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Abstract: Docosahexaenoic acid (DHA), an omega-3 fatty acid rich in seafood, is linked to Alzheimer’s
Disease via strong epidemiological and pre-clinical evidence, yet fish oil or other DHA supplemen-
tation has not consistently shown benefit to the prevention or treatment of Alzheimer’s Disease.
Furthermore, autopsy studies of Alzheimer’s Disease brain show variable DHA status, demonstrat-
ing that the relationship between DHA and neurodegeneration is complex and not fully understood.
Recently, it has been suggested that the forms of DHA in the diet and plasma have specific metabolic
fates that may affect brain uptake; however, the effect of DHA form on brain uptake is less pro-
nounced in studies of longer duration. One major confounder of studies relating dietary DHA and
Alzheimer’s Disease may be that adipose tissue acts as a long-term depot of DHA for the brain, but
this is poorly understood in the context of neurodegeneration. Future work is required to develop
biomarkers of brain DHA and better understand DHA-based therapies in the setting of altered
brain DHA uptake to help determine whether brain DHA should remain an important target in the
prevention of Alzheimer’s Disease.
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1. Introduction

Alzheimer’s Disease (AD) is the most common cause of dementia [1]. Its prevalence
is predicted to continue to increase, potentially affecting up to 14 million individuals by
2050 in the US alone [2]. No cure for AD yet exists; however, efforts to prevent AD have
identified modifiable risk factors such as diet and lifestyle [3,4].

Docosahexaenoic acid (DHA) is a N3 long-chain polyunsaturated fatty acid (LCPUFA)
found in abundance in fish and other seafoods [5]. DHA synthesis from other N3 polyun-
saturated fatty acid (PUFA) precursors occurs inefficiently in the liver, with some variation
determined by genetic polymorphism [6–8], and optimal DHA levels are largely thought to
require some dietary DHA [9–11]. Furthermore, DHA is essential for proper neurological
development and functioning throughout the lifespan. The brain relies on DHA supplied
via plasma, and deficiency impairs proper development of vision, cognitive functioning,
and behavior [12–16].

Intake of dietary fish and other seafoods, which are rich sources of DHA, is associated
with reduced risk of AD in populations of multiple countries [17–20]. A meta-analysis by
Zhang et al. concluded that increases in daily DHA intake by 0.1 g/day reduced risk of
AD by 37% [21]. In the laboratory, DHA has direct effects against multiple pathological
hallmarks of AD such as neuroinflammation, amyloid beta, and tau protein neurofib-
rillary tangles, and influences the cellular response to inflammation and injury [22–26].
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DHA-derived metabolites termed specialized pro-resolving mediators (SPMs) also act to
inhibit inflammation and apoptosis and to promote pro-survival cellular signaling after
injury [27–29].

Despite the myriad influences of DHA on AD neuropathological mechanisms, and
the association of greater fish intake with a reduced risk of AD at an epidemiological level,
manipulation of dietary DHA intake by fish oil supplementation has had little consistent
effect to prevent or ameliorate AD [30]. More recently, the understanding that different
dietary and plasma DHA forms have specific metabolic fates affecting distribution into
tissues may help to explain why fish oil supplementation does not provide the beneficial
effects expected from pre-clinical and epidemiological evidence. It has been argued that the
brain has limited uptake of triglyceride (TG)-DHA found in fish oil supplements, instead
favoring DHA in lysophospholipid forms, such as lysophosphatidylcholine (LPC), derived
from dietary phospholipid (PL) [31–34]. Lysophosphatidylcholine-DHA (LPC-DHA) enters
the brain via the Mfsd2a transporter, a selective transporter of lysophospholipid-bound
fatty acids [35].

This paper begins by outlining the ways in which DHA may contribute to protection
against AD, followed by a discussion of the evidence supporting the concept of specific
metabolic fates of dietary DHA sources and forms with respect to distribution to tissues
including brain. Specific metabolic fates of DHA are well represented in short-duration
studies following acute administration, emphasizing the preferential uptake of phospho-
lipid and lysophospholipid forms of DHA into brain, a phenomenon which may provide
future therapeutic benefit to states of altered DHA brain uptake [36]. Studies of increasing
duration, however, show that the effects of dietary DHA form upon tissue distribution
become less significant, and instead suggest that plasma DHA as a non-esterified fatty acid
(NEFA) is the main supplier of brain DHA requirements.

The reduced dependence on dietary form with time suggests the presence of other
factors affecting plasma DHA homeostasis. Dietary TGs are metabolically fated to deposit
in adipose tissue, an organ that can provide a rich and constant source of DHA to tissues
such as brain that outweighs dietary DHA in terms of mass and reliability of supply. We
therefore discuss the significant role of adipose tissue, rather than nuances of dietary form,
as a major unexplored factor affecting DHA homeostasis in the body and brain in health
and disease. We also outline the importance of future work to develop better biomarkers
of brain DHA, and better understand DHA uptake into the brain in diseased states to
help determine whether brain DHA should remain a specific target in the prevention and
treatment of AD.

2. DHA Benefits Alzheimer’s Disease Neuropathological Mechanisms

Mechanistic studies from molecular, cellular, and in vivo models have shown the
beneficial effects of DHA against key neuropathological processes associated with AD
development and pathophysiology.

2.1. Amyloid, Tau, Neuroinflammation and Cell Signaling

AD is characterized by neurofibrillary tangles (NFT) of tau protein within neurons,
deposition of amyloid beta plaques throughout the brain, and synaptic loss [37]. DHA may
have direct effects against amyloid beta in vitro and in vivo [22,38,39], and may reduce
intraneuronal formation of tau [25]. DHA is also integral to membrane fluidity and perme-
ability, thus DHA deficiency can alter the function of membrane-bound enzymes and trans-
membrane transport abilities, affecting neuronal signaling and learning ability [24,40–42].
DHA influences cell fate signaling, promoting neuronal differentiation and neurogenesis
of hippocampal neurons [43], loss of which is seen in AD [44]. Furthermore, DHA im-
proves glutathione and antioxidant status, inhibits mediators of apoptosis [23,45,46], and
modulates cell death and injury size after hypoxic-ischemic injury [47,48].

AD pathogenesis is also associated with chronic neuroinflammation [49]. DHA and
its downstream metabolites, which form a subset of ‘Specialized Pro-resolving Mediators’
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(SPMs), act to inhibit inflammatory signaling, inhibit amyloid-beta associated apoptosis
and promote anti-apoptotic gene expression [50], to foster the return of injured tissues
to pre-injury homeostasis [27,51,52]. The prototypical SPM of the central nervous sys-
tem, neuroprotectin D1 (NPD1) is produced via lipoxygenation of DHA after oxidative
insults and ischemia-related injury [53], and induces pro-survival and anti-inflammatory
signaling [54]. Amyloid-beta induces formation of NPD1 from DHA, while NPD1 protects
against amyloid-beta induced cytotoxic apoptosis [50]. Similarly, the arachidonic acid-
derived SPM Lipoxin A4 (LXA4) protectively modulates microglia activation in mouse
models of AD [55]. NPD1 is decreased in AD hippocampus [56], and LXA4 is decreased in
AD cerebrospinal fluid and brain [29], suggesting alteration of the resolution of neuroin-
flammation as a key event in AD development that downstream metabolites of DHA may
actively contribute to.

2.2. DHA Improves Vascular Risk Factors for Dementia

DHA acts at the intersection of cardiovascular disease and AD, pathologies that often
co-exist in older persons [4]. DHA supplementation benefits metrics of cardiovascular
health such as total serum TGs and measures of arterial stiffness [57]. Higher dietary N3
PUFA intake has been associated with fewer cerebral infarcts [58] as well as a reduction
in the risk of age-related decline in verbal fluency, with particular benefit to those with
hypertension [55]. DHA therefore has wide peripheral effects that may also indirectly
reduce the risk of neurodegenerative disease.

3. DHA Status of Peripheral Biomarkers Correlates with AD Risk and Progression

Considering the multiple pathways through which DHA may reduce the risk of AD, an
accurate measure of brain DHA status would be critical to both assess patient risk and track
response in clinical trials. In vivo imaging techniques have shown widespread alteration
of phospholipid composition in key areas of AD brain such as in hippocampus [59,60].
Autopsy studies have shown worsened loss of phospholipid content in frontal, temporal
and hippocampal brain regions in individuals developing AD below the age of 65 in
comparison to those developing ‘senile dementia’ in later life, suggesting that alterations
in brain fatty acid composition are linked with worsened neurodegeneration [61]. In
particular, the content of the phospholipid phosphatidylethanolamine (PE) of AD brains
has been reported to be reduced in comparison to controls [62–67].

With regard to the DHA content of AD brain, PE-bound DHA was found to be
reduced in the hippocampi and parahippocampi by up to 45% by Prasad et al. and up to
15% by Guan et al. [68,69] Furthermore, in samples of frontal cortex, Nakada et al. found
reductions in PE-DHA in AD, as well as reductions in AD content of two more of the
four main phospholipids, phosphatidylcholine (PC) and phosphatidylinositol (PI) [70].
Lukiw et al. found DHA levels half those of normal controls in the hippocampus [50].
Other studies have shown no alteration of DHA in AD brain [71,72], including the largest
study of autopsied AD brains [73]. However, as suggested by Cunnane et al., the body
of autopsy research suffers from methodological factors [30] that limit the significance of
these findings. The reliance upon autopsy studies to gather data on changes to brain DHA
in disease states, and the inconsistences of these data, have turned researchers to look for
peripheral markers of DHA status.

The DHA status of certain blood components has shown association with clinical
markers of AD. Increased serum DHA is associated with reduced cerebral amyloidosis [60]
and severity of AD [74], while greater plasma DHA is inversely correlated with the risk
of developing AD over 10 years [75,76]. Similarly, greater erythrocyte DHA content
corresponds with reduced risk of cognitive decline [77]. More recently, a meta-analysis has
shown that altered blood fatty acid composition is evident in individuals with MCI and
AD versus controls, with individuals with AD showing the greatest number of altered fatty
acids and degree of change of these fatty acids, including DHA [78].
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Dietary DHA intake can modify the DHA status of peripheral tissues such as blood
and adipose tissue [79–82], dietary DHA correlates with hippocampal volume in vivo [83],
and neurological deficits of DHA deficiency resolve with supplementation [84]. Together
this suggests that dietary DHA supplementation may benefit brain DHA status, structure
and function. As peripheral DHA status correlates with improved cognitive function
and reduced AD risk, it would therefore be expected that these markers would correlate
well with brain DHA status. One recent study provided cognitively normal, overweight
individuals with either 2 g of DHA or soy placebo daily for 6 months [85]. In comparison
to the soy control, DHA supplementation increased both plasma and cerebrospinal fluid
(CSF) DHA status. While plasma DHA increased by 200%, CSF DHA increased by only
28%. This study indicates that dietary DHA crosses the blood–brain barrier (BBB) to enter
CSF, but that the change in CSF DHA was marginal in comparison to that in plasma,
and further reduced in individuals carrying the APOE4 gene. While encouraging, it is
unknown whether CSF enrichment with DHA translates into integration of DHA into
and functional activity within key brain structures affected in AD; this may relate to the
failure of this study to show improvements in hippocampal volume or performance on
cognitive assessments. With regard to studies assessing brain parenchymal DHA content,
only one study has paired plasma and brain DHA values [86], while one other study linked
subcutaneous adipose tissue and brain DHA status [87]. Both studies found no significant
relationship between peripheral and brain DHA status in AD, demonstrating that although
DHA may exert positive effects upon AD risk or pathophysiology, it is uncertain whether
its mechanism of action is via increasing brain DHA content.

Supplemental DHA Does Not Effectively Prevent or Treat AD

Despite the merits of DHA shown in epidemiological, pre-clinical, and in vivo stud-
ies, these successes have not been borne out in the prevention or treatment of cognitive
decline and AD. No association between DHA in serum and clinical measures of cognitive
performance (mini-mental state exam, MMSE) were found in baseline measurements from
the OmegaAD trial, detracting from the belief in DHA’s effects on cognitive function [88].
Meta-analyses have found no benefit of N3 supplementation to prevent cognitive decline
in cognitively normal elderly [89] or in the prevention and treatment of AD [90]. Post
hoc analysis of cross-sectional studies by Cunnane et al. found no difference in blood
DHA values between individuals with AD or cognitive decline and controls [91]. More
recently, Alex et al. performed a systematic review of 25 studies assessing the effects of
LCPUFA upon the cognitive performance of non-demented individuals of an average age
of 57 years. This group found that supplementation with LCPUFA was associated with
mild improvements in memory, however, with heterogeneity and asymmetry suggestive of
publication bias. In agreement with historical systematic reviews, these analyses found
no effect of LCPUFA upon specific cognitive domains such as visuospatial function or
wider tests of global cognitive assessment [92]. In a similar meta-analysis, Zhang et al. [93]
analyzed the effects of N3 PUFA supplementation upon cognitive function in individuals
aged >65 years with established mild cognitive impairment (MCI). These authors con-
cluded that LCPUFA may improve MMSE score in individuals with MCI, but that the
results remain inconsistent. On the other hand, Balachandar et al. related the effects of
DHA supplementation with age-related cognitive decline. In contrast to the findings of the
previous two recent meta-analyses, no benefit to any cognitive domain including memory
and executive function was found [94].

Epidemiologically, fish intake is associated with reduced AD risk, but studies of DHA
in fish oil supplement form find little benefit to cognitive decline and dementia, despite
effectively increasing DHA status in blood [95–97]. Similarly, Morris et al. found that
one seafood meal per week reduced AD neuropathology, while DHA supplementation
did not [58]. A broad meta-analysis assessing the effects of multiple dietary foods upon
neurodegeneration found that while an inverse association between fish intake and neu-
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rodegenerative diseases was supported by moderate evidence, no association between AD
and PUFAs was found, with low or very low quality of evidence [98].

Finally, another study found that dietary DHA increases DHA in plasma phospho-
lipids and in cerebrospinal fluid, indicating successful penetration of the BBB, yet no
significant differences in the rate of loss of cognitive function or brain volume were found
versus placebo [99]. So while DHA has shown positive benefit in some studies, the het-
erogeneity of evidence in clinical trials remains mismatched against seemingly clear-cut
epidemiological and pre-clinical evidence.

4. The Metabolic Fates of DHA Govern Uptake into Specific Tissues

Fish and other seafoods contain DHA esterified into TGs and PLs. In DHA supple-
ments, such as fish oil capsules, DHA may be found as ethyl-esters, NEFA, and re-esterified
TGs [100], but is rarely in PL form [31,101]. On the other hand, DHA supplements de-
rived from krill oil contain DHA in NEFA, TG and PL forms [102], hence may more
closely represent whole fish than does fish oil. Furthermore, some studies have prepared
lysophosphatidylcholine (LPC) DHA for dietary ingestion by cleaving phospholipid-DHA
(PL-DHA) using snake venom phospholipase [103–105]. One major area of discussion has
been whether certain forms of DHA, particularly as PLs, are more likely to be taken up
into the brain and to be more efficacious for prevention or treatment of AD [101]. This is
because the different forms of DHA presented in food and supplements undergo divergent
pathways of digestion and metabolism to differentially contribute to plasma lipid pools
which in turn influence uptake into tissues. This is summarized in Figure 1. The follow-
ing section describes the digestion and metabolism of dietary DHA forms into two main
plasma lipid pools of lipoprotein-carried TGs and PLs and their subsequent availability to
specific tissues.
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4.1. Digestion and Metabolism of Dietary DHA

TG-DHA in seafood and fish oil supplements, and ethyl-ester-DHA as found in fish
oil, are hydrolyzed by pancreatic lipase in the gut before the entry of their constituent fatty
acids into enterocytes, re-esterification into TG-DHA, and transportation in chylomicrons
to plasma via the lymphatic duct [106]. PL-DHA contained in fish and krill oil may hold
DHA esterified at either the sn1 or sn2 positions. Dietary PLs are cleaved by enteric
phospholipase at the sn2 position, releasing a NEFA and a lysophospholipid such as
LPC [107]. Cleavage of dietary PL- DHA at the sn2 position forms a lysophospholipid and
NEFA-DHA [106]. The latter is absorbed and re-esterified into TG-DHA in the enterocyte
before entering the lymphatic duct to join the circulating plasma [108]. Conversely, if
PL-DHA esterified at sn1 is provided, it may be cleaved to form LPC-DHA [109] and
absorbed in that form or converted to PL-DHA in the enterocyte [32,110].
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4.2. Metabolic Fates of TG- and PL-DHA

Dietary TG-DHA and PL-DHA enrich different plasma lipoprotein fractions with
DHA. In broad terms, the metabolic fate of dietary PL-DHA and LPC-DHA is to be
transferred from chylomicrons into high-density lipoproteins [109,111–113] (HDL) in the
gut [109] and in the liver [112], while dietary TGs are readily incorporated into low density
lipoproteins (LDL) [113] and very low density lipoproteins (VLDL) [114,115]. Thus, DHA
forms derived from different dietary sources enter plasma bound to specific lipoprotein
carriers, thereby influencing the availability and uptake of DHA into specific tissues.
The metabolic fates of dietary DHA with respect to tissue distribution is summarized in
Figure 1.

Although both are carried in plasma, TG-DHA and PL-DHA enrich different blood
cells. Lemaitre-Delaunay et al. used radiolabeling techniques to show that although
erythrocyte membranes are contributed to by NEFA, PL and LPC, PL-DHA is the main
supplier [108]. On the other hand, the DHA supply of platelets is solely from NEFA-
DHA derived from dietary TG-DHA sources [108,115]. Similar to erythrocytes, cardiac
tissue receives DHA from all plasma sources [32,106]. The liver incorporates dietary
phospholipid-DHA to a greater extent than dietary TG-DHA [116], while LPC-DHA may
produce the greatest enrichment of hepatic tissue [106]. On the other hand, adipose tissue
shows considerable uptake of TG-DHA from LDL and VLDL [117]. Sugasini et al. found
that of LPC-DHA, PL-DHA and TG-DHA, only TG-DHA entered adipose stores [106], and
Chouinard-Watkins et al. found TG-DHA enriches adipose ~3-fold more than does PL-
DHA [118]. Indeed, PET-CT shows that the majority of plasma NEFA-DHA incorporates
into peripheral tissues [119], and much of the TG-DHA content of chylomicrons is deposited
in peripheral tissues such as adipose and muscle in the postprandial period [117], returning
to the liver as depleted remnant chylomicrons.

Finally, the metabolic fate of dietary forms has been proposed to significantly affect
brain DHA uptake. While TG-DHA disappears from circulation into adipose, HDL-bound
PL-DHA persists in plasma and is metabolized into LPC-DHA by the liver and in plasma.
LPC-DHA enters the brain via the Mfsd2a transporter. This metabolic fate of PL- and LPC-
DHA has been proposed as the preferential mechanism of DHA brain uptake. Furthermore,
this mechanism may explain why TG-rich/PL-poor fish oil supplements consistently fail
to prevent or ameliorate cognitive decline and AD in clinical trials [106].

5. Plasma DHA Forms Supply Specific Tissues including Brain

Brain uptake of fatty acids and other substances is selectively controlled by the BBB.
Lipoprotein-transported TG-DHA and PL-DHA do not directly supply brain via lipopro-
tein receptors, unlike other peripheral tissues [120,121], but lipoproteins can indirectly
supply brain by transporting and liberating DHA to enter via alternative uptake mech-
anisms; 50% of NEFA-DHA liberated by the lipolysis of TG-DHA at peripheral tissues
by lipoprotein lipase (LPL) can escape into plasma [122–124]. Radiolabeled palmitic acid
shows preferential brain uptake in NEFA form, in comparison to its TG or cholesteryl ester
forms in plasma [125]. Furthermore, a constant flux between plasma and adipose tissue in
both fasting and postprandial states provides a constant contribution of plasma NEFA to
tissues including brain [123,124] (Figure 2). Plasma NEFA-DHA crosses the blood–brain
barrier via a ‘flip-flop’ mechanism facilitated by membranal Fatty Acid Transport Protein 1
(FATP1) [126], while diffusion gradients are maintained via FATP1, acyl-coA synthetase
long-chain family member 6 (ACSL6) and Fatty Acid-Binding Protein 5 (FABP5) [127–130].
Defects in this mechanism result in impaired cortical DHA, neuroinflammation and re-
duced cognitive performance [127,131].
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Lipoprotein-bound PL-DHA is metabolized into LPC-DHA in the plasma by Lecithin
Cholesteryl Acyl Transferase (LCAT) [103,105], and by the endothelium-bound Endothelial Li-
pase (EL), found on the vascular endothelium of multiple tissues including brain [104,132–134].
LPC is also produced in the liver by Hepatic Lipase [135], of which ~5% is LPC-DHA [136].
LPC-DHA crosses the blood–brain barrier via the Mfsd2a transporter, deficiency of which
is associated with microcephaly [35,137]. Thus, the dominant supplier of brain DHA is
controversial. Supply can be fulfilled by DHA originating from plasma NEFA-DHA or
TG-DHA; however, plasma PL-DHA and TG-DHA have also been suggested to be the
dominant supplier of the brain [31,34,137,138].

The triad of PL-DHA, LPC-DHA and Mfsd2a as the main supplier of DHA to the brain
has received strong support [31,33,36,106,139]. Studies have shown preferential uptake
of LPC-DHA across in vitro BBB [140], privileged carriage of an LPC-DHA analogue into
brain [141], after oral and intravenous administration of LPC-DHA [139,142], and after
feeding LPC-DHA generated by lipase-altered krill oil [33], consistently elevating brain
DHA to a greater extent and rate than TG-DHA [32,106].

It is therefore clear that the PL-DHA/LPC-DHA/Mfsd2a triad can increase brain DHA;
however, the studies used to elucidate this pathway do not necessarily resemble normal
physiological conditions. For example, LPC is not a significant constituent of a normal diet
but is produced in small amounts in the gut and liver to achieve low physiological plasma
concentrations of ~90 nmol/mL, with DHA making up only 1–5% of LPC-associated fatty
acids [136,143]. Though further work to examine diet and physiological influences on
plasma LPC is needed [34], studies that have shown preferential uptake into brain after
administration of intravenous LPC-DHA, or oral LPC-DHA derived from enzymatically
modified PL-DHA (via snake venom phospholipase), do not represent normal physiology
but instead represent an augmentation of physiology with a synthetic dietary supplement
(LPC-DHA), or bypass normal gut and hepatic metabolism completely using parenteral
administration [104–106]. This should be held in mind both when considering claims that
LPC-DHA via Mfsd2a-mediated transport is the major source of brain DHA, as well as
when considering the potential benefit of therapeutic administration of LPC-DHA [36].

Much of the work showing dramatic increases in brain DHA status have been with
provision of LPC-DHA, as described above. Therefore, direct comparison of oral PL-DHA
and TG-DHA, as found in food or supplements, is more valuable to understand brain
supply in the context of normal dietary intakes. Furthermore, these studies highlight an
interesting relationship between dietary form and time as factors affecting brain DHA
uptake. These studies are summarized in Table 1 listed in the appendices.
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Table 1. Outcomes of studies comparing the abilities of DHA esterified to PL or TG to enrich tissues including brain. Studies are listed in order of duration of study. An arbitrary line
drawn on the table at 72 h indicates an apparent shift of dominance of PL-DHA as the main supplier of DHA to tissues to greater equality of effect between PL- and TG-DHA with
increasing length of supplementation. A subsection at the base of the table demonstrates two studies assessing both acute and delayed effects of PL- and TG-DHA supplementation.
Abbreviations: DHA: Docosahexaenoic Acid, EPA: Eicosapentaenoic acid, FO: Fish oil, KO: Krill Oil, PL: Phospholipid, TG: Triglyceride, LPC: lysophosphatidylcholine, AUC: Area Under
the Curve. In studies comparing KO vs. FO, KO is rich in PL-DHA and FO rich in TG-DHA.

Author Model/Population Tissue Study Duration Comparison Results Comment

Chouinard-Watkins
et al., 2019 [118] Rats Brain cortex and serum

lipid classes 6 h

DHA esterified to
phosphatidylcholine
(DHA-PtdCho), phos-
phatidylethanolamine

(DHA-PtdEtn),
phosphatidylserine
(DHA-PtdSer) or as

triglyceride (TG-DHA)

Brain DHA levels 5-7 fold higher
in DHA-PtdCho and DHA-PtdSer
groups than in TG-DHA group.

Graf et al., 2010 [116] Rats Brain 24 h PL- vs. TG-DHA

In 10-week-old rats, tissues such
as liver, brain, kidney and anterior
uveal tract (retina) accumulated
2–3 fold more PL-DHA-derived

radioactivity than compared with
TG-DHA.

14C-DHA derived radioactivity
after 14C-DHA-PC dosing

compared with 14C-DHA-TG
dosing.

DHA-ester type did not
influence tissue uptake in
rats aged <10 weeks old,

while age influenced tissue
uptake regardless of

DHA-ester type.

Köhler et al., 2015 [144] Adult humans Plasma phospholipids 72 h Two krill products (krill
oil, krill meal) vs. FO

A larger AUC of plasma DHA
was detected for krill oil in

comparison to krill meal or fish
oil. Bioavailability of EPA+DHA
was not different between krill

meal and fish oil.

A large inter-individual
variability in response was

observed.

Schuchdart et al.,
2011 [145] Adult humans Plasma phospholipids 72 h

Two FO products
containing DHA as either
ethyl-ester or re-esterified
TG compared against KO

Nonsignificant differences in AUC
and maximum plasma

phospholipid concentration of
DHA between all groups.

High standard deviation
values.
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Table 1. Cont.

Liu et al., 2014 [146] Piglets Brain 6 days

PL- vs. TG-DHA. Results
normalised as %Dose of

radiolabelled DHA found
in the grey matter of the
cerebral cortex for each
PL-DHA and TG-DHA.

The %dose of PL-DHA was 1.9×
more efficacious for grey matter
DHA accretion than TG-DHA.

Less retro-conversion to
N3 DPA in the TG-DHA
group (PC > TG 2.8 fold).

TG-DHA provided as
4.8 mg/500 mL feed vs.

PL-DHA 1.8 mg/500 mL
feed. Data regarding brain
updake from total dietary
TG-DHA/PL-DHA was

not displayed.

Yurko-Mauro et al.,
2015 [147] Adult humans Plasma and Erythrocyte 28 days

FO (containing DHA as
either ethyl-ester or

re-esterified TG) and KO.

No significant differences in
plasma or erythrocyte EPA + DHA

at 28 days between groups.

Adkins et al., 2019 [148] Mice Liver, Adipose, Heart,
Eye, Brain. 38 days PL- vs. TG-DHA No difference in brain DHA

concentration.

Hiratsuka et al.,
2009 [149] Mice Liver and Brain 5 weeks PL- vs. TG-DHA

No significant differences in brain
or liver fatty acid contents or of

DHA content.

Ghasemifard et al.,
2015 [150] Rats

Whole body, Liver, heart,
white gastrocnemius
muscle and perirenal

adipose tissue

6 weeks FO vs. KO No significant effect of diet on net
accumulation of DHA.

Vaisman et al., 2008 [151] Children aged
8–13 years Blood lipid profile 3 months PL-DHA vs. FO No significant change to blood

lipids after three months.

Studies with acute and delayed measurement phases

Author Model/Population Tissue Study Duration Comparison First Timepoint Results Second Timepoint
Results

Cook et al., 2016 [152] Adult humans Plasma phospholipids 12 h and 14 days PL-rich herring roe oil or
TG-rich FO

After 12 h, the ability of PL-DHA
to increase the AUC of EPA, DHA
and EPA +DHA was 2-fold that of

TG-DHA.

After 2 weeks, there was
no significant difference in

the abilities of each
supplement to increase

plasma EPA+DHA.
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Table 1. Cont.

Ahn et al., 2018 [153] Rats Blood and Brain 48 h and 14 days FO and two forms of KO

TG-DHA increased brain DHA
the most at 2 h, but PL-DHA in

KO achieved greatest brain DHA
at 48 h.

The statistical significance of these
findings was not described in the

paper.

No significant difference in
DHA content between FO,
KO, and CKO groups in

brain or blood.

Kitson et al., 2016 [154] Rats Brain 6 h and 4 weeks PL- vs. TG-DHA

PL-DHA achieved 78%, 140% and
69% greater labelling in

cerebellum, hippocampus and
remainder of brain than the

TG-DHA group.

No difference in brain
DHA concentration
between groups fed

PC-DHA, TG-DHA or a
combination of both PC-

and TG-DHA.
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Short-term studies support preferential brain uptake of PL-DHA compared to TG-
DHA; 10 week old rats showed 5–7-fold higher brain DHA accretion at 6 h after gavage
with PL-DHA [118] and continued superiority to TG-DHA at 24 h [116]. Supplementation
for 6 days showed increased uptake of PL-DHA into piglet brain, retina, liver and erythro-
cytes [146]. On the other hand, the same authors calculated the unlabeled DHA mass of
brain tissue to conclude that the majority of DHA content and thus long-term supply of
brain DHA was derived from dietary TG-DHA [146]. Similarly, Brossard found that after
ingestion of radiolabeled TG-DHA, subsequently-produced radiolabeled LPC-DHA was
the major supply to erythrocytes as compared to radiolabeled NEFA-DHA when studied
over 80 h [155]. However, work by Vaisman providing 3 months of TG- or PL-DHA sup-
plementation resulted in equal uptake into erythrocytes [151], suggesting an equalization
of effect with time.

A number of studies designed to sample at both acute and delayed time points
demonstrate changing dominance from PL-DHA to TG-DHA over time. Cook et al. found
that at 12 h, PL-DHA from herring roe demonstrated an ‘area under the curve’ (AUC)
in plasma phosphatidylcholine double that of TG-DHA from fish oil, indicating greater
bioavailability from gut to tissues, yet plasma phosphatidylcholine levels of DHA were
not significantly different between groups at two weeks [152]. Kitson et al. found that 6 h
after an oral bolus of PL-DHA or TG-DHA, rat hippocampal uptake was 140% greater in
the PL group as compared to TG-DHA. After 2 weeks of daily administration of PL-DHA,
TG-DHA, or a TG-/PL-DHA mixture, however, no significant differences were found
between groups. While the TG-/PL-DHA mixture was not studied over 6 h, its ability after
2 weeks to equally supply DHA as compared to TG- and PL-DHA alone further suggests
that time, regardless of form, facilitates maximal brain uptake [154].

Sampling after 4 weeks, Yurko-Mauro et al. found similar plasma and erythrocyte
bioavailability between krill oil and fish oil, which are enriched in PL-DHA or TG-DHA,
respectively [147]. Similarly, PL- or TG-DHA given to mice for 5 weeks found no difference
to DHA concentration in adipose, liver or brain [148]. Furthermore, no difference in brain
uptake between PL- and TG_DHA forms was found by Ahn et al. at 2 weeks [153] or
Hiratsuka et al. at 4 weeks [149]. Studying DHA accretion into rat peripheral tissues
over 6 weeks, no difference between krill oil or fish oil was found [150]. Other studies
of 72 h duration and greater have found absent or non-significant differences between
PL- and TG-DHA as krill oil, krill meal or fish oil with regard to incorporation into
plasma phospholipids [144,145]. These results show that, while the PL form provides
rapid elevation of plasma and brain DHA shortly after administration, passing time allows
the effects of dietary TG-DHA to equalize and even surpass PL-DHA to be the major
supplier of tissue and brain DHA. This conclusion is in agreement with synthesis by
Bazinet et al. [34], who proposed that circulating LPC-DHA has a higher brain/body
partition coefficient, providing more DHA to the brain per unit of LPC-DHA, but that
NEFA-DHA has a greater net entry into the brain and is the main supplier. The idea
that tissue uptake is more dependent on time than the dietary form complements the
kinetic studies of Chen et al. [156], demonstrating that LPC-DHA rapidly incorporates into
plasma and brain to acutely provide 3-fold more DHA to brain than TG-DHA, but that
when calculated relative to plasma half-life, TG-DHA liberated into NEFA supplies 10-fold
more DHA to brain. Indeed, the rate of NEFA-DHA uptake matches the rate of DHA
consumption of the brain, while accretion rates of LPC-DHA exceeds it, leading to authors
arguing that NEFA-DHA is the sole source necessary for brain DHA homeostasis [9,157].

The mechanisms by which dietary TG-DHA provides a sustained and superior source
of DHA to the brain are unknown, but as brain lipoprotein receptors do not uptake
lipoprotein-bound TGs, dietary TG-DHA cannot be taken up into the brain and must be
converted to plasma NEFA-DHA instead. The extended temporal nature of DHA accretion
into brain makes dietary DHA a less likely candidate to be the main supplier of brain
DHA. It is more likely to be explained by the storage of dietary DHA first in adipose tissue,
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whereby subsequent lipolysis provides a source of DHA at a rate that matches brain DHA
flux and mitigates dependence on regular dietary DHA intake, as outlined below.

6. Adipose Stores and Supplies NEFA-DHA to Tissues including Brain

Multiple studies show preferential deposition of LDL- and VLDL-transported TG-
DHA into adipose [106,117,118]. Similarly, the major fates of the N3 PUFA alpha-linolenic
acid, precursor to DHA, are beta-oxidation or sequestration into adipose tissue [11]. The
specific tissue partitioning of PL-DHA and TG-DHA may be an oversimplification as
studies in mice found both PL-DHA and TG-DHA contribute to adipose DHA in a dose-
dependent manner [148]. While studies focus on the ability of LPC-DHA to supply brain
in the short term and generally disregard TG-DHA, the preferential uptake of dietary
TG-DHA into adipose may represent its superiority as a DHA source for the brain in the
long-term. Fatty acids stored in adipose may have a half-life of 1–2 years [158] and are
stable with age [159]. Despite its stability, both feeding and fasting stimulate the actions
of LPL and hormone sensitive lipase, respectively, creating a constant flux of diet- and
adipose-derived NEFA released into plasma [123,124] (Figure 2).

In contrast to plasma TGs and PLs that contain 0.8% and 3.6% of total fatty acids
as DHA, respectively, subcutaneous adipose tissue contains 0.2% of its fatty acids as
DHA [160]. Despite adipose containing DHA at a lower percentage of total fatty acids,
Western humans hold 26–30% of their total body weight as non-essential adipose tissue,
thus providing a large mobilizable source of fatty acids including DHA [161]. In total,
adult adipose stores contain 50 g of DHA [161], an amount calculated to be adequate to
supply the brain for 14–36 years [11,156]. Chen et al. estimated plasma NEFA-DHA flux
to fully meet the demands of brain DHA turnover based on their calculations, which is in
agreement with those of Umhau et al. [11,119,156]

Further attempts to accurately measure the contribution of dietary TG-DHA and
plasma NEFA-DHA to brain DHA homeostasis may assess the interrelationship of dietary
DHA, adipose-derived NEFA-DHA, and brain DHA uptake. Indeed, the storage and
supply function of adipose is essential during neurological development in utero and in the
postnatal period. DHA accrual in utero increases exponentially in the third trimester [162],
paired with growth of both brain and adipose stores. At term, adipose holds 7-fold more
DHA than does brain [163] and receives 90% of maternally-derived energy [164]. After
birth, DHA stored in fetal adipose tissue is utilized for tissue growth [162,165]. If fed
DHA-deficient formula, infant DHA stores in adipose reduce to unmeasurable levels due
to their consumption to provide DHA for postnatal brain development [166] and DHA
deficiency may contribute to lower IQ scores in formula-fed infants compared to breast-fed
infants [14], demonstrating that adipose tissue provides an essential supply of DHA to
fulfil requirements during periods of high demand. The relationship between mother
and fetus demonstrates that adipose provides a mobilizable and vital source of DHA for
the brain. Mothers provide 42 mg of DHA per day via placental transfer to the fetus
during the final 5 weeks of pregnancy, providing DHA largely derived from maternal
adipose stores even in circumstances of maternal DHA deficiency, in a process termed
‘biomagnification’ [167,168]. During breastfeeding, LCPUFA are derived from synthesis
and diet but mainly from the maternal adipose tissue, providing around 60 mg of DHA
per day [161]. The adipose stores of DHA-replete lactating mothers decrease during the
breastfeeding period, while mothers who are DHA-deplete are unable to meet the DHA
demands of the feeding infant [161].

The dependency of fetal brain growth upon maternal mobilization of DHA stored
in adipose both in utero and during lactation, followed by postnatal reliance of infant
adipose DHA stores to continue supplying the brain, demonstrates physiological extremes
that show how adipose may provide a significant depot in the event of DHA demand
in the adult. In this scenario, adipose DHA stores would vastly exceed the amounts
needed to meet the adult brain’s daily DHA consumption rate [119]. While plausible,
the ability of non-pregnant adult adipose to release stored DHA to other tissues such as
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brain has not yet been characterized, though the authors feel that adipose tissue should be
considered an active sink of DHA in any study assessing the bioavailability and distribution
of supplemental LCPUFA.

7. Adipose Tissue Is an Unknown Entity in Alzheimer’s Disease

If associations between AD and reduced DHA in plasma, erythrocyte and brain are
correct, consumption of adipose DHA stores may be expected to be increased in AD. Only
one study has studied adipose DHA in AD, having performed pairwise comparisons of
adipose DHA between AD individuals and their cohabiting proxies who were assumed to
share similar dietary intake of DHA, but found no significant difference [87]. Therefore, if
normal physiological conditions allow dietary and adipose sources of NEFA-DHA to be
the main source of DHA, but fish oil supplementation is ineffective for AD treatment and
adipose DHA is unaffected in individuals with AD, where is the source of the mismatch?

8. AD Risk Factors Alter DHA Homeostasis

Increasing age, the APOE4 genotype, and cardio-metabolic disease act independently
and synergistically to increase the risk of AD development [4]. Furthermore, they may act
to disrupt DHA homeostasis by affecting synthesis, metabolism and uptake into brain.

8.1. Age and Metabolic Disease

Aging-related decreases in hepatic desaturase and elongase enzymes may reduce
DHA synthesis from N3 PUFA precursors [169], increasing reliance on DHA-replete diets.
Ageing is associated with abnormal plasma lipid metabolism [170] such as prolonged
and higher elevations in DHA after oral fish oil than in younger counterparts, accompa-
nied by higher erythrocyte and plasma DHA levels [170] and increased beta-oxidation
and retroconversion [169]. Persistence within plasma suggests that DHA does not enter
peripheral tissues and must be disposed of by alternate means of metabolism. Ageing
is also associated with increasing insulin resistance [171] and Type 2 Diabetes (T2D) is
associated with 60–65% greater risk of developing AD [172–174]. If developed in mid-life,
T2D is associated with brain glucose hypometabolism, amyloid accumulation and progres-
sive neurodegeneration [175–177]. Overcoming brain insulin resistance in AD patients by
administering insulin infusions improves cognition [178].

Despite plasma hyperinsulinemia, AD brain demonstrates reduced endothelial in-
sulin receptors and decreased insulin in cerebrospinal fluid (CSF) [179,180] suggesting
reduced transport of insulin into brain, where insulin has myriad effects on all brain cell
types including anti-amyloid activity [181]. Insulin stimulates DHA uptake via FATP1 into
endothelial cells and acyl-coA-synthetase activity of FATP4 in muscle [126,182], suggesting
that insulin-mediated transport of PUFA into brain is possible. Age-related insulin resis-
tance could impair plasma DHA uptake into brain and peripheral tissues, resulting in the
elevated plasma DHA seen by Plourde and Vandal despite having a relatively greater DHA
plasma [183,184]. Thus, in insulin resistant states, mechanisms to bypass FATP1 mediated
passive diffusion by utilizing the Mfsd2a transporter may be of benefit.

8.2. APOE4 and the BBB

Apolipoprotein E4 (APOE4) is the most important genetic risk factor for late-onset
AD [185] and is amplified by other factors including age, gender [186], smoking and
physical inactivity [3]. APOE4 carrier status is associated with lipid metabolism abnormali-
ties [187–189] including reduced incorporation of dietary N3 PUFA into plasma free fatty
acids and TGs [190], greater beta-oxidation of DHA and a reduced whole-body DHA half-
life [191], changes expected to reduce plasma DHA availability to target tissues. Individuals
carrying the APOE4 genotype have been noted to have reduced or absent benefits to AD
risk derived from fish intake [192]. As described recently, APOE4 disrupts the BBB and
brain DHA homeostasis, but this pathology may be amenable to treatment with PL-DHA
or LPC-DHA via the Mfsd2a transporter [101]. Abnormal BBB physiology is also a feature
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shared with ageing [193], hyperinsulinemia and hyperglycemia [181,193]. It is clear that
in these four key risk factors for AD, followed by disruptions of DHA homeostasis and
uptake into brain, may contribute to resistance to NEFA-DHA provided by diet, fish oil
supplements and adipose, hence providing an opportunity to circumvent these barriers
via alternative DHA forms such as LPC-DHA via the Mfsd2a transporter [34,101].

9. Is There an Optimal Level of Brain DHA?

When defining the level of appropriate delivery of DHA to the brain, we must consider
that there may be a ceiling above which DHA concentration in the brain becomes excessive.
Although this level is unknown, it may be inferred by the findings of retroconversion of
DHA into other N3 fatty acids via an ‘entropically and energetically expensive’ process seen
in studies showing greater brain uptake of PL-DHA as compared to TG-DHA [146,154].
Similar processes occur to maintain low brain levels of other N3 PUFAs, such as eicos-
apentaenoic acid (EPA) [194]. Beta-oxidation and retroversion of DHA also occurs in the
plasma of elderly humans, following impaired metabolism and tissue-uptake of a DHA
bolus [191]. By contrast, during developmental periods, retroconversion of DHA in brain
occurs in only minor amounts [195], reflecting high demand for and utilization of DHA.

If a ceiling for brain DHA were to exist, it would for good reason. AD pathogenesis
includes mitochondrial dysfunction and excessive oxidative stress [196,197], which may
expose DHA to free radicals and lipid peroxidation. Lipid peroxidation can produce
reactive aldehydes such as acrolein and 4-hydroxynonenal (4-HNE) that contribute to
NFTs, pathogenic hallmarks of AD [198]. Peroxidized lipids form further reactive species
that propagate lipid peroxidation and ongoing membrane damage [199]. DHA is highly
concentrated in phospholipid membranes to aid synaptic neurotransmission [200] and is
also highly susceptible to peroxidation [201–203]. In retinal tissue, where DHA is highly
concentrated, greater DHA levels associate with greater oxidative damage [204]. In the
case of oxidative pathology in the brain, excesses of DHA would therefore be assumed to
be undesirable. Importantly, we must not to confound the physiological effects of DHA
with the physical nature of the DHA molecule. While DHA certainly has anti-inflammatory
and anti-oxidant effects, it is still prone to oxidation by free radicals if not adequately
protected or present in excess. For instance, studies of the effects of oxidized PUFA in
human neuroblastoma and mouse cortical cell lines showed that only minor amounts
(1%) of oxidized DHA reverts the protective effects of DHA and increases amyloidogenic
processing of amyloid precursor protein to amyloid beta [205]. Therefore, if therapeutic
doses of DHA in PL or LPC form are provided to those at risk of AD (e.g., in the setting of
insulin resistance or APOE4 carriers), we must also be wary of the possibility of providing
excess DHA, which may exacerbate oxidative injury in the at-risk brain.

Where to from Here?

This paper discusses the metabolic fates of dietary forms and sources of DHA with
respect to tissue uptake. Although different forms appear to have defined metabolic fates
in the short term, this relationship dissipates with increasing time, with equivalence of
delivery to the brain beginning around 3 days after commencing supplementation when
normal brain DHA uptake mechanisms are intact.

This interaction between dietary form, time duration, and adipose tissue function is
something that has not been fully considered in the research assessing DHA homeostasis
in Alzheimer’s Disease, but has implications for the interpretation of research already
completed and for the planning of future work.

Previous clinical trials have failed to show consistent benefit to the prevention and
amelioration of cognitive decline and AD. The reason for these failures is unknown, but has
been suggested to be influenced by the metabolic fate of TG-rich fish oil supplementation,
thus proposing that a solution may be found in the provision of PL-rich sources of DHA
such as in krill oil, or in LPC-rich preparations. Indeed, there has been a call for clinical
trials evaluating the effects of PL-DHA in individuals with APOE4 and AD [101]. Solely
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manipulating dietary form to increase brain DHA with the hope of improving cognitive
health status, however, neglects the added dimension of time and the substantial influence
of adipose tissue upon plasma DHA availability to organs such as brain. Before studies
of exogenous DHA from supplements are started, we must better understand the flux of
DHA between diet, plasma and adipose and the contribution of adipose-DHA to brain
DHA homeostasis.

We suggest that dietary PL-DHA directly enters the brain in the short term, but
TG-DHA indirectly supplies the brain after being held in the substantial DHA stores of
adipose tissue. In this way, the depot and supply function of adipose negates fluctuations
in dietary supply, as evidenced in neonatal development, to provide a steady source of
DHA to the brain. In fact, the adult body already contains ample DHA, as new mothers can
mobilize 50 g of DHA from their adipose for their developing infant [161]. In this scenario,
it is apparent that adipose tissue health and function is more important than the form of
dietary DHA. It may be that DHA deficiency in AD is not solely a product of dietary DHA
deficiency, but further aggravated by metabolic dysfunction affecting adipose tissue and
plasma lipid pools.

Furthermore, much work has been done to relate dietary intake of DHA and PUFA
intake with measurements of peripheral tissues such as adipose, erythrocyte membrane,
serum and plasma, in order to establish a biomarker of DHA status [206]. For example,
the DHA content of erythrocyte membranes represents exposure to DHA in the past
180 days [207] and has been used as a marker of dietary DHA intake. The identification
of biomarkers of DHA status therefore focuses on diet and does not acknowledge the
supply function of adipose tissue. Even in the absence of dietary DHA, stores of adipose
DHA released into plasma will influence the DHA content of plasma and erythrocytes,
as shown by NEFA, PL and LPC contributing to erythrocyte membranes [108], or after
hepatic production of LPC from adipose-derived NEFA [115]. Indeed, correlations between
diet and erythrocytes suffer from high variability [208], which may be explained by inter-
individual differences in adipose tissue DHA storage and release. A greater understanding
of the influence of adipose tissue upon peripheral markers of DHA status and that of brain
may further help to understand why attempts to establish the DHA content of plasma and
adipose as corollaries of brain DHA have been unsuccessful [86,87].

The unknown influence of adipose tissue may also affect the validity of clinically
relevant blood biomarkers of N6 PUFA status. The omega-3 index, the percentage of EPA
plus DHA in erythrocytes, has been used to determine aspects of cardiovascular disease
risk [209–211]. A target omega-3 index value of erythrocytes has been suggested to be
optimal and is sought by increasing dietary intake of DHA via food or supplements or
potentially by reducing dietary N6 PUFAs. However, due to the metabolic fate of TG-DHA,
any increase in erythrocyte DHA is likely accompanied by a greater distribution of ingested
DHA into adipose stores. Adipose inflammation is a known contributor to cardiovascular
disease [212], but DHA and N3 PUFAs act to decrease adipose inflammation to improve
metabolic health [213–216]. Thus, a favorable omega-3 index value of erythrocytes may be
a proxy marker of cardiovascular benefit due to modulation of adipose tissue function.

The role of adipose tissue in plasma and tissue DHA homeostasis is made more
complex by its depot and supply of other fatty acids. One example is of N6 PUFAs,
such as linoleic acid (LA) and arachidonic acid (AA), whose presence in the diet interacts
with dietary N3 PUFA to impair N3 PUFA synthesis and reduce levels of N3 PUFA in
tissues [217–219]. If, like DHA, the distribution of N6 PUFA is influenced by both dietary
and adipose sources, any trial attempting to improve DHA status by reducing dietary N6
PUFAs must also consider pre-ingested dietary N6 PUFA stored in adipose. Furthermore,
oxidation products of N6 PUFAs such as LA are linked to pathologies including cardiovas-
cular disease and AD, and can be reduced by dietary N6 PUFA restriction [219,220]. While
SPMs produced via the lipoxygenation of DHA are generally thought to have positive
effects [221], lipid mediators derived from oxygenated N6 PUFA are often associated with
pro-inflammatory effects [222] and may contribute to chronic inflammation in the absence
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of counterbalanced SPMs derived from N3 PUFA. Thus, the benefits of DHA supplemen-
tation upon adipose tissue inflammation may in part be brought about via reductions in
adipose N6 PUFA content or effect.

AD has multiple pathological mechanisms that may disrupt the ability of the rela-
tionship between diet, adipose and time to provide DHA to the brain. As discussed,
alterations to BBB transport due to age, APOE4 status or endothelial dysfunction may
limit uptake of NEFA, providing a sole route of potential DHA transport via the Mfsd2a
transporter. Peripheral insulin resistance and metabolic disease may alter plasma lipid
transport and adipose function, preventing flux of DHA between plasma, adipose and
brain. In these circumstances, forms of DHA with metabolic fates designed to bypass
altered DHA homeostasis may be useful clinical tools in scenarios of chronic or acute
neurological disease [36,223,224]. These forms may include PL-DHA as found in food,
enzymatically-modified DHA containing lysophospholipids, or as synthetic LPC ana-
logues such as 1-acetyl,2-docoshexaenoyl-glycerophosphocholine ‘AceDoPC’® [141]. Be-
fore clinical application of these DHA forms can become reality, however, further work
is necessary to understand optimal therapeutic parameters to avoid the risk of worsened
oxidative pathology.

10. Conclusions

This paper has aimed to expand discussion surrounding the utilization of the metabolic
fates of dietary and plasma forms of DHA to target tissue and brain uptake in both normal
and diseased physiology. The form and source of DHA may influence tissue distribution
in the short term, but long-term DHA homeostasis is more significantly influenced by the
depot and supply function of adipose tissue. Dietary and plasma PL-DHA and LPC-DHA
can rapidly increase brain DHA, but NEFA-DHA released from adipose tissue and from
the diet provides the primary source of DHA for brain in normal physiology. Adipose
represents a rich and dynamic source of DHA but its influence upon brain DHA status
and neurological disease is not understood. Moving forwards, models assessing the
relationship between dietary, plasma, adipose and brain DHA are needed, as well as a
better understanding of how or whether peripheral measures of DHA status correlate with
brain DHA content. Exploitation of the preferential uptake of PL-DHA and LPC-DHA
may have clinical utility in disease states where DHA homeostasis is altered, but the
potential risk of oversupply must also be considered. Therefore, if alternative forms of
DHA are utilized therapeutically, we must better understand any potential negative effects
of excessive DHA on AD neuropathology, in addition to its promise as a neurotherapeutic.
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