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A B S T R A C T   

The health of the reproductive system is intricately linked to female fertility and quality of life. 
There has been a growing prevalence of reproductive system disorders among women, particu-
larly in younger age groups, resulting in significant adverse effects on their reproductive health. 
Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an 
advanced discipline, provides innovative avenues for managing and treating diseases of the fe-
male reproductive system by enabling precise manipulation and regulation of biological mole-
cules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint 
accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nano-
material imaging techniques enhance diagnostic precision and sensitivity, aiding in the assess-
ment of disease severity and progression. Furthermore, the implementation of nanobiosensors 
facilitates early detection and prevention of ailments. This comprehensive review aims to sum-
marize recent applications of nanotechnology in the treatment of female reproductive system 
diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be 
discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes 
and overall quality of life.   

1. Introduction 

The female reproductive system, comprised of the ovaries, fallopian tubes, uterus, vagina, and external genitalia, plays a pivotal 
role in women’s quality of life and population equilibrium [1]. Its primary purpose lies in the creation of new life. Nevertheless, 
women’s reproductive health is burdened by diverse ailments, presenting a global predicament. Common afflictions encompass 
uterine-related predicaments like pregnancy disorders, endometriosis, uterine fibroids, and cervical cancer; ovarian-related issues such 
as polycystic ovary syndrome (PCOS) and ovarian cancer; along with infections like HIV-related diseases, vaginitis, pelvic inflam-
matory disease, and pelvic inflammatory disease (Fig. 1.). These maladies exert a significant impact on women’s well-being and quality 
of life. Epidemiological statistics reveal that the incidence of female reproductive system diseases has been on the rise in recent years, 
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displaying a trend toward younger age groups. Female reproductive system diseases can result in organ damage, functional impair-
ments, affecting reproductive capacity, and even infertility [2]. This presents substantial challenges to reproductive medicine and 
imparts adverse effects on patients’ physical and mental health, as well as their family life. 

Nanotechnology represents a realm that scrutinizes the characteristics and applications of materials at the nanometer scale 
(0.1–100 nm) [3,4]. It draws from classical and quantum mechanics principles while incorporating modern technologies like mi-
croelectronics, scanning tunneling microscopy, and nuclear analysis techniques [4]. Major branches of nanotechnology encompass 
nanosystem physics, nanoscale chemistry, nanomaterials science, nanobiology, nanoelectronics, nanofabrication, and nanomechanics 
[5]. By harnessing nanotechnology, more precise and efficient treatment modalities can be devised, such as targeted drug delivery and 
tissue engineering [4]. Furthermore, nanotechnology can be applied in biosensing and diagnostics, refining early detection capabilities 
and diagnostic accuracy for diseases [6–8]. 

Traditionally, treatment methods for female reproductive system diseases have faced limitations in terms of suboptimal drug ef-
ficacy and severe side effects [9]. Consequently, the pursuit of more effective and precise treatment strategies assumes paramount 
significance. Nanotechnology has exhibited tremendous potential in this domain, empowering targeted drug delivery through 
nanocarriers, thereby improving treatment efficacy while alleviating side effects [10]. Additionally, the utilization of nanoparticles as 
molecular labels in diagnostics can amplify the sensitivity and accuracy of detection techniques, facilitating early detection and precise 
lesion diagnosis [11]. 

This manuscript endeavors to explore recent advancements in nanotechnology concerning drug delivery, diagnostics, and treat-
ment of female reproductive system diseases, underscoring its potential to ameliorate treatment outcomes and enhance quality of life. 
Through a comprehensive analysis of existing research and clinical practices, we aspire to gain an in-depth comprehension of the 
applications of nanotechnology in female reproductive system diseases and provide guidance and insights to steer future research and 
applications. 

2. Application of nanotechnology in the diagnosis of female reproductive system and related disorders 

2.1. Application of nanoparticle-labeled biomolecules for early cancer diagnosis 

Female reproductive system cancers encompass various types such as ovarian, cervical, endometrial, and vaginal cancers [12]. 
Early diagnosis is crucial for improving treatment success rates and survival rates, as early-stage cancers often lack obvious symptoms. 
Therefore, exploring early diagnostic methods holds significant importance in enhancing patient prognosis (Fig. 2.). 

2.1.1. Cervical cancer 
Cervical cancer is one of the most common malignant tumors in women, primarily occurring in the cervical region of the female 

reproductive system. In recent years, there has been a global trend of increasing incidence of this cancer among younger populations 
[13,14]. Fluorescence imaging (FI) represents a potent technique for the visualization of biological specimens, finding extensive utility 
in both cellular and molecular investigations, as well as within the realm of medicine [15]. Nanoparticles adorned with 
ligand-modified fluorescent dyes effectively zero in on lesions, thereby facilitating initial diagnosis and subsequent treatment. Notably, 

Fig. 1. Common diseases of the female reproductive system. According to their anatomical structures, the female reproductive system can be 
divided into several components, including the ovary, uterus, endometrium, vagina, fallopian tubes, and cervix. 
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Choi et al. accomplished the successful development of nanoparticles that target CD44-overexpressing cervical cancer cells, employing 
near-infrared FI to scrutinize tumors in vivo and trace metastatic cancer cells [16]. Additionally, Alomari et al. harnessed tamoxifen 
(TAM) and poly(methyl methacrylate) nanoparticles loaded with Nile red to facilitate the delivery of TAM to ER-negative cervical 
cancer cells, thereby elucidating drug internalization [17]. Budhathoki et al. in turn, engineered subcellular-targeting nanoprobes for 
efficacious nuclear targeting, a property which was corroborated by their display of optical responses [18]. Moreover, FI nanoparticles 
exhibiting reactivity to the tumor microenvironment have also been tailored for diagnostic imaging purposes. 

Photoacoustic imaging (PAI) manifests as an imaging modality that seamlessly merges optical and acoustic principles, having found 
widespread application in the diagnosis and monitoring of cervical cancer [19]. To illustrate, Zhang et al. have triumphantly devised a 
PAI platform utilizing nanocomposites boasting high near-infrared absorption, thereby enabling the capture of robust signals and 
facilitating the observation of drug accumulation within tumors [20]. Likewise, Rad et al. established a stable structure predicated 
upon BSA-Bi2S3–MnO2 nanodisks, which serve to capture high near-infrared absorption images [21]. In contrast to conventional 
ultrasound imaging, photoacoustic imaging touts superior spatial resolution, consequently affording heightened accuracy in the 
identification of morphological tissue characteristics, thereby aiding in the detection and localization of early lesions. Moreover, by 
synergistically blending photoacoustic imaging with other imaging modalities such as ultrasound imaging and fluorescence imaging, 
one can attain multimodal imaging capabilities, thereby facilitating the acquisition of comprehensive information from various 
vantage points [22]. The merits of this multimodal imaging approach enable physicians to holistically assess the morphological, 
functional, and molecular-level attributes of tissues concurrently, thus enhancing the precision of cervical cancer diagnosis. 

Nanoparticle-enhanced magnetic resonance imaging (MRI) leverages nanoparticles as contrast agents to realize high-resolution 
imaging at lesion sites, concurrently acquiescing functional information [23]. In the context of cervical cancer, MRI techniques 
based on nanomaterials confer substantial advantages, proffering lucid anatomical structures of tissues along with demarcation of 
lesions, while also furnishing crucial insights into early diagnosis and localization. For instance, Liu et al. have employed biocom-
patible iron oxide copper nanoparticles boasting heightened relaxivity as contrast agents for both in vitro and in vivo MRI imaging, 
with commendable imaging outcomes [24]. Moreover, Luong et al. have devised superparamagnetic iron oxide nanoparticle cores 
adorned with folate-poly(amidoamine) dendrimers, simultaneously encapsulating 3,4-difluorobenzylurea-curcumin nanoparticles, 
which not only exhibit elevated contrast for magnetic resonance imaging but also facilitate drug accumulation and engender anti-
cancer activity [25]. 

2.1.2. Ovarian cancer 
FI is a safe and effective method for early screening, intraoperative surgical guidance, and postoperative prognosis monitoring of 

ovarian cancer [26,27]. Currently, commonly used fluorescent agents in biological visualization include small molecule fluorophores, 
inorganic nanoparticles, quantum dots, and carbon nanotubes [28,29]. Near-infrared fluorescence dyes have weak tissue absorption 
and good tissue penetration, providing excellent tissue imaging capabilities [30]. The FDA has approved indocyanine green as a 
near-infrared fluorescence probe for ovarian cancer imaging [31]. However, the OTL-38 fluorescent probe designed by Hoogstins et al. 
offers higher signal-to-noise ratio and deeper tumor detection ability [32]. Despite the type of near-infrared fluorescence dye used, the 
detection depth is limited to a few millimeters due to light excitation and emission scattering [33]. Hence, surgeons still rely on 
preoperative CT/MRI scans or other intraoperative imaging methods to locate tumors and determine the surgical approach [34]. 
Fluorescent nanoparticles possess high brightness and signal efficiency, can accumulate in ovarian tumor areas, and are easily 
modified. They can be combined with specific targeted drugs, significantly improving the specificity of ovarian tumor imaging 
detection. Hence, fluorescent nanoparticles show great potential in early screening, intraoperative assistance, and postoperative 

Fig. 2. The utilization of nanotechnology in the early detection of ovarian cancer and cervical cancer.  
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prognosis of ovarian cancer. 
PAI is also employed in the diagnosis of ovarian cancer [35]. Gold nanorods (AuNRs) possess strong near-infrared light absorption 

characteristics and serve as excellent photoacoustic imaging contrast agents [36,37]. Jokerst et al. developed a multimodal imaging 
agent that combines photoacoustic imaging and surface-enhanced Raman scattering imaging, achieving rapid imaging of three 
common ovarian cancer cell lines [36]. In recent years, copper sulfide nanomaterials have also demonstrated good performance in 
near-infrared absorption and photoacoustic signals [38,39]. Compared to traditional gold contrast agents, copper sulfide nano-
materials exhibit better biodegradability and compatibility [40]. Wang et al. prepared surface-modified copper sulfide nanosheets that 
exhibit strong bidirectional solid surface plasmon resonance in the near-infrared region, capable of detecting concentrations as low as 
26 p.m. [40]. These nanosheets, with their size and photoacoustic effect, offer a powerful choice for ovarian tumor photoacoustic 
imaging. In addition, copper sulfide nanodisks and triangular nanosheets were reported as photoacoustic contrast agents for ovarian 
cancer [41]. 

Nano-multimodal imaging technology has garnered significant attention in the diagnosis and treatment of ovarian cancer due to its 
integration of various optical imaging techniques. For instance, PAI can enhance the resolution and sensitivity of FI. Research findings 
indicate that HER-2/targeted superparamagnetic iron oxide nanoparticles selectively accumulate in ovarian cancer tumors, resulting 
in a fivefold enhancement of photoacoustic imaging agent contrast [26]. Dual-mode near-infrared II region photo-
acoustic/fluorescence imaging exhibits high sensitivity and deep penetration, holding great potential for the early diagnosis and 
surgical guidance of ovarian cancer. Du et al. synthesized a novel organic near-infrared II dye (H10) using selenophene-dithienylbenzo 
[c] [1,2,5]thiadiazole (ST), which exhibited excellent aggregation-induced emission properties (I/I0>1.6) [42]. 

2.2. Utilization of nano-imaging technology for the diagnosis of additional female reproductive system disorders 

2.2.1. Endometriosis 
Endometriosis is characterized by the ectopic settlement of active endometrial cells beyond the confines of the uterine cavity [43, 

44]. Clinical detection typically employs imaging modalities like ultrasound and magnetic MRI. However, the absence of precise 
non-invasive detection techniques may lead to delays in symptom onset to diagnosis interval, consequently impacting treatment ef-
ficacy. Harnessing the potential of nanoparticle-based drug delivery, imaging reagents can be efficiently encapsulated while enhancing 
drug stability and targeting efficiency via ligand modifications. Taratula et al. devised nanoparticles comprising silicon naph-
thalocyanine dye, which exhibit high contrast between lesion areas and normal tissue along with fluorescence induction upon 
internalization by endometriotic cells [45,46]. By harnessing the photothermal effect, comprehensive diagnosis and treatment are 
facilitated through near-infrared light induced cell ablation. Importantly, iron oxide nanoparticles (Fe3O4) possess remarkable 
characteristics such as high relaxivity, superior contrast enhancement capabilities, and low toxicity, making them widely applicable 
not only in magnetic separation, catalysis, and drug/gene delivery but also as T2-weighted MRI negative contrast agents. Several 
studies have reported the correlation between MRI and endometriosis [47]. For instance, Lee et al. utilized ultra-small super-
paramagnetic iron oxide as an MRI contrast agent to diagnose deep infiltrating endometriosis [48]. Zhang et al. on the other hand, 
employed hyaluronic acid (HA)-modified Fe3O4 nanoparticles as an MRI contrast agent to observe morphological changes induced by 
CD44 receptor overexpression in rats presenting with pregnancy-like structures or ovarian cysts [49]. 

2.2.2. PCOS 
PCOS is one of the most prevalent endocrine and metabolic disorders in premenopausal women [50,51]. It is characterized by 

hyperandrogenism, which manifests as clinical features such as hirsutism, acne, alopecia, and seborrheic skin, as well as reduced 
ovulation resulting in menstrual dysfunction, decreased fertility, and endometrial hyperplasia [50,52]. Additionally, PCOS is closely 
linked to insulin resistance and metabolic complications [52]. The utilization of nanoparticles as imaging agents can offer more precise 
and non-invasive diagnostic methods, augmenting the comprehension and diagnostic levels of PCOS. 

Nanoparticle imaging techniques have several applications in the diagnosis of PCOS, including ultrasound imaging, MRI, optical 
imaging, and magnetic resonance elastography (MRE) [53]. For instance, using nanoparticles as contrast agents during ultrasound 
imaging enhances image contrast and improves the accuracy of PCOS diagnosis [54]. Nanoparticles can also be directed towards 
ovarian tissue to observe and evaluate cysts or other anomalous changes. Furthermore, nanoparticles can serve as contrast agents, 
providing clearer imaging information in MRI. By combining nanoparticles with specific markers, localization, and detection of 
PCOS-related biomarkers can be achieved, enabling a more accurate diagnosis [55]. In addition, fluorescently labeled nanoparticles 
facilitate the observation and assessment of cellular activity and metabolic changes in ovarian tissue, revealing the pathological 
processes of PCOS [56]. Finally, by using nanoparticles as contrast agents and combining them with MRE, the elasticity of ovarian 
tissue can be measured, thereby further assessing its functional status and degree of pathology. 

3. Application of nanotechnology in the treatment of female reproductive system and related disorders 

3.1. Refinement of nanomedicine delivery systems 

The development of nanomedicine delivery systems entails the design and fabrication of drug delivery platforms utilizing nano-
technology [57]. These platforms serve to deliver drugs precisely to designated treatment regions. They employ carrier materials like 
nanoparticles, nanomicelles, nanofibers, and nanotubes to encapsulate and shield the drugs, facilitating their release at optimal times 
and locations [58]. Due to their distinctive advantages, extensive research and application of nanomedicine delivery systems have 
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been observed across diverse domains, encompassing cancer treatment, drug therapy, gene therapy, and vaccine administration 
(Fig. 3.). 

3.1.1. Nanoparticle 
Nanoparticles are widely used as drug delivery systems, including metal nanoparticles, polymer nanoparticles, and lipid nano-

particles [59,60]. These particles have a small size and large surface area, which enables the encapsulation and protection of drugs 
[61]. Controlled release and stability of drugs can be achieved through concentration effects and surface modifications [61]. For 
instance, Zhang et al. proposed multifunctional magnetic nanoparticles that synergistically combine magnetic targeting, photothermal 
therapy, and chemical drug release for cancer treatment [62]. Park et al. introduced pH-responsive gold nanoparticles that release 
drugs in the acidic tumor environment, thereby enhancing the efficacy of photothermal therapy [63]. Li et al. utilized mesoporous 
silica nanoparticles combined with fluorescence imaging and MRI for tumor diagnosis and treatment monitoring [64]. Zhang et al. 
achieved targeted delivery of cisplatin using hormone peptide-releasing polymer nanoparticles that bind to receptors on cancer cell 
surfaces, thereby increasing the effectiveness of anticancer drugs [65]. Moreover, Zhang et al. developed a redox-responsive co-de-
livery system based on mesoporous silica nanoparticles that target brain tumors with dual-targeting, enabling precise drug delivery 
and release within the tumor microenvironment, resulting in improved treatment outcomes [66]. Shen et al. discovered that cross-
linking PD-L1 inhibitors with a polymer hydrogel can produce nanoparticles with controlled release capabilities, enhancing the ef-
ficacy of tumor radioimmunotherapy [67]. These studies demonstrate the enormous potential of nanoparticle delivery systems in drug 
therapy [68]. The nanoparticles not only possess multiple functionalities but also provide targeted delivery strategies for specific 
cancer types. Through the integration of different functionalities such as magnetic targeting, photothermal therapy, and chemical drug 
release, these nanoparticles can enhance treatment efficacy and play a vital role in disease diagnosis and treatment monitoring [69]. 

3.1.2. Nanomicelle 
Nanomicelles are nanostructures composed of one or more layers of surfactant molecules arranged in a spherical shape, where 

drugs can be encapsulated within the core [70]. Due to their hydrophilic and hydrophobic regions, micelles effectively enhance drug 
solubility, stability, and prolong the in vivo circulation time [71]. Zhang et al. employed polymer micelles to deliver cationic steroidal 
antibiotics into cells, thereby improving their stability and cellular uptake, leading to a potent therapeutic efficacy against infections 
[72]. Gautam et al. designed a responsive redox environment polymer micelle that releases drugs within tumor cells, resulting in 
improved treatment outcomes [73]. Zhou et al. demonstrated a dual-stimuli-responsive hybrid liposome-polymer micelle complex that 
attained precise drug delivery through temperature and pH changes, offering controlled drug release [74]. Yuan et al. developed 
self-assembled polymer micelle nanocarriers with efficient drug encapsulation capacity and stability, enabling targeted therapy for 

Fig. 3. Classification of nanomedicine delivery systems. Nanomedicine delivery systems utilize carrier materials such as nanoparticles, nano-
micelles, nanofibers, and nanotubes to encapsulate and shield drugs, facilitating optimal timing and location for drug release. 
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specific cells or tissues [75]. Incorporating drugs into the core of nanomicelles utilizing their hydrophilic and hydrophobic regions can 
enhance drug solubility and stability and prolong the in vivo circulation time, providing new opportunities for future clinical treatment 
and personalized medicine. 

3.1.3. Lipid nanoparticle 
Lipid nanoparticles are minute droplets or vesicles enclosed by layers of phospholipids, typically exhibiting a bilayer structure [76]. 

Serving as a crucial drug delivery system, lipid nanoparticles have showcased extensive practicality within the domain of nano-
medicine. Mo et al. have conducted a comprehensive review encompassing the preparation methods, structural regulation, and 
functional realization of lipid nanoparticles across diverse fields [77]. Through modulation of phospholipid composition and structure, 
lipid nanoparticles can achieve precise control over drug release rate and specificity, thereby enhancing the efficacy of ovarian cancer 
treatment. In a separate study, Palanee-Phillips et al. explored the vaginal mucosal delivery of the anti-HIV drug tenofovir disoproxil 
fumarate [78]. Their innovative approach entailed designing and preparing polymer nanoparticles that form a film. Experimental 
results have confirmed that this lipid nanoparticle formulation enhances drug concentration and bioavailability at the vaginal site, 
thereby bolstering the prevention and treatment of HIV/AIDS. Additionally, Ayatollahi et al. undertook the encapsulation of keto-
conazole in lipid nanoparticles through formulation optimization [79]. They assessed the drug release and bioactivity at the target site 
via in vitro and in vivo experiments. The outcomes demonstrated the effective delivery of the drug to the vaginal mucosa, facilitated by 
the lipid nanoparticle formulation, which exhibited favorable drug release and antifungal activity. As an exceptional drug delivery 
system, lipid nanoparticles offer advantages in precisely controlling drug release, improving efficacy, and reducing side effects. 

3.1.4. Organic-inorganic nanocomposite 
Organic-inorganic nanocomposites are composite systems at the nanoscale that amalgamate organic materials with inorganic 

materials [80]. These composites capitalize on the unique properties of inorganic materials, such as magnetism and optical properties, 
to achieve targeted drug delivery and controlled release [81]. Lee et al. develop a pH-responsive folic acid-grafted organic/inorganic 
hybrid nanocomposite system for site-selective oral delivery of therapeutic antibodies [82]. Furthermore, Aloisi et al. provide a 
comprehensive summary of recent advances in organic-inorganic hybrid nanomaterials within the realm of women’s reproductive 
health [83]. This review offers an intricate introduction to the applications of organic-inorganic nanocomposites in treating gyne-
cological diseases, thereby proposing novel solutions for gynecological tumors, female infertility, and infectious diseases. 

3.1.5. Nucleic acid nanocarrier 
Nucleic acid nanomaterials are exceptionally minute particles primarily composed of DNA or RNA, typically exhibiting diameters 

ranging from 1 to 100 nm [84]. A variety of nucleic acid nanomaterials, including nucleic acid nanoparticles, nucleic acid nano-
structures, and nucleic acid nanochips, can be fabricated using chemical methods [85]. Within the domain of female reproductive 
system diseases, nucleic acid nanomaterials find applications in gene therapy, drug delivery, diagnostics, and antimicrobial research. 
Baxi et al. report a lipid-based nucleic acid nanocarrier designed for localized treatment of reproductive system diseases [86]. 
Encapsulation of small interfering RNA within the lipid nanoparticles enables targeted delivery and gene silencing within the 
reproductive system. Garzon et al. conduct a comprehensive review of nanoparticle applications in treating endometriosis. Various 
types of nanoparticles are introduced, and their potential in drug delivery, anti-inflammatory effects, and tissue regeneration are 
discussed [87]. Additionally, Yang et al. present research on nanomedicines for enhanced local drug delivery against vaginal infections 
[88]. The researchers employ nucleic acid nanomaterials to fabricate nanocarriers with high permeability and stability, aiming to 
improve drug accumulation and therapeutic efficacy in vaginal tissues. These studies offer evidence of the potential application of 
nucleic acid nanomaterials within the realm of reproductive system research. They can be employed for localized treatment of 
reproductive organ-related diseases, such as endometriosis and vaginal infections. 

3.2. Magnetic nanoparticles 

Magnetic nanoparticles, which are nano-sized particles composed of magnetic materials such as iron, nickel, and cobalt, possess 
magnetic properties [89]. In the context of female reproductive system diseases, magnetic nanoparticles have demonstrated promising 
applications and achieved encouraging progress. Shalaby et al. developed a programmable drug delivery system utilizing magnetic 
nanoparticles for the selective dissolution of uterine fibroid cells [90]. Shalaby et al. developed a localized nonsurgical 
adenovirus-based alternative for the treatment of uterine fibroids that combines viral-based gene delivery with nanotechnology for 
more efficient targeting [90]. Furthermore, Yi et al.’s study highlighted the therapeutic effect of micelle-encapsulated zinc-doped 
copper oxide nano-composites on PARP inhibitor-resistant ovarian cancer, offering potential insights for clinical diagnosis and 
treatment [91]. 

3.3. Biologically active nanomaterials 

Biologically active nanomaterials refer to a class of nanoscale materials with unique structures and functions that interact with 
biological systems and exhibit biological activities [92]. In the field of female reproductive system diseases, biologically active 
nanomaterials hold significant potential. The applications of these materials primarily involve diagnostics and therapeutics. In di-
agnostics, biologically active nanomaterials find extensive utilization in the domains of bioimaging and biosensors. By attaching 
probes such as fluorescent tags to nanomaterials, highly sensitive detection of disease biomarkers, including those associated with 
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breast cancer and endometriosis, can be achieved [93]. Furthermore, biologically active nanomaterials can serve as contrast agents, 
facilitating improved contrast in MRI and ultrasound imaging, thereby contributing to more accurate disease diagnosis [94]. In terms 
of therapeutics, biologically active nanomaterials can act as efficient drug carriers, enabling targeted therapy. Through adjustments in 
the nanomaterials’ size, surface modifications, and release mechanisms, their accumulation and drug delivery efficiency at the lesion 
site can be enhanced while minimizing adverse effects on healthy tissues. For example, in the treatment of uterine fibroids, drugs 
encapsulated within biologically active nanomaterials can be released at the specific lesion site through precise targeting mechanisms, 
enabling localized treatment [95,96]. Additionally, biologically active nanomaterials can be employed in thermotherapy utilizing 
magnetic hyperthermia, where an externally applied magnetic field generates heat, leading to thermal ablation of the lesions [97]. The 
application of nanomaterials in uterine fibroid treatment is still in the research stage, necessitating further validation and clinical 
practices. However, these nanotechnologies offer a potential new avenue for treating uterine fibroids, with anticipated benefits 
including improvements in drug delivery efficiency, treatment effectiveness, and reduced adverse reactions. 

3.4. Utilization of nanotechnology for the regulation of ovarian hormones 

Ovarian hormones, including estrogen and progesterone, play a crucial role in the female reproductive system [98]. Nanotech-
nology offers potential applications for modulating the synthesis, release, and response of these hormones (Fig. 4.). 

3.4.1. Estrogen 
Nanotechnology offers a means to regulate estrogen levels by modulating ovarian feedback mechanisms. Nucleic acid nano-

materials can be harnessed to selectively inhibit the regulatory factors involved in estrogen synthesis, effectively reducing its pro-
duction and release. Multiple studies have substantiated the utility of nanocarriers for delivering anti-estrogen drugs [99–101]. 
Nanoparticles and nanocapsules, among other carriers, have found extensive application in anti-estrogen drug delivery. These carriers 
play a pivotal role in enhancing drug stability, bioavailability, and enabling targeted delivery, thus contributing to dose reduction and 
mitigating adverse effects. Furthermore, nucleic acid nanomaterials like liposomes and polymer nanoparticles have been employed to 
deliver gene therapy drugs, including siRNA, to intervene in estrogen synthesis or response processes [102]. This gene therapy 

Fig. 4. The Application of nanotechnology in the ovarian and hypothalamic-pituitary-gonadal axis hormone secretion system. Nanoparticles have 
the potential to influence hormone secretion through two distinct mechanisms: 1) their ability to traverse the blood-brain barrier and target the 
hypothalamus and pituitary secretory cells, thereby modulating the release of GnRH, LH, and FSH hormones. Consequently, this disruption in-
terferes with the intricate positive and negative feedback loop of the hypothalamic-pituitary-gonadal axis, ultimately impacting the regular secretion 
of ovarian estrogen and progesterone; 2) their circulation towards the ovaries, where they accumulate within membrane cells and granulosa cells, 
leading to perturbed steroidogenesis. Ultimately, these dysregulated hormonal secretions contribute to impaired oocyte development and the onset 
of various ovarian diseases. 
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approach utilizing nanomaterial carriers facilitates efficient drug delivery and brings forth novel prospects for treatment. 

3.4.2. Progesterone 
Nanotechnology also holds promise for progesterone regulation. Progesterone assumes a critical hormone status, exerting pivotal 

influences on physiological and pathological processes, notably implicated in diseases such as breast cancer and osteoporosis [103]. By 
investigating progesterone receptor signaling pathways, researchers strive to develop more efficacious treatment modalities. Nano-
technology plays a momentous role by enabling the design and fabrication of targeted drugs for progesterone receptors, thereby 
bolstering treatment efficacy while minimizing side effects. Secondly, in the realm of nanotechnology-mediated delivery of proges-
terone drugs, nanoparticles, nanocapsules, and nanofibers have been extensively utilized [104–106]. These carriers exhibit excep-
tional drug stability, bioavailability, and enable targeted delivery. Encapsulation of progesterone drugs within nanocarriers facilitates 
enhancements in drug solubility, controlled release kinetics, and targeting capabilities, thereby amplifying therapeutic effectiveness 
and diminishing dosage and adverse effects. 

3.4.3. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 
LH and FSH, secreted by the pituitary gland, play a crucial role in regulating synthesis and release of ovarian hormones [107]. 

Nanotechnology holds the potential to modulate LH and FSH synthesis or release, thus influencing ovarian hormone levels. Experi-
mental findings have illustrated successful entrapment and controlled release of FSH using nanoparticle carriers, resulting in enhanced 
bioactivity and stability [108]. To enhance ovarian reserve function, temperature-sensitive hydrogel-based nanocapsules have been 
devised for controlled FSH delivery [109]. These nanocapsules have exhibited effective release of FSH both in vitro and in vivo, 
indicating promising prospects for optimizing ovarian reserve function. Furthermore, conceptual investigations have explored the 
utilization of targeted nanoparticle carriers for controlled FSH release in order to ameliorate fertility outcomes in polycystic ovary 
syndrome [110]. Encouraging results highlight the potential viability of these nanoparticle carriers as a therapeutic strategy for 
polycystic ovary syndrome. Harnessing nanocarriers for the delivery of ovulation-inducing drugs represents a potent therapeutic 
approach with the capacity to augment local drug concentrations and escalate treatment efficacy [111]. These studies assume sig-
nificant importance in comprehending the application of nanotechnology within the realm of reproductive health. 

Fig. 5. The application of nanomaterials in contraception and fertility control entails: 1) Delivery of contraceptive drugs; 2) Modulation of sperm 
motility and functionality; 3) Implementation of localized contraception methods; 4) Monitoring of reproductive status. 
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4. The role of nanotechnology in the prevention and management of disorders in the female reproductive system 

4.1. Utilization of nanomaterials in the field of contraception and fertility control 

Nanomaterials exhibit promising potential in the domains of contraception and fertility control (Fig. 5.). 

4.1.1. Contraceptive drug delivery system 
Nanoparticles can serve as carriers for contraceptive drugs, facilitating more efficacious birth control. By encapsulating or 

modifying the drugs with nanoparticles, controlled release mechanisms can be achieved, enhancing drug stability and bioavailability. 
Subcutaneous contraceptive implants, utilizing biodegradable materials, entail the integration of hormones with diverse biomaterial 
structures like capsules or rods, which are subsequently implanted beneath the skin to accomplish continuous and stable drug release. 
This method presents an enduring contraceptive effect coupled with notable reversibility. A solitary implant can provide contraception 
for a duration of 5 years, boasting a superb Pearl Index of 0.1, while fertility is wholly reinstated upon removal of the implant [112]. 
The implantable contraceptive extended-release delivery system, Implanon with ethyl acetate (EVA) as the carrier matrix, represents 
another variant in this category. EVA exhibits exceptional elasticity, flexibility, water resistance, and corrosion resistance while also 
demonstrating superior tolerance towards fillers compared to silicone rubber [113]. Conville et al. demonstrated the efficacy of a 
hydrogel delivery system composed of a blend of polyethylene vinyl acetate (PEVA) and polylactic acid (PLA) with hydrophilic 
tenofovir [114]. Through careful optimization of the PLA to PEVA ratio, the researchers achieved a favorable performance in achieving 
long-acting slow-release for contraception, pregnancy prevention, and HIV transmission inhibition. 

4.1.2. Nano-spermicides 
Nanomaterials possess utility in impeding sperm motility, thus promoting contraception. By tailoring specific surface structures or 

chemical compositions of nanoparticles, it is conceivable to thwart sperm-egg binding and penetration, thereby achieving contra-
ceptive effects [115]. The mechanism of Cu-IUD is considered that the release of Cu2+ causes the inactivation of sperm and the 
suppression of myometrial contractions [116]. Hu et al. reported on the use of Nano-Cu/LDPE as a copper carrier in intrauterine 
devices for contraception [117]. Copper nanoparticles were combined with LDPE through physical and chemical methods to form a 
composite material, resulting in an even distribution of nanoparticles within the composite. By separating the copper nanoparticles 
from LDPE, their proximity to the corrosive medium (Cu2+ ions) was controlled to effectively regulate the corrosion rate, which 
allowed for a rapid and constant release rate within 5 h [118]. 

4.1.3. Utilization of nanomaterials for local contraception 
Nanomaterials have immense potential for local contraception, including regulation of the vaginal environment and localized 

contraceptive acidification. Conville et al. elucidated the efficacy of a hydrogel delivery system based on a composite blend of PEVA 
and PLA incorporated with hydrophilic tenofovir [114]. By carefully manipulating the PLA to PEVA ratio, the researchers achieved a 
desirable performance in terms of long-acting slow-release, thereby showcasing its potential for contraception, pregnancy prevention, 
and HIV transmission inhibition applications. Malik et al. fabricated biodegradable nanoparticles composed of poly (lactic acid, PLA) 
using a single emulsion technique [119]. These Nanoparticles had an average size of 75 nm. When administered into the vaginal cavity 
of mice in estrus, the Nanoparticles exhibited retrograde transport, crossing the cervix and accumulating in the uterus. Analysis of 
uterine lavage samples taken after NP instillation revealed the activation of proinflammatory signals, such as RANTES and TNF, within 
the uterine microenvironment. This inflammation created an adverse milieu that hindered the successful establishment of pregnancy. 

4.1.4. Nanosensors for contraceptive monitoring 
The application of nanomaterials in contraceptive monitoring represents a promising area of research. By utilizing nanoparticle 

labeling of specific physiological molecules or indicators, real-time monitoring of fertility status can be achieved, providing more 
accurate information for contraception. For instance, in monitoring women’s ovulation cycles, nanomaterials can be used to label 
relevant biomarkers such as FSH and LH [120,121]. Changes in these markers can determine whether a woman is ovulating or in 
different stages of fertility, aiding in the determination of appropriate contraceptive methods or fertility planning. Additionally, 
nanomaterials can be employed to monitor levels of hormones within a woman’s body. For example, estrogen and progesterone levels 
can be monitored using nanoparticle sensors to assess fertility, menstrual cycles, and hormone imbalances [101,103]. The application 
of nanomaterials can also extend to other areas of contraceptive control, such as male contraception. Nanoparticles can serve as drug 
carriers to deliver contraceptive drugs or spermicidal agents into the male reproductive system, achieving controlled contraceptive 
effects. 

4.2. Application of nanotechnology in the treatment of infertility 

4.2.1. Reproductive cell preservation 
The utilization of nanotechnology can enhance the quality of cryopreserved sperm and oocytes through the use of various nano-

materials, which provide protective barriers to prevent crystallization and cellular damage during the freezing process [122]. Bisla 
et al. explore the application of nanoparticles in male fertility, specifically the ways in which metals, polymers, and carbon-based 
materials protect sperm, improve their quality, and reduce cell damage during the freezing-thawing process [123]. Additionally, 
Isaac et al. investigate further the application of nanoparticles in human sperm cryopreservation and find that these particles can 
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stabilize sperm cell membranes, reduce oxidative stress, and freezing-induced cell damage, thus improving sperm viability and 
motility [124]. Furthermore, Fraser et al.’s study examines the potential benefits of nanoparticles in the treatment of infertility [125]. 

4.2.2. Drug delivery systems 
Nanoparticles can function as efficient drug delivery systems, providing direct delivery of drugs or bioactive molecules to repro-

ductive organs, ovaries, testes, and other targeted tissues. This targeted delivery approach enhances local drug concentration, reduces 
side effects, and improves treatment effectiveness. Cai et al. provided a comprehensive overview of the recent advancements in uterine 
endometrial repair methods, with a particular focus on the application status of biomaterial-based hydrogel delivery systems in in-
trauterine injury repair [126]. The review delved into the principles of preparation, therapeutic efficacy, repair mechanisms, as well as 
current limitations and future prospects of this approach. Jahanbani et al. elucidated the recent progress in the development of 
functionalized biomaterials aimed at enhancing the preservation of exosome bioactivity and enabling controlled release. The study 
emphasized the diagnostic and therapeutic role of exosomes in reproductive system disorders pertaining to both males and females 
[127]. 

4.2.3. Support for assisted reproductive technology (ART) 
Nanotechnology is increasingly recognized as an effective approach for enhancing success rates in assisted reproductive tech-

nology. Magdanz et al. describes the potential of sperm-driven micro-bio-robots in the biomedical field such as drug delivery or single 
cell manipulation [128]. Roshanfekr et al. emphasize the use of nanomaterials in embryo culture media, which can optimize envi-
ronmental conditions and improve embryo development [129]. Additionally, nanoparticles employed in embryo imaging contribute to 
selecting the most promising embryos. Additionally, Lu et al. developed the silk fibroin (SF)-based microneedles for transdermal 
delivery of triptorelin-loaded Nanoparticles to improve bioavailability and achieve safe and efficacious self-administration of trip-
torelin [130]. 

4.2.4. Gene editing and repair 
Nanotechnology is capable of gene editing and repair, offering an avenue to address specific genetic defects that cause infertility. By 

adjusting the surface properties of nanoparticles, therapeutic agents or genes can be transported into reproductive cells, enabling 
proper gene function. Zhen et al. developed a novel lipid nanoparticle formulation containing CRISPR/Cas2019 gene editing tools, 

Fig. 6. Limitations of nanotechnology in biomedicine encompass several factors: 1) The particle size disparities leading to the particle size effect; 2) 
Biological toxicity considerations; 3) The ecological implications of release and accumulation; 4) Industry regulation and risk assessment measures. 
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which effectively suppressed proliferation and induced apoptosis in hr-HPV9E/E16-positive cervical cancer SiHa cells by targeting the 
inactivation of the HPV16 oncogene [131]. Rosenblum et al. published a study describing the development of lipid nanoparticles 
encapsulating PLK1-targeting Cas9 mRNA and sgRNA gene editing tools. They successfully established a mouse model of peritoneal 
disseminated ovarian cancer (OV8-Mcherry) and administered the nanoparticles via intraperitoneal injectio [132]. Meanwhile, 
Wiweko and colleagues investigate the diverse applications of nanotechnology for reproduction, including gene editing and repair, as 
well as imaging and diagnostics [133]. 

5. Challenges and prospects of nanotechnology 

5.1. Safety and toxicity 

The safety and toxicity concerns associated with nanotechnology have consistently garnered significant research attention. Despite 
the vast potential applications of nanomaterials in scientific, medical, and engineering domains, it is imperative to conduct 
comprehensive evaluations regarding their safety and potential toxicological effects (Fig. 6.). 

5.1.1. Effects of particle size 
The particle size of nanomaterials has a significant impact on their properties and behaviors, commonly known as the particle size 

effect [134,135]. Materials at the nanoscale exhibit distinct variations in their physical, chemical, and biological characteristics 
compared to macroscopic materials [136]. Understanding the particle size effect is paramount for ensuring the safety of nanomaterials. 
In general, smaller nanoparticles possess a relatively large surface area, which enhances their chemical reactivity and biological ac-
tivity. The increased contact area between nanoparticles and the surrounding environment or biological systems facilitates in-
teractions with cells, proteins, and other biomolecules [137,138]. Furthermore, the small size of nanoparticles can influence their 
pharmacokinetics, cellular uptake, tissue penetration, and excretion pathways. These factors play a crucial role in the biodistribution, 
transport, and clearance processes of nanomaterials, thereby affecting their potential toxicity within an organism. Numerous studies 
have demonstrated smaller nanoparticles are more readily taken up by cells and may exert more pronounced toxic effects, whereas 
larger nanoparticles are more susceptible to engulfment and clearance by macrophages [139–141]. 

5.1.2. Mechanisms of toxicity 
The mechanisms underlying the toxicity of nanomaterials are intricate and depend on specific materials and applications. Certain 

nanomaterials are capable of inducing adverse effects, including cell toxicity, inflammation, and oxidative stress [142,143]. These 
effects are thought to be influenced by various factors, such as the chemical composition, structural characteristics (e.g., shape and 
surface modifications), and dosage of the nanoparticles. Boyadzhiev et al. investigated DNA damaging effects in adherent murine lung 
epithelial cells exposed for 2–4 h to different doses of ZnO, CuO, and TiO2 Nanoparticles, MPs as well as zinc and copper chloride salts 
[144]. The findings revealed that nanoparticle size and dosage are critical determinants of cellular toxicity. Lekki-Porębski et al. 
demonstrated that the cellular toxicity mechanism of ZnO Nanoparticles is based on the induction of oxidative stress in CCRF-CEM 
cells, which is caused by the release of free zinc ions from ZnO Nanoparticles [145]. 

5.1.3. Environmental impacts 
The release and accumulation of nanomaterials have the potential to exert environmental effects. When nanoparticles enter the 

environment, they can interact with organisms, soil, water, and other constituents, thereby posing adverse consequences for eco-
systems [146–148]. Consequently, assessing the behavior and bioavailability of nanomaterials within the environment becomes 
pivotal. In a study conducted, the authors evaluated the biocompatibility and toxicity of silver nanoparticle-loaded polyester fabrics 
used as antimicrobial agents [149]. Their findings revealed that the material exhibited a certain degree of cytotoxicity toward human 
cells, which correlated with the concentration and exposure duration of the silver nanoparticles. 

5.1.4. Relevant regulatory frameworks and documents 
Numerous countries have formulated policies and regulations pertaining to nanotechnology to ensure its safe implementation. For 

instance, the U.S. Environmental Protection Agency (EPA) has issued guidelines and risk assessment methodologies for utilizing 
nanomaterials [150], while the European Commission has enacted regulations catered specifically to nanomaterials [151]. Moreover, 
international organizations actively advocate for global collaboration in nanotechnology safety. Notable examples include the World 
Health Organization (WHO), which has developed guidelines for assessing the health risks associated with nanomaterials [152], and 
the International Organization for Standardization (ISO), which has established a series of standards addressing nanotechnology safety 
[153]. Extensive research has been conducted by independent research institutions and academic scholars to evaluate the potential 
risks of nanomaterials and to devise guidelines for their secure application [154–157]. These research outcomes furnish scientific 
evidence regarding the safety of nanotechnology. Importantly, it should be highlighted that nanotechnology remains an evolving 
domain, and investigations into its safety and toxicity persist. Collaboration among the scientific community, government agencies, 
and industry is imperative to promote the sustainable development of nanotechnology while ensuring its safety and environmental 
compatibility in practical applications. 
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5.2. Obstacles to clinical translation 

Promoting the application of nanomaterials in clinical translation plays a crucial role in the development of nanomedicine, but 
currently faces various challenges and obstacles. 

5.2.1. Safety and toxicity assessment 
Comprehensive evaluations of safety and toxicity are imperative for nanomaterials due to their distinctive physicochemical at-

tributes. These assessments encompass several facets, including pharmacokinetics, toxicology, and immunology, in order to ascertain 
the safety of nanomaterials in clinical applications-a critical consideration. Firstly, the evaluation of pharmacokinetics involves 
scrutinizing how nanomaterials are absorbed, distributed, metabolized, and excreted within the body [158]. Given the unique size, 
shape, and surface properties of nanomaterials, their behavior and transformation in the body may deviate from that of conventional 
drugs. Consequently, comprehending the pharmacokinetic characteristics of nanomaterials is pivotal for evaluating their safety in 
clinical usage. Secondly, toxicology assessments are conducted to identify potential toxic effects of nanomaterials on human tissues, 
organs, and cells [159]. 

Existing research findings suggest that nanoparticles can penetrate the blood-testis barrier and accumulate in the interstitial cells, 
supporting cells, and sperm cells in the testes [160]. It is worth noting that nanoparticles have the ability to cross the placental barrier, 
thereby affecting the growth and development of offspring [161]. Additionally, immunological assessments investigate the impact of 
nanomaterials on the immune system [162]. Nanomaterials have the capacity to interact with immune cells or molecules, potentially 
leading to alterations or irregularities in immune responses. Understanding the influence of nanomaterials on the immune system aids 
in assessing their immunotoxicity potential and instilling confidence in their safe clinical usage. 

5.2.2. Lack of standardization and regulations 
The intricate and diverse nature of nanomaterials currently results in a lack of unified standardized methodologies and regulations 

for their characterization, quality control, and batch consistency assessment [163]. This absence of uniform standards presents a series 
of challenges for the clinical translation of nanomaterials, impeding comparability and reproducibility of outcomes. Primarily, the 
complexity and diversity of nanomaterials render their evaluation arduous. The properties of nanomaterials are influenced by various 
factors such as size, shape, and surface modifications. Nevertheless, prevailing techniques and parameters for assessing nanomaterials 
lack standardization, leading to disparate evaluation methods employed by diverse research institutions or laboratories. Consequently, 
making meaningful comparisons between findings becomes a formidable task. Secondly, the absence of unified quality control 
methods curtails the usage of nanomaterials in clinical translation. The preparation and synthesis processes of nanomaterials 
frequently involve intricate conditions and process parameters. However, due to the lack of standardized quality control methods, 
ensuring consistency and stability across different batches becomes challenging-an influential limiting factor for the clinical appli-
cation of nanomaterials. Furthermore, the dearth of uniform evaluation standards also poses challenges to safety assessments during 
the clinical translation of nanomaterials. In the realm of toxicity evaluation for nanomaterials, the absence of standardized methods 
and indicators hinders direct comparison of toxicity results from distinct studies. This impedes our comprehensive understanding of 
potential risks associated with nanomaterials and obstructs reliable assessment of their secure applications. 

5.2.3. Targeting efficiency and drug delivery 
In order to achieve optimal drug delivery in the field of nanomedicine, precise targeting to the disease site and controlled release of 

drugs are crucial. However, the delivery efficiency and stability of nanomaterials pose challenges in complex biological environments, 
necessitating further research and optimization. Researchers are currently exploring various strategies to enhance the delivery effi-
ciency of nanomaterials. For example, modifying the surface of nanomaterials can improve their targeting specificity, enabling ac-
curate recognition and binding to disease biomarkers or cell receptors [164–166]. Moreover, intelligent targeted delivery of 
nanomaterials can be achieved by utilizing biological molecules (such as antibodies and peptides) or stimuli-responsive mechanisms 
[167,168]. Another key concern is ensuring effective drug release at the target site. Some nanomaterials can initiate drug release in 
response to changes in biological conditions like pH, temperature, or enzymes, thereby enhancing delivery efficiency [169–171]. 
Furthermore, ongoing research is focused on achieving controlled delivery and drug release of nanomaterials through external stimuli 
such as light, magnetic fields, or sound waves [172,173]. 

5.2.4. Production costs and scalability 
The preparation and production of nanomaterials are often intricate processes associated with high costs and technological 

challenges. To facilitate the clinical translation of nanomaterials, it is important to address issues related to large-scale preparation, 
production scalability, cost control, and affordability. Researchers are actively developing more efficient synthesis methods and 
advanced technologies to reduce the preparation costs of nanomaterials. Innovative techniques like microfluidic technology, nano-
particle assembly, and self-assembly enable rapid and controllable preparation of nanomaterials [174–176]. Additionally, the utili-
zation of bio-synthesis and renewable resources can contribute to reducing preparation costs and minimizing environmental impact. 
Furthermore, scaling up production while maintaining consistent quality is a significant consideration. Meeting the demands of clinical 
applications requires conducting large-scale production of nanomaterials with stable preparation. Therefore, it is imperative to explore 
new processes and equipment to enhance the production efficiency and controllability of nanomaterials. 
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5.2.5. Regulatory and governance constraints 
The clinical applications of nanomaterials are subject to regulatory requirements established by national and regional authorities 

[177]. Due to the unique properties of nanomaterials, many countries are formulating policies and regulations to ensure their safety 
and efficacy. This often results in complex and time-consuming approval processes. Regulatory requirements for nanomaterials 
encompass assessments of toxicity, biocompatibility, compliance testing, and supervision, aiming to guarantee their safety, efficacy, 
and reliability in clinical applications. To adhere to regulatory and governance constraints, researchers and manufacturers must 
conduct comprehensive safety assessments and preclinical studies to gather the necessary data and evidence. Active communication 
and collaboration with regulatory agencies are also essential to ensure compliance and facilitate smooth clinical translation of 
nanomaterials. 

5.2.6. Ethical challenges 
The primary ethical concern with nanotechnology is its safety, specifically whether the research and application of nanotechnology 

have any adverse effects on the health and lives of researchers and users. Currently, most of the research on nanotechnology in 
reproductive system diseases is preclinical, and there is a lack of practical clinical trials on nanoparticle treatments. 

One question to consider regarding the clinical translation of nanoparticles in sensitive areas such as women’s reproductive systems 
is the potential for transgenerational risks. Studies have shown that regulating the size and charge of nanoparticles can limit their 
ability to cross the placenta [178]. Currently, there are various in vitro, ex vivo, and in vivo models available to study the distribution 
of nanoparticles in tissues (including fetuses) [179]. Therefore, designing suitable nanoparticles and generating sufficient preclinical 
data to prove the ethical feasibility of conducting phase I trials in pregnant women is necessary. Another concern is the restrictions on 
assisted reproductive technologies. For example, the nanorobotics project has made revolutionary progress in assisted reproductive 
technology by efficiently and accurately picking up sperm and achieving targeted manipulation of sperm, but long-term safety and 
feasibility issues still require further research and validation [180]. 

5.3. The potential of nanotechnology application 

Nanomaterials hold tremendous potential in the realm of female reproductive system diseases, with targeted therapy, early 
diagnosis, drug delivery systems, and tissue engineering and regenerative medicine among their future focus areas [9,83,181]. 

A few clinical trials have evaluated the potential of nanotechnology in gynecological diseases. A prospective clinical study analyzed 
the oncogenic viral tumor interaction forces and interaction dynamics based on nanomechanics and nanoelectromechanical sensors 
(NCT01387997). The efficacy of MILTA® therapy has been demonstrated in various pain management cases, but it has never been used 
for pain associated with perineal scars. An interventional clinical trial, NCT05345600, is planned to recruit 110 participants to 
evaluate the effectiveness of MILTA® compared to placebo in relieving postpartum pain associated with perineal scars. Feasibility of 
real-time dosimetry monitoring using a novel nanoscale scintillating fiber-optic dosimeter (nanoFOD) during external beam radio-
therapy has been determined through two observational studies (NCT02407977, NCT02040155). SNB-101 is a novel nanoparticle 
formulation of the active metabolite SN-38 of irinotecan (CPT-11). NCT04640480 is a phase I clinical trial aiming to evaluate the 
safety, tolerability, and pharmacokinetics of intravenous infusion of SNB-101 in advanced solid tumor patients, including epithelial 
ovarian cancer. 

Regarding targeted therapy, nanomaterials can achieve molecular-level precision for female reproductive system diseases through 
rational design and functionalization. Surface property modification enables selective recognition and binding to disease cells or 
tissues, allowing for precise release of therapeutic drugs at the site and reducing harmful side effects while enhancing efficacy. In the 
realm of early diagnosis, nanomaterials can improve the diagnostic capabilities of female reproductive system diseases. Optical, 
magnetic, or acoustic manipulation of nanomaterials can yield highly sensitive and specific nanoprobes for detecting and imaging 
disease biomarkers or abnormal physiological states, enabling earlier disease diagnosis. Nanomaterials can also serve as drug delivery 
systems to enhance the treatment effectiveness of female reproductive system diseases. Encapsulating therapeutic drugs like anti- 
cancer agents and anti-infective drugs and delivering them accurately to the disease site increases drug stability and bioavail-
ability, while reducing toxic side effects. Moreover, nanomaterials have significant implications in the field of tissue engineering and 
regenerative medicine for the female reproductive system. They have the potential to construct functional tissues such as artificial uteri 
or ovaries, promoting tissue repair and regeneration of the reproductive system. Furthermore, nanomaterials play a constructive role 
in supporting cell growth, differentiation, and functional expression, offering novel strategies for the treatment of female reproductive 
system diseases. 

6. Conclusion 

Nanotechnology holds immense potential in the field of female reproductive system diseases. This review highlights the appli-
cations of nanomaterials in targeted therapy, early diagnosis, drug delivery systems, and tissue engineering and regenerative medicine. 
Nanomaterials can be tailored and functionalized to specifically target and treat female reproductive system diseases, minimizing side 
effects and enhancing efficacy. Additionally, nanotechnology plays a significant role in early disease detection by developing highly 
sensitive and specific nanoprobes capable of identifying disease biomarkers or abnormal physiological states. Furthermore, nano-
materials serve as effective drug delivery systems, improving the treatment outcomes of female reproductive system diseases. By 
encapsulating therapeutic drugs within nanomaterials and delivering them to disease sites, drug stability is increased while reducing 
toxic side effects. However, further research and clinical validation are necessary to ensure the safety, effectiveness, and feasibility of 
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these applications. Nanotechnology offers hope for addressing female reproductive health issues and has the potential to become a 
crucial clinical practice in the future. 
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