impor-
tance can now be estimated (Figure 2). This allows clinicians
to rapidly clarify the most relevant features in the emergency
setting. All variables considered in our model are available on
admission or can be obtained within a few minutes until the
decision to perform IVT/MT has to be taken.

The intended use of our model is ischemic stroke patients
before treatment has been started, but the decision for
treatment with IVT and/or MT has been made. The deriva-
tion cohort is from a high-volume academic stroke center with
low restrictions to perform those treatments. For clear-cut
indications for MT, such as patients presenting early with
severe stroke, the updated MR CLEAN predict tool23 might
be more useful, but it cannot be applied to borderline indi-
cations or to inform decision on IVT-only patients not ful-
filling endovascular trial criteria.

Our model has good discrimination and reasonable calibra-
tion, both in the derivation as well as the validation cohort.
The model output can be used to inform and discuss with
patients and/or next of kin the high risk of poor outcome and
help to set realistic expectations.41 However, in high-resource
healthcare systems, the algorithm will probably not be used
because no patients will be excluded from acute recanalization
treatments despite high chances for FRT. In addition, false
positives (classifying patients as FRT, despite the fact that
they might gain functional independence) should be weighted
more than false-negative classifications. In other words, the
positive predictive value of any FRT algorithm has to be as
great as possible to evade skipping an evidence-based treat-
ment from appropriate patients which may benefit from IVT/
MT. Hence, we caution colleagues to apply the appealing
AUC reported here and by others37,42 to individual patients

Table 2 Performance of the Model for mRS 5–6 Prediction

Data set
10-fold cross-
validation Validation data

Subgroup with detectable
vessel occlusion Validation data

Subgroup without detectable
vessel occlusion Validation data

Accuracy 0.84 (0.80–0.87) 0.84 (0.82–0.85) 0.78 (0.76–0.80) 0.88 (0.86–0.90)

Balanced accuracy 0.73 (0.67–0.80) 0.78 (0.75–0.80) 0.72 (0.70–0.75) 0.72 (0.64–0.79)

Precision 0.71 (0.59–0.83) 0.65 (0.62–0.68) 0.66 (0.60–0.72) 0.64 (0.55–0.73)

Recall 0.53 (0.39–0.67) 0.67 (0.62–0.72) 0.58 (0.51–0.64) 0.48 (0.32–0.64)

F1-score 0.60 (0.50–0.71) 0.66 (0.63–0.69) 0.61 (0.58–0.65) 0.54 (0.44–0.64)

Specificity 0.93 (0.88–0.98) 0.89 (0.88–0.90) 0.87 (0.82–0.91) 0.95 (0.92–0.98)

Brier score 0.12 (0.10–0.14) 0.12 (0.11–0.12) 0.15 (0.15–0.15) 0.10 (0.09–0.11)

ECE 0.07 (0.04–0.09) 0.06 (0.05–0.07) 0.07 (0.05–0.09) 0.11 (0.08–0.13)

ROC-AUC 0.86 (0.82–0.91) 0.87 (0.87–0.88) 0.83 (0.82–0.83) 0.84 (0.82–0.87)

Abbreviations: AUC = area under the curve; ECE = expected calibration error; mRS = modified Rankin scale; ROC = receiver operating characteristic.
Values are reported as mean and 95% CI for 10-fold cross-validation and mean ± SD for validation.
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regarding the clinical utility in excluding patients from
reperfusion therapies.29 However, there was no evidence of
harm as shown by the decision curve analysis. Randomized
controlled trials need to clarify whether the cost-effectiveness
of MT is preserved in patients with high risk of poor outcome.

Nevertheless, the situation might be very different in low-
income and mid-income countries where access to IVT/MT
is limited by shortage of MT devices, IVT medication, staff, or
other hurdles. Fittingly, our models exhibited net benefit in
the lower probability thresholds. This means that they might

be most useful in settings of very limited healthcare resources.
Cultural perception and individual preferences might also
influence which a priori cutoff will be chosen in an individual
scenario.

In addition, this rather simple algorithm provides evidence
that prediction of FRT is possible when different information
sources (clinical, laboratory, imaging, time metrics) are
combined. Further and more sophisticated information
sources are promising additions for refinement of this algo-
rithm. Those include ischemic core volume,43 ischemic core

Figure 2 Shapley Values Feature Importance

Computed for the XGBoost (mean values of 10 feature per-
mutations and 20 random initializations). (A) All patients, (B)
only patients with detectable vessel occlusion, and (C) only
patients without detectable vessel occlusion. See the Sup-
plement (links.lww.com/WNL/C129) for full model and fea-
tures. Frame indicates the 10 most important variables.
NIHSS = NIH Stroke Scale.
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location,44 penumbra volume, covert brain infarctions, brain
atrophy,45 masseter muscle,46 and oxygen saturation among
others have not been accounted for. Reliable identification of
FRT ahead of treatment is of utmost importance,47 and this
model and proposed refinements can serve as a starting point
to reach the intended use. However, a recent study found that
a large part of the variance in outcome after MT is explained
by variables that are only known after the treatment decision
has been made challenging the possibility to predict FRT in
the emergency setting before knowing the outcome of the
intervention—at least for MT patients.48 Regarding the
model performance, previous studies have shown that for
most tabulated data sets, the differences in performance be-
tween different analytical ML methods and conventional lo-
gistic regression are minimal or nonexistent.21,29,37

Strengths of this analysis include its large sample size with good
quality data of predictors easily obtained in an emergency
setting. This study has the limitations of a single center, ret-
rospective registry potentially limiting its generalizability to
other settings.Most importantly, nomedical comparison group
was available. Hence, inference on a potential residual clinical
benefit even in a patient with high probability for FRT is not
possible. In addition, 12% (322 patients) of the cohort had
missing 3-month outcome and those had a slightly worse
prognostic profile. Moreover, several advanced imaging pa-
rameters such as ischemic core volume, ischemic core loca-
tion,44 penumbra volume and mismatch profile,49 covert brain
infarctions, brain atrophy,45 masseter muscle volume, and ox-
ygen saturation among others have not been accounted for.
Another limitation is the choice/availability of independent
variables, for example, information on dementia/prestroke
cognitive impairment was unavailable. Information on medical
history was obtained prospectively in the registry and includes
variables obtained during hospital stay, so it is uncertain how

many of the predictors incorporated could be obtained within a
short time in an emergency setting. Hence, our results need to
be replicated by other groups and verified by upcoming ran-
domized controlled trials on this issue in several subgroups with
high risk for FRT, such as low ASPECTS (NCT03805308,
NCT03811769).

In conclusion, FRT occurs in 1 in 4 patients and more often in
patients receiving MT alone (34%) as compared with IVT
alone (11%). We identified clinical variables (higher stroke
severity, older age, active cancer, prestroke disability), labora-
tory values (higher glucose, higher CRP, higher creatinine),
imaging biomarkers (white matter hyperintensities), and time
from onset-to-admission as the most relevant predictors of
FRT. The prediction algorithm will help to inform shared de-
cision making and to set realistic expectations. Although the
clinical benefit and usability of this algorithm for withholding
treatments in settings with high healthcare resources is to be
established in future studies, the development of a reliable al-
gorithm for prediction of FRT seems to be within reach and
should incorporate more advanced admission imaging features.
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