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Cardiovascular mechanisms
underlying vocal behavior
in freely moving macaque monkeys

Cristina Risueno-Segovia,1,2,3,* Okan Koç,2 Pascal Champéroux,4 and Steffen R. Hage1,2,5,*

SUMMARY

Communication is a keystone of animal behavior. However, the physiological
states underlying natural vocal signaling are still largely unknown. In this study,
we investigated the correlation of affective vocal utterances with concomitant
cardiorespiratory mechanisms. We telemetrically recorded electrocardiography,
blood pressure, and physical activity in six freelymoving and interacting cynomol-
gus monkeys (Macaca fascicularis). Our results demonstrate that vocal onsets are
strengthened during states of sympathetic activation, and are phase locked to a
slower Mayer wave and a faster heart rate signal at �2.5 Hz. Vocalizations are
coupled with a distinct peri-vocal physiological signature based on which we
were able to predict the onset of vocal output using three machine learning clas-
sification models. These findings emphasize the role of cardiorespiratory mecha-
nisms correlatedwith vocal onsets to optimize arousal levels andminimize energy
expenditure during natural vocal production.

INTRODUCTION

Animals continuously communicate with each other (Boë et al., 2019), allowing contact between conspe-

cifics and facilitating development (Gultekin and Hage, 2017; Takahashi et al., 2015) and survival (Perrodin

et al., 2011). For instance, vocal communication is important for mating (Nikitopoulos et al., 2004), indi-

cating the presence of predators, and expressing dominance within a group (Balter, 2010). The study of

non-human primate vocal systems provides a crucial context for understanding the evolution of human

speech (Fitch, 2010; Pomberger et al., 2018; Risueno-Segovia and Hage, 2020) and its associated cardio-

vascular fluctuations. Despite the deceptive simplicity of natural vocal signaling, it is a complex behavior

that carefully coordinates with vital physiological functions, like heartbeat and breathing (Del Negro

et al., 2018), with orofacial movements under the influence of emotions (Cameron, 2001) and environmental

cues (Barrett and Simmons, 2015).

Mayer waves are spontaneous oscillations of the arterial blood pressure at frequencies lower than respira-

tion, at around 0.1 Hz in humans (Julien, 2006). Rhythmic changes in autonomic nervous system activity,

such as changes in Mayer waves, have been proposed to drive vocal production in isolated marmoset mon-

keys (Borjon et al., 2016). Furthermore, heart rate seems to fluctuate as a function of social distance, with

arousal levels decreasing when increasing social interactions (Liao et al., 2018a). These results were then

combined in a hypothetical model involving the interaction between the autonomic system and the biome-

chanics for vocal production during development and adulthood (Zhang and Ghazanfar, 2018, 2020). How-

ever, the time frame of the underlying physiological dynamics and their synchronization with vocal affective

utterances in freely moving group-housed monkeys remains poorly understood.

A recent study using surface electrodes placed over the chest and back for noninvasive electromyography

indicates a potential link between internal states and marmoset vocalizations (Liao et al., 2018a). Here, the

animals were separated from the rest of the colony and placed in an experimental setup, heart rate was

considered as an indirect measure of arousal and the influence of the physical activity over this variable

was disregarded. As a critical advancement over this study, we obtained high-quality physiological

measurements of six conscious, freely-moving and naturally interacting cynomolgus monkeys (Macaca

fascicularis), avoiding stress artifacts that might be induced by handling. To determine the role of cardio-

respiratory activity on natural vocal signaling, we performed highly precise internal measurements and
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of Tübingen, Medical Center,
Elfriede-Aulhorn-Strasse 5,
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telemetrically recorded electrocardiography (ECG) and blood pressure (BP) directly from the heart and

from the aortic artery, respectively. We calculated the Mayer wave power as a direct measure of arousal.

In addition, we collected physical activity with an accelerometer to take into account its influence over

the physiological parameters. Implanted radio telemetry allowed for constant real-time monitoring of

physiological measurements in naturalistic settings.

We hypothesized that the sensory feedback from the lungs, arteries, larynx, and articulatory systems might

carry critical inputs to the primary vocal motor network to adapt the vocal behavior to the current physio-

logical status. In the brainstem, the nucleus of the solitary tract (NST) receives input from these physiolog-

ical systems that can be transferred to vocal gating (PAG) and vocal patterning structures (parabrachial and

reticular regions), which have direct access to all phonatory motoneuron pools. As a consequence, vocal-

izations during social interactions should be linked to modifications in physiological signals, which can be

used to predict the onset of vocal output. Interestingly, our results indicate that vocal onsets are phase

locked to both the Mayer wave oscillation and heart rate. Vocalizations were enhanced during states of

sympathetic activation and were coupled with a distinct peri-vocal physiological signature. Finally, using

three machine learning classification models based on these features from a 2-s window prior to vocal

onset, we were able to accurately predict the presence or absence of a call. Furthermore, we propose a

neurophysiological network model that links sensory feedback from the cardiorespiratory, laryngeal, and

articulatory systems with the vocal pattern generating network, which might explain how distinct arousal

states could be integrated into these systems to optimize vocal timing. These findings provide quantitative

evidence that cardiovascular variables can reliably predict complex behaviors and raise new questions

regarding molecular, cellular, and synaptic mechanisms as key features that may contribute to vocal

behavior.

RESULTS

Physiological telemetry

To investigate the physiological states and responses associated with vocalizations uttered during free in-

teractions, we telemetrically recorded physiological signals, including ECG and BP, as well as physical ac-

tivity, along with the vocal behavior of six freely moving cynomolgus monkeys (Macaca fascicularis). The

animals were kept in two cages of three males and three females, respectively, with visual and auditory con-

tact between them (Figure 1A). The vocal output and overall behavior were recorded continuously with one

microphone and one video camera per cage. Concomitant measures of ECG, BP, and physical activity were

collected from wireless telemetry transmitters implanted in the abdominal cavity of the animals (Figure 1B)

that monitored the physiological signals that were sent to a nearby receiver (Figure 1A). A total of 486 vo-

calizations were collected, 229 from the males and 257 from the females (Table S1), including tonal barks,

pulsatile grunt bouts, food-related warbles, and screams (Fan et al., 2018; Hauser andMarler, 1993) (Figures

1C and 1D) with a duration of 148.5 G 4.1 ms (mean G SEM; Table S2). Statistical analyses did not reveal

significant differences in call duration between individuals or gender (individuals: p = 0.064; gender: p =

0.367, Kruskal-Wallis test; Figure S1). Therefore, we pooled all vocalizations for further analyses. A high-

quality raw signal of the ECG and BP signal sampled at 500 Hz and activity sampled at 1 Hz was obtained

from the radio telemeters (Figure 1D). To determine the general dynamics and principles of the arousal

states underlying natural vocal production, all vocalizations were included for data analysis regardless of

the call type or acoustic features. Focal animal sampling was combined with offline scan sampling from

the video recordings to assign specific calls to individual monkeys.

Increases of sympathetic activity have been traditionally considered as measures of autonomic arousal

(Weber and Smith, 1990). Therefore, changes in the physiological activity of the autonomic nervous system

before, during, and after vocal output should be reflected at the cardiorespiratory level in the heart rate

(HR), respiratory amplitude (RA), and respiratory rate (RR) (Figure 2). All of these physiological variables

were extracted from the ECG signal (see STAR Methods for details). An acute local increase in HR could

be observed in the vocal production signal with respect to its baseline (see STAR Methods for details) (Fig-

ure 2A). The greater peri-vocal onset activity points toward a combined vocal motor and non-vocal motor

response to either external events or internal physiological states (Figure 2B). A possible explanation for

the HR increase might be that calls are associated with higher motor activity, because active movement

by itself could induce this effect as well (Obrist, 1981; Smith et al., 1976). Therefore, we defined two control

conditions to compare with the signals associated with vocal production to disentangle vocalization-corre-

lated activity from general motor activity: control rest and control active. The control rest condition
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consisted of ten periods of at least 5 s in which a specific animal was neither actively moving nor vocalizing.

The control active condition consisted of ten periods of at least 5 s in which a specific animal was actively

moving but not vocalizing.

The mean HR including all the animals was approximately 15% higher at vocal onset times than at control

rest levels and 9% higher than at control active levels (Figure 2A). The HR of the animals before vocal onset

times was at least as high as in control active conditions, indicating that a certain degree of arousal might

be required in order to vocalize or might be generally linked to a potential vocal window. This effect could

also be observed in the power spectral density of both the ECG and BP signals at�2.5 Hz (Figures S2A and

S2B).

We hypothesize that the acute increase in HR is directly related to vocal production and cannot be purely

explained by physical activity levels or non-vocal active movement. To disambiguate the potential link be-

tween the acute increase in HR at peri-vocal onset and activity levels, we divided the vocal production

signal into high, intermediate, and low activity and examined the respective HR (Figure S3). This analysis

aims to decipher how much different levels of physical activity might be able to influence the heart rate

signal during vocal production. An acute increase in HR locked to vocal onset was observed regardless

of physical activity levels. Furthermore, the time to peak HR for the low activity condition was shorter

(�2–3 s) than the time to peak HR for the intermediate and high activity conditions (�4–5 s). The former

might mainly reflect the HR change associated with vocalizations, whereas the latter may represent the

summation of both vocal motor and non-vocal motor responses.

Another possible cause of the acute HR variation during vocal production could be respiration. According

to the respiratory sinus arrhythmia (RSA), the breathing act triggers an acceleration of the HR during inspi-

ration (because of a decrease in vagal efferent activity) and a decrease in HR during expiration (Bernardi

Figure 1. Telemetry recordings of ECG, BP, and physical activity in six freely moving vocalizing monkeys

(A) Schematic representation of one of the recording setups. Implanted wireless transmitters monitored physiological signals while the animals were freely

moving in two cages (three males or three females each) with visual and auditory contact between each other. Audio and video recordings were performed

simultaneously to collect the vocal output of the animals and identify the caller, respectively. The dimensions of the cages are indicated.

(B) Schematic of the implanted radio telemeter and electrodes in the abdominal cavity of the animals to collect ECG, BP, and physical activity data.

(C) Oscillograms (top) and spectrograms (bottom) of representative vocalizations: the tonal bark, pulsatile grunt bout, and food-related warble.

(D) Vocalization-correlated ECG, BP, and physical activity signals showing the oscillogram (top) and spectrogram (upper middle) of an exemplar vocalization

with the accompanying raw ECG (upper middle), BP (lower middle), and physical activity signals (bottom). See also Tables S1 and S2.
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et al., 2001; Berntson et al., 1993; Dick et al., 2014; Eckberg and Sleight, 1992; Grossman and Taylor, 2007).

In this case, the increase in HR before vocal onset could be linked to the inspiratory phase of the respiratory

cycle, as opposed to the further increase in HR after vocal onset, which cannot be explained by the ex-

pected decrease related to the expiratory phase (Figure 2C). Note that the inspiratory and expiratory

phases of the respiratory cycle could be identified from the raw RA signal without previous alignment of

Figure 2. Peri-vocal physiological responses of the autonomic nervous system

(A) There is an increase in heart rate during vocal production compared to its value at baseline and to the control rest and

control active conditions.

(B) Vocal production times are related to higher motor activity than that during the control rest condition.

(C) Respiratory amplitude showing acute inspiratory (I) and expiratory (E) phases.

(D) Respiratory rate decreases during vocal production despite the higher activity levels. Physiological signals from an

exemplar monkey are depicted on the left and the mean from all monkeys on the right. Resp. amplitude: respiratory

amplitude, Resp. rate: respiratory rate, bpm: beats per minute, rpm: respirations per minute, a.u.: arbitrary units, n.u.:

normalized units. Vocal onset times are indicated with a vertical line at t = 0. The vocal production condition is indicated in

red, control active condition in blue, and control rest condition in gray. Significant levels (p <0.05) are color-coded and

displayed below the respective signal (Wilcoxon rank-sum test for unmatched groups between vocal production and the

control active and control rest conditions in blue and gray, respectively, and signed-rank for matched groups comparing

the vocal production signal with its baseline in red). Mean G SEM are displayed. See also Figures S3.
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individual vocal onsets at expiratory phases during data processing. At a small scale, the respiratory rate

reflects the act of vocalizing with a higher rate a few seconds before vocal onset and a decrease during

vocal production despite the high concurrent physical activity levels (Figure 2D). In a broader sense, the

difference between the respiratory rate during vocal production, control rest, and control active is rather

small (Figures S2A and S2B, 3A and S4A, peak at around 0.5 Hz). Overall, these results show a distinct phys-

iological pattern accompanying vocal output, high HR baseline levels prior to vocal onset (Figure 2A), acute

increase of HR starting a few seconds before vocal onset reaching a maximum peak after approximately

two to four seconds (Figures 2A and S3B), and high activity levels at peri-vocal onset (Figure 2B), that cannot

fully explain the acute increase in HR (Figure S3). In addition, vocal onset is coupled to the expiratory phase

of the respiratory cycle (Figure 2C), and there is a decrease in the RR at peri-vocal onset starting a few sec-

onds before vocal onset despite the simultaneous increase in HR and activity (Figures 2A, 2B and 2D). Note

that there is an increase in duration and amplitude of the respiratory cycle during vocal production in

contrast to consecutive faster cycles with shorter durations and lower amplitudes (Figures 2C and 2D).

Mayer wave and heartbeat link to vocal production

Spontaneous calls have been proposed to be related to arousal states (Borjon et al., 2016). Generally,

arousal states have been associated with Mayer waves–spontaneous oscillations of arterial pressure occur-

ring in conscious subjects at a frequency lower than respiration (0.1 Hz in humans) (Julien, 2006). Based on

their postulated origin, Mayer waves may be easier to identify in BP signals. However, because of the high

noise of the BP signal at very low frequencies we were unable to detect Mayer wave frequencies in our BP

dataset (Figure S2B). Nevertheless, the power spectral densities of the ECG and BP signals at peri-vocal

onset were highly similar (Figures S2A and S2B) and exhibited a significant correlation (Figure S3C; BP vocal

Figure 3. Increase in Mayer wave power linked to vocal production

(A) Mean power spectral densities of the ECG signal from all animals show higher gains at Mayer wave frequencies in the vocal production and control active

conditions than in the control rest condition. Vocal production signal is indicated in red, control active in blue, and control rest in gray. Mean G SEM are

depicted. Significant levels (p <0.05) are color-coded and displayed below the respective signal (Wilcoxon rank-sum test for unmatched groups between

vocal production and controls). Schematic lungs illustrate the respiratory rate.

(B) Mean spectrogram with distinct increase in Mayer wave power at 0.1–0.2 Hz during vocal production starting a few seconds before vocal onset.

(C) Mean spectrogram of control rest condition.

(D) Mean spectrogram of control active condition.

(E) Cliff’s delta comparison of vocal production and control rest conditions.

(F) Cliff’s delta comparison of vocal production and control active conditions. The large effect size boundary was set at 0.474. Vocal onset times are indicated

with a vertical line at t = 0. Mayer wave band is outlined by dashed horizontal lines in gray (0.1–0.2 Hz). See also Figures S2 and S4.
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production: p = 4.88e-34, R = 0.91, BP control active: p = 3.16e-51, R = 0.97, BP control rest: p = 1.99e-58,

R = 0.98; ECG vocal production: p = 2.44e-65, R = 0.98, ECG control active: p = 5.33e-64, R = 0.98, ECG

control rest: p = 4.88e-55, R = 0.97; Pearson’s correlation). Consequently, we used the ECG signal to iden-

tify Mayer waves and its correlation with vocal behavior in the subsequent analyses.

The power spectra of the ECG signal exhibit a well-defined peak at breathing frequency (�0.5 Hz) reflecting

an index of cardiac vagal function (Yasuma and Hayano, 2004) during respiratory-circulatory interactions or

RSA (Figures 3A and S4A). In addition, a lower frequency peak at around 0.15 Hz is evident and reflects

higher cardiac sympathetic activity during vocal production and in the control active condition than in

the control rest condition. This might indicate that higher demands on the sympathetic nervous system

derived from motor movements involving higher gains at lower frequencies (Wienecke et al., 2015).

Although this analysis reveals that Mayer wave frequencies exhibit a gain around vocal onset, the temporal

resolution is quite low in this approach because the signal duration that allows the identification of low fre-

quencies between 0.05 and 0.1 Hz in a power spectrum have to be at least 20 to 10 s, respectively (in this

case, 15 s before and after vocal onset) (Gabbiani and Cox, 2010). Therefore, we calculated the spectro-

gram of the ECG signal during vocal production and in the control conditions by adding time as a third

dimension to be able to precisely relate Mayer wave power with vocal onset (Figures 3B, 3C, 3D and

S4B, S4C, S4D). The spectrogram of vocal production exhibited a distinct, sharp enhancement in Mayer

wave power (0.1–0.2 Hz) upon vocal production, starting a few seconds before vocal onset (Figures 3B

and S4B). This activity was absent in the control rest and control active conditions (Figures 3C, 3D, S4C,

and S4D). To quantify these differences, we computed Cliff’s delta metric. Briefly, the d-metric describes

the effect size of group comparisons with values ranging from -1 to 1, with identical groups rendering

values around zero (Romano et al., 2006; Weineck et al., 2020). Cliff’s delta matrices revealed higher power

in the vocal production condition compared to that in control conditions, starting a few seconds before call

onset (Figures 3E, 3F, S4E, and S4F). These results indicate that the Mayer wave oscillations are correlated

with the vocal behavior in cynomolgus monkeys.

Next, we bandpass filtered the ECG and BP signals between 0.1 and 0.2 Hz to identify whether vocal

onsets were synchronized to the temporal structure of the observed Mayer wave frequencies (Figure 4A).

For this purpose, we computed the Hilbert transform to calculate the phase angle at call onset. Our anal-

ysis revealed that vocal onsets are significantly phase locked to the observed Mayer wave frequency

band, taking place predominantly at local maxima within the oscillatory signals (ECG: p = 8.19e-11,

n = 486, z = 22.97; BP: p = 6.86e-5, n = 486, z = 9.55; Rayleigh test; Figures 4C and 4E). Furthermore,

we performed a similar analysis for the raw ECG and BP signals (Figure 4B). Surprisingly, aside from be-

ing phase locked to Mayer wave cycles, we observed that vocal onsets were also significantly phase

locked to the HR cycles of around 400 ms (ECG: p = 2.19e-23, n = 486, z = 50.82; BP: p = 1.95e-3,

n = 486, z = 6.21; Rayleigh test; Figures 4D and 4F), which possess a much faster frequency of approx-

imately 2.5 Hz (Figures S2A and S2B). The phase lag between the ECG and BP measurements can be

explained by the different recording locations, that are in the heart and in the abdominal aorta near

the common iliac arteries, respectively (Figure 1B; see STAR Methods for details). Finally, we also calcu-

lated the phase angle of the respiratory amplitude signal at vocal onset and verified our previous results

(Figure 2C) indicating that vocal onsets take place predominantly during expiration (p = 5.74e-5, n = 486,

z = 9.73; Rayleigh test; Figure S5). The current findings emphasize sympathetic activation preceding

vocal production during social interactions and establish a direct link between the amplitude of the

ECG and BP signals at specific frequencies and call initiation.

Predictive power of 3 machine learning classification models to indicate the presence or

absence of a call

Finally, we trained three machine learning classification models, logistic regression, neural networks, and

support vector machines (SVM), to show the predictive power of certain physiological features (Figure 5

and Table S3). We predicted the presence or absence of a call from the mean physiological values 2 s

before vocal onset, including heart rate, respiratory rate, respiratory amplitude, blood pressure, andMayer

wave power as custom physiological parameters. We compared the physiological parameters linked to the

vocal production signals to the physiological parameters linked to our combined controls: control active

and control rest conditions. Hereby, we reserved 11 vocalizations and 22 control data points for the eval-

uation of the trained classifiers. The rest of the data points were used for the training procedure. We ob-

tained a highest mean predictive accuracy of 85% for monkey A and 86% for all monkeys with the SVM.
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Neural networks also had predictive powers significantly above chance, 79% for monkey A and 81% for all

monkeys. Logistic regression did not render predictive values above chance. We observed that the non-

linear classifiers, SVM and neural networks, are able to better capture these sophisticated physiological

features than the linear classifier, logistic regression. Overall, these results point toward a precise physio-

logical signature already present before vocal production.

DISCUSSION

Our findings demonstrate that natural vocalizations in cynomolgus monkeys are coupled with a distinct

peri-vocal physiological signature characterized by increases in HR, motor activity, and Mayer wave power.

In addition, the spectrogram of vocal production displayed a distinct vocalization-correlated amplification

in Mayer wave power at �0.15 Hz starting a few seconds before calling. Furthermore, vocal onsets were

phased locked to the ECG and BP signals at Mayer wave frequencies (0.1–0.2 Hz), as well as to the regular

ECG and BP cycles derived from the HR (�2.5 Hz). Therefore, our data suggest a direct influence of cardiac

sympathetic activity at the frequency of Mayer waves and heart cycles on vocal behavior. Finally, based on

the precise pattern of the physiological measures, we could predict the presence or absence of a call from

the mean physiological values within 2 s before vocal onset using three machine learning classification

models.

Figure 4. Vocal onsets are phase locked to a slower Mayer wave frequency and to a faster heart rate in the ECG

and BP signals

(A and B) (A) Vocal onset example in relation to ECG and BP measurements bandpass filtered at observed Mayer wave

frequencies (0.1–0.2 Hz) and to (B) raw ECG and BP measurements. Vertical dashed lines indicate vocal onsets.

(C and D) (C) Polar histograms show vocal onset phases within the ECG and BP signals band-pass filtered at observed

Mayer wave frequencies (0.1–0.2 Hz) and within (D) raw ECG and BP measurements. The height indicates the relative

number of observations within the respective bin in the polar plot. Color-coded arrows indicate the corresponding mean

angles. Phase angles of 0� and 360� relate to a minimum and 180� to a maximum amplitude in the oscillatory signals.

(E) Schematic representation of the phase angles within ECG and BP signals band-pass filtered at observed Mayer wave

frequencies (0.1–0.2 Hz) and (F) raw ECG and BP signals.
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Wireless recording techniques enabled us to reliably monitor and investigate the physiological states associ-

ated with the vocal production in spontaneously behaving cynomolgus macaques. High-quality internal

measurements revealed that physiological states exhibited distinct modulations reflecting the interaction be-

tween the cardiovascular system and natural calling. A precise physiological pattern was observed at peri-

vocal onsets including an increase in HR, physical activity, and Mayer wave power. Apart from the acute in-

crease at vocal onset, these variables were also higher than those in control rest and control active situations.

Despite their enigmatic origin, Mayer waves are widely believed to be ameasure of arousal levels mediated

by changes in sympathetic activity (Julien, 2006). The related baroreflex loop is a homeostatic mechanism

that aims tomaintain blood pressure levels. Each heartbeat is followed by a transient increase in BP evoking

parasympathetic activity to decrease HR (Reilly and Moore, 2003). Perturbations of this system are consid-

ered to be one of themain hypotheses for the origin of Mayer waves because they generate oscillations at a

resonance frequency of �0.1 Hz (Julien, 2006). The mechanisms behind cardiorespiratory variability have

been studied extensively in non-human animal models (Eckberg and Sleight, 1992). The frequency of the

Mayer wave is�0.1 Hz for both humans and cats and�0.4 Hz for rats andmice (Julien, 2006). Commonmar-

mosets also possess Mayer wave frequencies at �0.1 Hz (Borjon et al., 2016), and according to our results,

theMayer wave frequency of cynomolgus macaques is in the same range,� 0.15 Hz. Therefore, animal spe-

cies with different body sizes as humans, macaques, and marmosets appear to have a similar Mayer wave

frequency. Accordingly, Mayer wave frequencies seem to be a species-specific feature rather than a size-

specific trait. Although fluctuations in the cardiorespiratory system and the underlying sympathetic nervous

system have been predominantly related to respiratory and locomotor activities (Wienecke et al., 2015),

their role in vocal signaling is yet largely unknown.

In relation to previous results in primates, physical distance between marmoset monkeys is considered to

be a determinant of arousal level, with social distancing increasing arousal (Liao et al., 2018b). The previous

study, which measured HR using external electromyography, failed to identify a significant coherence be-

tween HR and vocal production at Mayer wave frequency when a marmoset was next to another. With our

present work, we were able to measure the Mayer wave in naturally roaming and socially interacting cyn-

omolgus macaques and found that vocalizations were phase locked to it. This indicates that the use of in-

ternal wireless measurements might be ideally suited to detect internal arousal rhythms in a social context.

Liao et al. observed that the heart rate was 1 s before call onset, generally higher than the mean HR for the

session. One interpretation of their findings could be that in their experimental context, external factors

might have triggered an increase in HR and consequently also in arousal, being accompanied by a subse-

quent vocalization. In another marmoset study (Borjon et al., 2016), socially isolated marmosets displayed

Figure 5. Predictive accuracy of physiological

features based on three machine learning

classification models

Predictive power of the mean levels of physiological

signals (heart rate, respiratory rate, respiratory

amplitude, blood pressure, and Mayer wave power)

within 2 s before call onset for the presence or absence

of a call. Logistic regression is indicated in blue, neural

network in red, and support vector machine (SVM) in

green. Black dashed lines indicate significance levels.

Mean G STD are displayed.
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an increase in HR 23 s before call onset with a rapid decrease after calling and reduced activity starting�3 s

before calling (Borjon et al., 2016). In contrast, our results show an acute increase in HR starting a few sec-

onds before vocal onset with a maximum peak �4 s after vocal onset, followed by a cardiac deceleration

reaching baseline levels�10 s after vocal onset, as well as an increase in activity starting�3 s before calling.

These discrepancies might be mainly because of the differences in the experimental model (marmosets vs.

cynomolgus monkeys) and approach (external electromyography and activity inferred from video record-

ings vs. internal telemetry). However, the observed differences could also be related to the different

recording contexts (socially isolated monkeys vs. freely moving animals), which might point to different car-

diovascular mechanisms underlying different social contexts.

In addition, our wireless telemetry recordings of ECG and BP at 500 Hz provided continuous signals for

Fourier analysis methods, as opposed to traditional calculations from discontinuous signals (Cooke

et al., 1999; DeBoer et al., 1987). These computations allowed us to observe both the influence of the

fast parasympathetic nerves at respiratory rate frequencies and slower sympathetic nerves at Mayer

wave frequencies on vocal output. Increased heart rate during speech has been observed previously as

well (Peters and Hulstijn, 1984; Reilly and Moore, 2003; Weber and Smith, 1990) and has been related to

either a decrease in parasympathetic output or increase in sympathetic output. In humans, changes in

the tonic levels of cardiac sympathetic and parasympathetic drive are difficult to segregate and therefore

their contribution to the mean HR increase during speech remains speculative (Reilly andMoore, 2003). Ac-

cording to our results, vocal onsets are enhanced during states of sympathetic activation and phase locked

to a slow and transient Mayer wave frequency at �0.15 Hz and to a fast and steady heart rate signal at

�2.5 Hz. The present findings might be indicative of an increase in sympathetic drive, including sympa-

thetic output to the heart. Here, reducing the sympathetic efferent discharge through beta-adrenergic

blocking agents such as atenolol could help in future studies to clarify how much sympathetic activity con-

tributes to vocal production. Along similar lines, the absence of RSA linked to vocal signaling reflects low

cardiac vagal outflow during the expiratory phase of the respiratory cycle associated with vocal production.

Furthermore, similar increases in respiratory duration related to an increase in lung volume during vocal

production have been previously noted during speech (Reilly and Moore, 2003). Increased blood pressure

has also been linked to speech (Lynch et al., 1980). We did not observe any similar effects.

Sensory feedback from the cardiorespiratory, laryngeal, and articulatory systems into the vocal pattern

generator might be of utmost importance to align vocal onsets to the existing physiological state and opti-

mize arousal levels. Based on our physiological measures, we propose a neuro-physiological network that

could integrate somatosensory information from the baroreceptors of the lungs as well as the mechanore-

ceptors of the larynx and supralaryngeal structures into the primary vocal motor network (Figure 6). In this

model, the NST is a crucial relay station, because it gets information about the blood pressure from both

the carotid sinus baroreceptors via the glossopharyngeal nerve (cranial nerve IX) and the aortic arch baro-

receptors via the vagus nerve (cranial nerve X). For example, when the arterial baroreceptors are stretched

and stimulated, the baroreceptor reflex is activated, triggering an inhibition of the sympathetic discharge

(Lipski and Trzebski, 1975). In addition, NST receives somatosensory information of the current air volume

in the lungs from the pulmonary stretch receptors via the vagus nerve. This input seems to be crucial for

properly gating call onsets in accordance with the momentary respiratory status (Jürgens, 2002). Further-

more, the laryngeal and articulatory proprioceptive and tactile information from most laryngeal and artic-

ulatory muscles are also transferred to NST via the vagus nerve (Altschuler et al., 1989; Hayakawa et al.,

2001; Mifflin, 1993; Patrickson et al., 1991; Travers and Norgren, 1995). The NST itself has strong connec-

tions to several relay stations of the vocal motor network in the brainstem (Hage and Nieder, 2016) such

as the PAG (Bandler and Tork, 1987; Keay et al., 1997; Mantyh, 1982), the ventrolateral parabrachial region

as well as the reticular formation encompassing parts of the putative vocal pattern generator (Beckstead

et al., 1980; Ezure et al., 1998; Fort et al., 1994; Herbert et al., 1990; Slugg and Light, 1994), which has direct

access to all phonatory motoneuron pools (Mantyh, 1983; Meller and Dennis, 1991). Our findings suggest

that the somatosensory inputs derived from the cardiorespiratory, phonatory, and articulatory systems are

key aspects for gating vocal initiation being essential for the optimization of the cardiorespiratory status

during natural vocal production to minimize energy expenditure. Future neurophysiological studies in in-

teracting monkeys will now have to elucidate the role of the NST in primate vocal communication.

Based on the physiological features from a 2-s window before vocal onset, we were able to predict the pres-

ence or absence of a call with a mean accuracy of 86% using an SVM classifier in comparison with combined
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controls, control rest, and control active conditions. Our data suggest that physiological parameters can be

used as a predictor of vocal motor output, indicating a direct effect of these parameters on vocal behavior.

These findings provide a new perspective on how physiological parameters correlate with natural vocal ut-

terances by highlighting a key physiological link between natural vocal production and the cardiovascular

system, enabling us to address new questions on volitional vocal control abilities among non-human pri-

mates that go beyond arousal-based vocal motor control mechanisms. Recent studies have observed

that non-human primates are able to call on command in operant conditioning experiments, indicating

the capability of these animals to decouple their vocal utterances from the underlying state of arousal

and to use them as a response to abstract sensory cues (Hage and Nieder, 2013; Pomberger et al.,

2019). However, the different levels at which the human brain can take control over the speech system

are far beyond the control mechanisms underlying vocal production in non-human primates (Hage and

Nieder, 2016). We hypothesize that cognitively controlled vocalizations such as human speech might be

predicted with a lower accuracy than natural monkey calls that convey a higher emotional content. Accord-

ingly, human speech with a high emotional content should increase the predictive accuracy of speech

onset, because the cardiorespiratory system is strongly affected by emotions (Prkachin et al., 1999; Sinha

et al., 1992). On the other hand, recent studies in rhesus macaques and marmosets have shown that

Figure 6. Hypothetical model of an arousal gated vocal neurophysiological network

Simplified circuit summarizing the most relevant structures that integrate the somatosensory feedback derived from the

baroreceptors of the lungs as well as the laryngeal mechanoreceptors into the primary vocal motor network (Hage and

Nieder, 2016). Blue arrows indicate internal connections within the primary vocal motor network. Green arrows indicate

the sensory input to the NST. Red arrows indicate the somatosensory feedback from the cardiorespiratory and laryngeal

systems into the primary vocal motor network containing the vocal pattern generator. Abbreviations: ACC, anterior

cingulate cortex; PAG, periaqueductal gray; PB, parabrachial nucleus; RF, reticular formation; NST, nucleus of the solitary

tract; IX, sensory glossopharyngeal nerve; X, sensory vagus nerve.
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monkeys are capable of volitionally vocalizing in response to arbitrary visual cues (Hage and Nieder, 2013;

Pomberger et al., 2019). Further studies will now have to elucidate howmonkeys are able to volitionally con-

trol this motivationally driven behavior, if this has a direct effect on cardiorespiratory activity and whether

human speech signals can be predicted by quantitative measures of the cardiorespiratory system.

Limitations of the study

One limitation of our study is that the cardiorespiratory responses we are analyzing are not exclusively

correlated to the vocal output, because they are vitally important for all biological processes and could

be influenced by, e.g., levels of relaxation, anxiety, or attention. In addition, we grouped all the calls

together regardless of acoustic features and, calls with, e.g., longer durations and intensities might be

more strongly correlated with the underlying physiology.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Steffen R. Hage (steffen.hage@uni-tuebingen.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data All data needed to evaluate the conclusions are present in the paper. The raw datasets have not

been deposited in a public repository because of further analyses but are available from the lead author

upon request.

d Code The codes and analysis paradigm of the machine learning classifiers can be found at https://

datadryad.org/stash/share/CKeQq0PPlXGBUciuzQv-KpAwcF1T7axtHrKUeXv14UU.

d Other items Any additional information required to reanalyze the data reported in this paper is available

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cynomolgus monkeys

We telemetrically recorded ECG, BP, and physical activity in six freely moving and naturally vocalizing adult

cynomolgus monkeys (Macaca fascicularis), also known as long-tailed macaques, three females and three

males, housed at the Center de Recherches Biologiques, Baugy, France (3–7 kg, 28–48 months old).

Animals were kept in stainless steel cages in triplets of the same sex for physiological telemetry and

vocal recordings, with visual and auditory contact between them. The dimensions of the two cages were

2.5 3 1.64 3 1.8 m each (height 3 width 3 depth; Figure 1A). The facility room was maintained at

20–24�C, 45–65% relative humidity, and with a 12 h:12 h light/dark cycle. The monkeys had ad libitum

access to water and solid diet, supplemented with fresh fruit, vegetables, bread, and cereals. The exper-

imental procedures were subject to ethical review (ethics committee no CEEA-111) and in agreement

with the guidelines of European directive 2010/63/UE on animal welfare.

METHOD DETAILS

Implantation of telemetry system

Radio telemetry transmitters measuring ECG, BP, and activity (TL11M3D70PCTP or TL11M2D700PCT

models, Data Sciences International, DSI, Saint Paul, MN, USA) were individually implanted in the

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Macaca fascicularis European Research Biology Center,

Baugy, France

N/A

Software and algorithms

MATLAB MathWorks R2020b

Python Python Software Foundation 3.8.5

Spike 2 Cambridge Electronic Design 7.19

Logistic regression, neural networks and SVM Scikit-learn toolbox 0.23.2

Codes and analysis paradigm of the machine

learning classifiers

This paper https://datadryad.org/stash/share/

CKeQq0PPlXGBUciuzQv-KpAwcF1T7axtHrKUeXv14UU
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abdominal cavity of the animals after left thoracotomy. Cynomolgus monkeys were administered ketamine

(10 mg$kg�1, s.c.), buprenorphine (0.01 mg$kg�1, s.c.), and meloxicam (0.1 mg$kg�1, s.c.). Anesthesia was

induced using propofol (4–5 mg$kg�1, i.v.) and 4% halothane and maintained with 1.5% halothane in oxy-

gen. For the ECG recordings, one electrode was placed between the left ventricular parietal and visceral

pericardium (or epicardium) near the apex, and the second electrode on the pericardium above the right

atrium to approximate a limb lead II ECG (Figure 1B). For the arterial BP recordings, the sensor catheter was

introduced into the femoral artery and the catheter tip was placed in the abdominal aorta close to the origin

of the common iliac arteries. For the activity recordings, the transmitters included an analog accelerometer

measuring the 3D movement of the animal. Analgesic treatment with buprenorphine/meloxicam was

continued for a minimum of 2 days to alleviate any postoperative pain. A minimum period of 3 weeks

was allowed for recovery from the surgery. No radio telemetry implantation was specifically conducted

for this study since the animals had been included in a previous project (Champéroux et al., 2018).

Data analysis of telemetry

The telemetry system could simultaneously measure and collect ECG and BP at a sampling rate of 500 Hz

and physical activity at 1 Hz from freely moving animals. Data was telemetrically transmitted to a nearby

receiver that converted the telemetry information to a form readily accessible by the DSI software

(Figure 1A).

Recording of the animal’s activity

PhysioTel Digital implants include an analogical accelerometer which measures 3D values within+/�8 G.

The more the animal moves in one direction, the higher the value will be on the corresponding axis. The

information is transmitted to the Ponemah software (release 6.33, Data Sciences International, St Paul,

MN, USA), which calculates changes in acceleration over time, i.e., jerk.

The following equation was used to calculate jerk from the summarization of the three A/D values from the

accelerometer channels and subsequent channel values:

Jerk meter value = c3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXi + 1 � XiÞ2 + ðgi + 1 � giÞ2 + ðzi + 1 � ziÞ2

q

where C is a constant based on the delta time for the accelerometer sampling rate.

C = interpolation frequency 3 3:5347

The constant, C, is the sampling rate (e.g., 10 Hz), multiplied by 3.5347 to correspond to activity

measurements.

If the acceleration remains constant over time, the activity is 0. However, in practice, the value is never equal

to 0 because of the background noise of the accelerometer, which can differ between telemetry implants.

The activity values are given in counts by the Ponemah software (arbitrary units).

Vocal and video recording setup

Vocalizations were picked up by a microphone (ME64 microphone with K6 preamplifier, Sennheiser, Ger-

many) located at an approximate distance of 10 cm from the center of the front of the cage and recorded via

an analogue/digital interface (sampling rate: 44.1 kHz; Micro 1401 mkII, Cambridge Electronic Design,

Cambridge, UK) with the corresponding software (Spike 2 version 7.19, Cambridge Electronic Design,

Cambridge, UK). The behavior of the monkeys was constantly recorded using a 4K video camera (HC-

VX989, Panasonic Corporation, Japan; sampling frequency: 30 fps). To ensure precise timings, telemetry

values and vocal recordings were synchronized. Vocal onset and offset times were detected offline using

software (Spike2 ver.7.19, Cambridge Electronic Design). Vocalizations were not classified into different

call types. Focal observation and video recordings were used to assign calls to individual monkeys. We

only considered vocalizations, which could be clearly assigned to individual monkeys, i.e., by having the

callers’ face clearly visible during vocal production. Calls that could not be assigned to an individual animal

were disregarded. Data acquisition took place over three consecutive days. For the present study, we used

recordings made on the second day of recording from 10:00 to 10:45 am for analysis, resulting in a total of

486 calls uttered by six animals (Table S1).
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Machine learning classifiers

We trained threemachine learning classificationmodels in order to evaluate the predictive power of certain

physiological features for the presence or absence of vocalizations. Five custom features were defined and

computed from the ECG and BP in order to predict vocalizations: heart rate, respiratory rate, respiratory

amplitude, blood pressure and Mayer wave power. We used the standard Scipy and Numpy libraries in Py-

thon 3.8.5 for all computations. We tested the performance of the three classifiers based on the mean value

of each feature using a 2-s time window prior to call onset. The scikit-learn toolbox (Pedregosa et al., 2011)

in Python was used to train three different classifiers: logistic regression, neural networks (multi-layer per-

ceptrons with two hidden layers), and SVM. These three algorithms are the most commonly used classifiers

when analyzing real world data (e.g., they are commonly used by Spotify, Evernote or Booking.com; https://

scikit-learn.org/stable/testimonials/testimonials.html). The first is a linear classifier, whereas the other two

are standard nonlinear classification approaches in machine learning. For neural networks, we tested

several different multi-layer perceptron architectures and the one with the two hidden layers (of size 10

each) and ReLu (restricted linear unit) output nonlinearities proved to yield the highest predictive accuracy

among the others. To determine the learning rate of neural networks we tested various methodologies and

decided on the constant learning rate of 0.001. For SVM, we used RBF (radial basis function) kernels and an

L2-regularizer parameter with value C = 3.0. The regularization parameter makes the SVM less susceptible

to outliers and improves its generalization. The kernel coefficient for the RBF kernel was scaled inversely

proportional to the number of features and the feature matrix covariance.

Analyses of machine learning classifiers

The vocalizations included in Table S1 were used to train the machine learning classifiers for the vocal pro-

duction group. Among the control rest conditions, 54 samples were generated by shifting the time window

by 1 s during the control rest period. We similarly generated the control active samples (n = 84, 60, 60, 78,

and 66 for monkeys 1 to 5). One animal was excluded from the predictive accuracy calculation since high-

level low frequency noise in the ECG and BP signals significantly perturbed the features. When testing the

predictive accuracy comparing vocal production to a combination of the control conditions, we randomly

selected 11 vocalizations and 22 control data out of a total of 226 data points (112 vocalizations, 54 control

rest and 60 control active samples) for monkey A and out of a total of 1011 data points (393 vocalizations,

270 control rest and 348 control active samples) for all monkeys. These test data points were reserved for

the evaluation of the trained classifiers. The rest of the data points were used for the training procedure. To

calculate the variability of the predictive accuracy of the machine learning algorithms we performed a

10-fold cross-validation, i.e., we repeated this procedure ten times.

Data analysis of physiological signals

Analyses of heart rate. The HR was calculated based on the identification of the R peaks, reflecting ven-

tricular contraction, in the ECG trace. The number of R peaks were quantified with a moving average over

2 s in steps of 1 s. The peaks weremarked by identifying the local maxima of the input signal with aminimum

peak distance of 0.2 and peak height of 2.

Analyses of respiratory amplitude and rate. The respiratory cycles were obtained from the ECG

recording by downsampling the signal from 500 to 50 Hz and applying a second-order Butterworth low-

pass filter with a cutoff of 4 Hz. The respiratory rate was computed based on the number of peaks in the

respiratory signal with a moving average over 2 s in steps of 1 s. The peaks were marked by identifying

the local maxima of the input signal with a minimum peak distance of 0.75.

Mean arterial pressure (MAP) calculation. The MAP was computed based on the lower and upper en-

velopes (diastolic and systolic pressure) of the measured BP signal. The envelopes were determined using

spline interpolation over the local maxima separated by at least 300 samples. One-third of the difference

between the envelopes was added to the lower envelope to calculate the MAP pressure:

MAP pressure = diastolic pressure + (systolic pressure – diastolic pressure)/3.

Mayer wave power calculation. TheMayer wave intensity was determined based on the spectrogram of

the ECG signal by evaluating its power at 0.15 Hz at vocal onset time.
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Data processing of control conditions and physiological signals. Two control conditions were

defined for comparisons of the signals associated with vocal production in order to disentangle vocaliza-

tion-correlated activity from general motor activity: control active and control rest. Both controls were

generated during offline focal sampling of the video recordings. They were generated in a chronological

order until a minimum of 10 samples were identified per monkey and per condition. Control active con-

sisted of ten periods of at least 5 s in which a specific animal is actively moving but not vocalizing. Control

rest consists of ten periods of at least 5 s in which a specific animal is neither actively moving nor vocalizing.

The onsets of the two control conditions were aligned to the closest expiratory phase onset to control for

the potential influence of the respiratory cycle in the vocal production signal, which was naturally aligned to

the beginning of the expiratory phase. Heart rate, respiratory rate, and activity were normalized by dividing

the signal by the mean value at vocal onset for each individual animal. The spectrograms of the vocal pro-

duction, control active, and control rest signals were calculated using 100 s of data, 50 s prior and 50 s after

vocal onset. The power spectral densities on the ECG and BP signal include peri-vocal onset data from 15 s

prior and 15 s after vocal onset. The raw ECG and BP signals were bandpass filtered between 0.1 and 0.2 Hz

prior to the calculation of the local phase angle at Mayer wave frequencies. The local phase angle of ECG

and BP at Mayer wave frequencies and at the raw ECG and BP signals (encompassing all frequencies) were

estimated over single cycles from the discrete-time analytic signal using the Hilbert transform with the

MATLAB function, ksdensity.m, with a kernel bandwidth of 0.08. The activity of the vocal production signal

was divided into tertiles, each containing a third of the population, in order to categorize vocalizations

linked to high activity (over the second tertile threshold), intermediate activity (between the first and sec-

ond tertiles thresholds) and low activity levels (under the first tertile threshold). For visualization purposes, a

smoothing factor of 5 was applied to the HR, respiratory amplitude, respiratory rate, activity signals, and

power spectral densities of the ECG and BP.

Cliff’s delta metric: The effect size of group comparisons was calculated using Cliff’s delta metric (Romano

et al., 2006; Weineck et al., 2020). It indicates how often the values in one distribution are larger than the

values in the second distribution. Cliff’s delta comparison renders values ranging from�1 to 1, with iden-

tical groups having values around zero. The considered borders to define large, medium, and small effect

sizes were 0.474, 0.333, and 0.147, respectively (Romano et al., 2006; Weineck et al., 2020).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using MATLAB (MathWorks, Natick, MA). The Wilcoxon rank-sum test

for unmatched groups was used to reveal differences in HR (with Bonferroni correction), power spectral

density of the ECG signal, and activity between vocal production and two control conditions. Signed-

rank tests for matched groups were used to examine the difference in HR and RR (with Bonferroni correc-

tion), activity, and respiratory amplitude between the vocal production signal and baseline. Baseline

signals were defined as the mean value for 4–5 s prior to call onset. Pearson’s correlations were used to

identify the relationship between BP and ECG power spectral densities between 0.133 and 3 Hz. The Ray-

leigh test for non-uniformity of circular data was computed for the polar histograms of the articulatory ECG

and BP Mayer wave phase, raw ECG and BP signals as well as the respiratory amplitude signal at vocal

onset. Significant levels for the predictive accuracy of the machine learning classifiers were estimated

based on the binomial cumulative distribution function (Combrisson and Jerbi, 2015). In all performed

tests, significance was tested at an alpha = 0.05 level.

ll
OPEN ACCESS

iScience 25, 103688, January 21, 2022 17

iScience
Article


	ISCI103688_proof_v25i1.pdf
	Cardiovascular mechanisms underlying vocal behavior in freely moving macaque monkeys
	Introduction
	Results
	Physiological telemetry
	Mayer wave and heartbeat link to vocal production
	Predictive power of 3 machine learning classification models to indicate the presence or absence of a call

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Cynomolgus monkeys

	Method details
	Implantation of telemetry system
	Data analysis of telemetry
	Recording of the animal's activity
	Vocal and video recording setup
	Machine learning classifiers
	Analyses of machine learning classifiers
	Data analysis of physiological signals
	Analyses of heart rate
	Analyses of respiratory amplitude and rate
	Mean arterial pressure (MAP) calculation
	Mayer wave power calculation
	Data processing of control conditions and physiological signals


	Quantification and statistical analysis




