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Abstract

In many mammalian species, the production of new neurons in the hippocampal dentate gyrus continues
throughout life. Previous studies using rodents suggest that adult-born neurons are involved in memory and
cognition tasks and mood regulation. Interferon-alpha (IFNα), a proinflammatory cytokine used for the treatment of
chronic viral hepatitis and malignancies, frequently causes depressive symptoms in patients and animals, including
non-human primates. We have previously demonstrated that chronic IFNα treatment decreases hippocampal
neurogenesis in mice. Here, we investigated the effects of four-week human pegylated IFNα treatment on
hippocampal neurogenesis and behavior in common marmosets. Continuous monitoring of voluntary activity levels
using an actigraphy device suggested that adaptive ability is impaired in IFNα-treated animals. Analyses of BrdU-
labeled cells expressing a marker for immature or mature neurons revealed a significant reduction in the number of
new neurons in the hippocampus of IFNα-treated animals. These data indicate that chronic human IFNα treatment
causes behavioral changes and a decrease in hippocampal neurogenesis in common marmosets.
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Main text
In many mammalian species, neural stem cells in the
hippocampal dentate gyrus continuously produce new
neurons throughout life. These new neurons, which pos-
sess distinct electrophysiological properties from those
of pre-existing neurons, contribute to hippocampal-
dependent memory and cognition and have been impli-
cated in stress responses and depressive behaviors in ro-
dents [1]. The degree of adult neurogenesis in the adult
human brain is controversial [2, 3], largely because of
ethical and methodological limitations of human studies.
Studies using non-human primates, whose brains have

structural and functional similarities with the human
brain, should provide useful information for understand-
ing the mechanisms and functions of hippocampal
neurogenesis in primates.
Interferon-alpha (IFNα) has been used for the treat-

ment of chronic viral hepatitis and several malignancies.
However, it causes depression in about 30% of all treated
patients, which frequently prevents the completion of
treatment [4]. Furthermore, IFNα treatment also induces
depression-like behavioral changes in rodents [5–7] and
non-human primates [8, 9]. Impaired monoamine signal-
ing and inflammatory responses are involved in IFNα-
induced depression, although their precise mechanisms
are still unclear. We have previously reported that IFNα-
treatment decreases hippocampal neurogenesis and in-
duces depression-like behavioral changes in mice via
type-1 IFN receptors in the central nervous system [5].
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Fig. 1 Effects of IFNα on behavioral activity and hippocampal neurogenesis in common marmosets. a: Experimental procedures. Adult common
marmosets were treated with human pegylated IFNα or vehicle (control, Cnt) once a week for 4 weeks (see Materials and Methods in supplemental
information), and BrdU was injected once a day for the first 10 consecutive days. The voluntary activity of each animal was continuously monitored by
actigraphy from the day before (− 1d) treatment to the end of the experimental period. The animal tissues were fixed at day 28 for histological
analyses. b: Mean bodyweight of the animals in the control and IFNα-treated groups before (on day − 1) and during drug administration (on day 7, 14,
21, and 28). c-c’: Daytime (c) and nighttime (c’) mean activity counts of animals for 10 days after fitting the actigraphy device. d-d’: Daytime (d) and
nighttime (d’) mean activity counts of animals a day before (−1d) and each week during IFNα or vehicle treatment. e-f: Representative images of
BrdU-labeled (BrdU+) cells in the SGZ and GCL of the dentate gyrus. The Z-stack projection image shows BrdU+ cells (magenta) expressing Dcx
(green) (e). Confocal image showing a BrdU+ cell (red) expressing NeuN (cyan) (f). The x-z and y-z planes are presented in the top and right panels,
respectively. g-h: Z-stack projection images of the dentate gyrus immunostained for BrdU (magenta), Dcx (green), and NeuN (blue) in control (g) and
IFNα-treated (h) animals. High-magnification images of the boxed areas in (g) and (h) are shown in (g’) and (h’), respectively (BrdU: magenta, Dcx:
green, The x-z and y-z planes are presented in the top and right panels, respectively). i: The number of BrdU+ cells that express Dcx or NeuN in the
dentate gyrus (SGZ and GCL). Scale bars: 10 μm (e-h’). The quantitative data are presented as the mean ± SEM. *P < 0.05, **P < 0.01
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IFNα also reduces neurogenesis of human hippocampal
neural progenitors in vitro [10]. Here, we investigated
the effects of chronic IFNα treatment on behavior and
hippocampal neurogenesis in common marmosets (Cal-
lithrix jacchus), which are small-bodied monkeys estab-
lished as laboratory animals for preclinical research.
Considering clinical protocols, we subcutaneously

injected human pegylated IFNα or vehicle once a week
for four weeks into young-adult male and female com-
mon marmosets (Fig. 1a, Additional file 1). To label
newly-generated neurons, BrdU (50 mg/kg/day) was in-
traperitoneally administrated once a day for ten con-
secutive days from the day of the first IFNα treatment.
The body weights showed no significant difference at
any time point between the vehicle-treated (control) and
IFNα-treated groups (Fig. 1b). The voluntary activity of
each animal was continuously monitored with a small
actigraphy device. A pilot study without drug injections
showed that the daytime activity levels gradually in-
creased after the device was fitted and reached a plateau
within several days due to adaptation (Fig. 1c-c’). There-
fore, we fitted the device two days before the first drug
administration. However, repeated injections in control
animals delayed adaptation, leading to increases in day-
time activity in the second week and thereafter (Fig. 1d).
IFNα-treated animals, however, showed no such in-
creases until the third week (Fig. 1d), suggesting that
their adaptive ability was impaired. These data also sug-
gest that IFNα decreased daytime activity, similar to
symptoms observed in patients, although we did not de-
tect any statistical significance because of large inter-
individual variance. IFNα treatment frequently causes in-
somnia in patients; however, the IFNα-treated marmo-
sets did not show statistically-significant alterations in
nighttime activity (Fig. 1d’), possibly due to the differ-
ences in sleep patterns among primates [11].
We next examined the distribution of BrdU-labeled

(BrdU+) cells in the subgranular zone (SGZ), where neural
stem/progenitor cells reside, and granular cell layer
(GCL), the destination of newly-generated neurons, of the
hippocampal dentate gyrus. Most BrdU+ cells were lo-
cated in the inner layer of the GCL and expressed the im-
mature neuronal marker, doublecortin (Dcx) (Fig. 1e).
BrdU+ cells expressing the mature neuronal marker, neur-
onal nuclei (NeuN), were observed only at low frequency
(Fig. 1f) because these neurons take longer to mature in
primates compared with those in the rodent GCL [12, 13].
The numbers of BrdU+Dcx + cells and BrdU+NeuN+ cells
in these areas were significantly decreased in the IFNα-
treated group compared with those in the control group
(Fig. 1g-i). Taken together, IFNα treatment significantly
suppressed behavioral activity and diminished hippocam-
pal neurogenesis in common marmosets, consistent with
our previous studies using rodents [5, 6].

To analyze the impact on slow neuronal maturation in
primates more precisely, a longer IFNα treatment is
needed. However, we did not extend the treatment
period because repeated injections of human IFNα in
common marmosets can lead to the production of anti-
bodies that neutralize its biological activity. Therefore, it
is likely that the IFNα-induced behavioral changes ob-
served in this study did not result from decreased neuro-
genesis, but were associated with other effects such as
acute inflammation. However, we cannot exclude the
possibility that adult-born immature neurons play some
role in hippocampal function in common marmosets.
Given the differences in spatiotemporal distribution and
biological properties of adult-born hippocampal neurons
between rodents and primates [13, 14], their involve-
ment in mood regulation may also be different. Further-
more, physical exercise promotes hippocampal
neurogenesis [15]; therefore, it is also possible that the
higher level of neurogenesis in the control animals com-
pared with IFNα-treated animals might be caused by
their earlier increase in voluntary activity during the ex-
perimental period (Fig. 1d). Further studies using com-
mon marmosets will lead to a better understanding of
the effects of IFNα on mood and neurogenesis in
primates.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13041-020-00639-9.

Additional file 1. Materials and Methods.
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