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The p-wave superconductivity in 
the presence of Rashba interaction 
in 2DEG
Ke-Chuan Weng1,2,3 & C. D. Hu1,2

We investigate the effect of the Rashba interaction on two dimensional superconductivity. The presence 
of the Rashba interaction lifts the spin degeneracy and gives rise to the spectrum of two bands. There 
are intraband and interband pairs scattering which result in the coupled gap equations. We find that 
there are isotropic and anisotropic components in the gap function. The latter has the form of cos ϕk 
where ( / )ϕ k k= tan y xk

−1 . The former is suppressed because the intraband and the interband scatterings 
nearly cancel each other. Hence, −the system should exhibit the p-wave superconductivity. We perform 
a detailed study of electron-phonon interaction for 2DEG and find that, if only normal processes are 
considered, the effective coupling strength constant of this new superconductivity is about one-half of 
the s-wave case in the ordinary 2DEG because of the angular average of the additional ϕcos2 k

 in the 
anisotropic gap function. By taking into account of Umklapp processes, we find they are the major 
contribution in the electron-phonon coupling in superconductivity and enhance the transition 
temperature Tc.

Spin-orbit interaction (SOI) plays crucial roles both in opening a new field such as topological insulators1–3 and 
important applications on spin transport electronics named spintronics4–6. Of particular interest is the Rashba 
interaction7,8. It has often been studied in two-dimensional electron gas (2DEG) with a normal electric field 
created by the interface. For the semiconductor heterostructure, the effective electric field is created by confining 
potential. Gate voltage can be used to control the effective electric field9,10. Thus, the strength of Rashba interac-
tion in the heterostructures can be tuned with the gate voltage. This provides a possibility to manipulate electron 
spins by electrical means.

Comparatively, Rashba interaction strength is usually weaker in semiconductors and stronger in the surface 
states of high Z metals, such as Au11, Bi12 and Pb13 due to stronger SOI induced orbital splitting. For a high Z metal 
film grown on the substrate, the inversion symmetry breaking in the direction perpendicular to 2DEG plane 
would induce the Rashba field14,15. The Rashba strength of quantum well state in the ultra-thin Pb film grown on 
Si(111) shows no strong dependence on coverage thickness16 and can be tuned through Si-doping15.

Recently, it was found that systems with Rashba interaction exhibit two-dimensional (2D) superconductivity, 
such as the interface of the LaAlO3/SrTiO17 and LaTiO3/SrTiO3

18 heterostructures, and the interface of a topolog-
ical insulator Bi2Te3 film grown on a non-superconducting FeTe thin film19. Furthermore, the superconductivity 
in Pb film from monolayer to ten layers grown on Si(111) were observed subsequently20–22. The oscillation of 
superconducting transition temperature Tc with the thickness of lead film were also reported20,21.

Theoretically, the effect of SOI using Green’s function approach was discussed in refs 23,24. Gor’kov and 
Rashba proposed that SOI would mix the spin-singlet and spin-triplet superconductivity24. The mixing of the 
spin-singlet d-wave and the spin-triplet p-wave due to inversion symmetry broken Rashba-type spin-orbit inter-
action via Hubbard model was reported in ref. 25. The dxy +  p-wave and ++d fx y2 2 -wave superconductivity  
in noncentrosymmetric systems were investigated and the new type of Andreev bound state was proposed in 
these systems26. In addition, the Andreev bound state and the Majorana edge mode that appeared in dxy +  p-wave 
case were also discussed in refs 26,27. The topological properties in nodal nocentrosymmetric superconductor 
were analyzed and the zero-energy flat band would give rise to certain topological features28. The enhancement of 
superconductivity due to spin-orbit interaction in the repulsive fermion gas was suggested by Vafek and Wang29. 
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Topological superconductivity with the Majorana edge channels was suggested to appear in noncentrosymmetric 
superconductors30. For electron system with Rashba interaction, in addition to charge plasmon, the chiral spin 
modes and their mutual coupling were investigated in ref. 31. Electron transport in p-wave superconductor-normal 
metal junctions affected by interface SOI was studied in ref. 32. It was suggested that certain p-wave electron pairs 
can be tuned via the SOI and tunnel to the normal metal at a distance longer than mean free path of singlet pair-
ing electrons.

In the presence of the Rashba interaction, the superconducting gap function depends on momentum p 
through its phase, Δ p =  exp(− iϕp)Δ 0 where Δ 0 is an isotropic gap energy, as derived in ref. 24. However, an 
approximation on the interaction potential had been made. We find that without the approximation, the magni-
tude of gap function is modulated by the extra cos ϕp factor and is anisotropic. We also make a detailed analysis 
of the effective interaction between electrons mediated by phonons. The results is summarized as the following. 
There are cancellations between different channels of scattering if the interaction is spin-independent. 
Approximation has to be made carefully in order to isolate the terms of cancellation. As a result, we find that the 
gap function is not only gauge-dependent but also has a factor ϕ =cos

p

pp
x. Thus, the p-wave gap dominates in 

the presence of Rashba interaction. The interaction strength of p-wave superconductivity is only half of that of 
conventional BCS s-wave superconductivity. Hence, its calculated Tc is as low as 0.6 K for lead film if only normal 
processes are considered. Only by including Umklapp processes, our results are comparable with experimental 
results.

This article is organized as following.The first section is the introduction. In the second section, we analyze 
Hamitonian in the Rashba eigen-spinor basis and obtain two coupled gap equations. In the third section, the 
gap equations are analyzed. The phonon mediated interaction and direct Coulomb interaction contributions are 
discussed separately. The corresponding dimensionless coupling strength constants λ and μ*  are defined while 
solving the gap equations and they can be estimated by generalizing the discussion in ref. 33 to the 2DEG case. 
In the fourth section, we estimate the effective electron-phonon coupling constant by the model proposed by 
Scalapino et al. under the strong coupling approximation34–36 and Umklapp processes are considered. In the fifth 
section, we suggest that the p-wave superconductivity can be oberved in certain experiments. A conclusion is 
given in the last section.

The Effect of Rashba Interaction in Superconductivity
In this section, we derive the effective Hamiltonian of superconductivity in the Rashba eigen-spinor basis. By 
diagonalizing the effective Hamiltonian, we can write down the ground state wave function and obtain the two 
coupled gap equations.

Hamiltonian in the Rashba eigen-spinor basis. The 2D model Hamiltonian for the system with 
screened Coulomb interaction and electron-phonon interaction in the second quantization form is given by

= +H H H (1)kin int

Here
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Ω is the area of the system. The first term of Hint is the Coulomb interaction between electrons.

π
=

+
V e
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2

(4)
C

TF
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is the 2D screened electrostatic Coulomb potential energy where qTF is the Thomas-Fermi wave vector and is 
given by

π= .q e N2 (0) (5)TF
2

N(0) is the electron density of states at the the Fermi level. The second term of Hint is the electron-phonon cou-

pling where = −






ωg i qZVN

M
C

q q2

1
2c

c q
. Nc is the atomic density, Z is the valence of the ions, Mc is the mass of an ion 

and ωq is 2D dressed phonon frequency.
The Rashba interaction mixes the spin-up and spin-down states of the free electrons. The eigenstates of Hkin 

are
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We note that the spinor basis functions can have various choices of phase and that used by Gor’kov and Rashba in 
ref. 24 had ζ =  1. Since the eigenstates are mixed states, we should write the Hamiltonian in terms of the Rashba 
eigen-spinors basis which will be referred as Rashba basis from now on.

The kinetic part Hkin can be diagonalized in the Rashba basis by using the following transformation
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σ σ
†a a( )k k, ,  is the creation(annihilation) operator of the electron in the σ band with momentum k. σ =  +  and σ =  −  

represent the χ+ and χ− spinor states respectively. These second quantized operators satisfy the commutation 
relation δ δ=σ σ σ σ′ ′′ ′

†a a{ , }k k k k, , , , , and = = .σ σ σ σ′ ′′ ′
† †a a a a{ , } { , } 0k k k k, , , ,  The kinetic energy of the system relative 

to the Fermi level μ is
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where µ= −σ σ˜k k, ,  . Combining the Coulomb interaction and electron-phonon interaction, the effective 
electron-electron interacting Hamiltonian is given as
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and can be written in the Rashba spinor basis. The explicit form of the interaction Hamiltonian in the Rashba 
spinor basis is shown in Appendix A of Supplementary Information. Here

= +V V V (12)
C ph

q q q

where V C
q  is the screened Coulomb potential in Eq. (4) and the phonon-mediated potential energy V ph
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In the effective interaction Hamiltonian, there are interband and intraband interaction. However, while con-
sidering the scattering of the pairing electrons near the Fermi surface, the most important pairing configuration 
is that paired electrons being in the same band. The spinor bands and pairing of electrons are shown in Fig. 1. 
The zero-momentum pairing states uniformly distributed in either one of the two Rashba bands at Fermi level as 
shown in Fig. 1(b,c). The electrons in the same band can be scattered into any other unoccupied pairing states of 
zero momentum. This kind of scattering is the dominant scattering channel in superconductivity. Two electrons 
from different bands cannot form a pair with zero-momentum as shown in Fig. 1(d). There are much less states 
near the Fermi surface that such non-zero-momentum paired electrons can scattered into. Thus, such pairing 
composed of two electrons in different bands is of little importance. Hence we preserve only the terms with the 
pairing of electrons in the same band. The effective Hamiltonian involved in superconductivity is
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The second and third terms represent the intraband and interband pair scattering respectively. Here, the intra-
band scattering means interacting Cooper pairs stay in the same band and interband scattering means interacting 
Cooper pairs are in the different bands as shown in Fig. 1(b,c). We note that there are factors 1 ±  cos(ϕk −  ϕl) in 
the second and third terms. These factors favor p-wave superconductivity as shown below.

The two-band coupled gap equations. The Hamiltonian in Eq. (14) is to be diagonalized. The expecta-
tion value of pair creation operators on the ground state is defined as

= .σ σ σ−A a a (15)l l l

The Hamiltonian in Eq. (14) is expanded with respect to the fluctuations (a−lσalσ −  Alσ) up to first order. Then 
we obtain
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Δ k,σ is an odd function of k because of A−lσ =  − Alσ. To diagonalize the Hamiltonian, we use the the 
Bogoliubov-Valentin transformation

Figure 1. (a) The Rashba interaction lifts the spin degeneracy. As a result, the eigenstates are σ =  + (blue color 
line) and σ =  − (red color line) bands. (b–d) are the bands at the Fermi energy. In (b,c), the two electrons which 
form a pair can both be in σ =  +  band or in σ =  − band. (b) An example of the intraband scattering. Both pairs 
involved in the scattering are in the σ =  + band. (c) One pair involved in the scattering is in σ =  + band and the 
other pair is in the σ =  − band. This is the interband pairs scattering. (d) The pair formed by electrons from 
different bands is unstable because there is no other pairing state that such paired electrons can scattered into.
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γ γ= +σ σ σ σ σ−
⁎ †a u v (18)k k k k k, , , , ,

with constraints |uk,σ|2 +  |νk,σ|2 =  1, u−k,σ =  uk,σ and v−k,σ =  − vk,σ
37. The Fermi statistics of the γ operators satisfy 
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The zero temperature gap equation can also be obtained by minimizing the expectation value of the effective 

Hamiltonian 〈Ψ | |Ψ 〉HG eff G , i.e., the derivative of 〈Ψ | |Ψ 〉HG eff G  is equal to zero as the standard BCS process. There 
are two coupled gap equations
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Because Δ k,σ is an odd function of k, it can also be written as
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The detail derivation of Eq. (24) is in Appendix B of Supplementary Information. The −
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,
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the first summation term means the cancellation between intraband and interband pair scattering contribution 
and its contribution to the gap energy almost vanishes. It will be shown later in Fig. 2 that it is indeed this case. 
Hence the gap equation Eq. (24) can be approximated by
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where = +− − −V V Vph C
k l k l k l as in Eq. (12).

Comparison with previous theoretical investigation. In order to compare with the result in ref. 24, 
we derive the complete gap equations following the process of derivation in ref. 24. The Rashba eigen-spinor in 
Eq. (6) is used in the derivation. By taking ζ =  1 in Eq. (6) , it can return to the spinor basis used in ref. 24.

The Hamitonian is
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where τλa p( , ) is aλ(p) in the Heisenberg representation. With τ −  τ′  =  0+, we find

= −λ λ
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and

Figure 2. The Rashba effect in superconductivity for the Pb-film. The coupling strength is estimated by the 
model approximation in the absence Umklapp process. (a) The relation between the gap energy Δ σ and Rashba 
strength α where the p-wave gap energy is Δ k,σ =  Δ σcos ϕk and σ =  ± . (b) The relation between the critical 
temperature Tc and Rashba strength α.
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= − −λ λf fp p( ) ( ) (35)

The same processes were given in Eqs (7–13) of ref. 24. fλ(p) can be related to the mean field Apλ we used in 
Eq. (15),
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The Gor’kov equations are obtained as
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From the Gor’kov equations in Eqs (37,38), the gap function without approximation can be written as
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For fλ(p) =  − λApλ, this gap function is identical with Eqs (17 and 24) in last section.
We return to the spinor basis in ref. 24 by taking ζ =  1. Eq. (40) becomes

∑

∑

∑

ϕ ϕ

ϕ ϕ

′

′

′ ′ ′

′ ′

′ ′

∆ = | − ′| ′ + ′

+ − − ′

= | − |

+ | + | +

+ | − | − | + |

− −

λ
ϕ ϕ

λ λ

λ λ

ϕ ϕ
λ λ

ϕ ϕ

λ λ

′

′

′

− −
−

′ −

′>

− −
−

>

− −

−

′

′

′U e f f

f f

U

U e f f

U U e

f f

p p p p p

p p

p p

p p p p

p p p p

p p

( ) 1
2

( ) {[ ( ) ( )]

cos( )[ ( ) ( )]}
1
2

[ ( )

( )] [ ( ) ( )]
1
2

[ ( ( ]

cos( )[ ( ) ( )] (41)

i

i

i

p

p p

p

p

p p

( )

0
( )

0

( )

p p

p p

p p

With the approximation U(|p −  p′|) ≈  U(|p +  p′|) ≈  U(0) in ref. 24, the term with the factor cos(ϕk −  ϕl) van-
ishes. We get

∑

∑

′ ′

′ ′

∆ = +

= +

λ
ϕ ϕ

λ λ

ϕ ϕ
λ λ

′>

− −
−

′

− −
−

′

′

U e f f

U e f f

p p p

p p

( ) 2 1
2

(0) {[ ( ) ( )]

1
2

(0) {[ ( ) ( )]
(42)

i

i

p

p

0

( )

( )

p p

p p

Thus we obtain the gap function Eq. (17) in ref. 24

ϕ∆ = − ∆iexp( ) (43)p p 0

∑ ϕ∆ =
λ

λU i f p1
2

(0) exp( ) ( )
(44)p

p0
,
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We have to note that both assumptions, ζ =  1 and U(|p −  p′|) ≈  U(|p +  p′|) ≈  U(0) are necessary for the 
cos(ϕk −  ϕl) term to vanish. But, the isotropic assumption U(|p −  p′|) ≈  U(|p +  p′|) ≈  U(0) is usually harmful 
to traditional triplet p-wave superconductivity and p-wave superfluidity37–40. The consequence of the approxi-
mation is the cancellation in Eq. (44). The definition of fλ(p, τ −  τ′ ) in Eq. (32) results in a factor λ in front of the 
bracket. Hence, f+(p) and f−(p) have opposite signs. The summation over λ in Eq. (44) produces cancellation. 
The resulting gap function is greatly suppressed. Therefore, we concluded that the approximation U(|p −  p′|) ≈  U 
(|p +  p′|) ≈  U(0) of Eq. (14) in ref. 24 is not a good approximation for spin-independent interaction which we are 
dealing with in this work. On the other hand, the second term in the brace on the right hand side in Eq. (40) has 
two terms with opposite signs. We take advantage of that and reach Eq. (25). Our choice of phase of Rashba basis 
enable us to identify the possible cancellation as shown in Eq. (24). As a result, the gap equation Eq. (25) contains 
clearly the dominant interaction without any cancellation.

The analysis of the interaction
In this section, we obtain the p-wave like gap energies (i.e., an additional cos(ϕp) modulation to the gap func-
tion comparing with Eq. (43)) through the analysis of the gap equations. There are two dimensionless coupling 
constants. One is for electron-phonon interaction and the other is for electron-electron interaction. Following a 
procedure similar to the model proposed by Morel and Anderson33, one can evaluate the gap energies. The needed 
parameters can be found in Table 1. The finite temperature case and transition temperature are also discussed. The 
evolution of transition temperature relative to Rashba strength for Pb film on Si(111) is also shown.

3D theoretical 
expression Lead [bulk]

2D theoretical 
expression

Lead film 
[Pb/Si(111)]

(a)

Electron-phonon coupling strength λ














+

qTF
qTF qD

1
2

2

2 3
5

2

2
‡ 0.40‡











+

qTF
qTF qD

1
2 2

3

2

0.48

Angular averaged Coulomb 
coupling μ













+
ln

qTF
kF

qTF kF
qTF

2

8 2

2 4 2

2
‡ 0.32











π
+

qTF
qTF kF

1
2 4 0.32

Effective Coulomb coupling 
strength (Coulomb 
psudopotential‡)

μ* 
µ

µ
ω

+










F
D

1 ln 

‡

0.1‡
µ

µ
ε
ω

+










F
D

1 ln 0.1

Lattice constant a0 4.95 Å 3.50 Å⋇

Atomic density nc Nc/V 33.0 nm−3 Nc/A 9.43 nm−2*

Fermi wave number kF π n Z(3 )c
2 1/2 1.57 Å−1† (2πncZ)1/2 1.54 Å−1

Debye wave number qD π n(6 )c
2 1/3 1.25 Å−1† (4πnc)1/2 1.09 Å−1

Thomas Fermi wave number qTF πe N[4 (0)]2
1
2 ‡ 2.82 Å−1 2πe2N(0) 37.8 Å−1

Effective mass of electron m* 2.1 me
‡ 10 me

Density of states (Fermi surface) N(0) =
π

⁎ knC Z

Mc

m
F

2

2 2
44.0 nm−3 eV−1

=
π

⁎nC Z

Mc

m2

2
41.8 nm−2 

eV−1

Velovity of longitudinal phonon 
[for phonon dispersion (ωq =  cq)] c ⁎( ) vZm

Mc F3

1
2 2.36 ×  103 m/s ⁎( ) vZm

Mc F2

1
2 1.30 ×  103 m/s

Debye temperature ωD 105 K 105 K

Transition temperature (Tc)

Theoretical value Experimental value

(b)

Lead bulk Free electron 4.25 K  7.19 K

2DEG (without 
Rashba 
interaction)

8.62 K 

Lead film 1.5 K~7 K

2DEG (with 
Rashba 
interaction)

0.63 K⊙

Table 1. (a) The 3D and 2D superconducting state parameters. The data with ‡, †, ⋇ and *  indices are taken 
from refs 21,33,36,46 respectively. (b) The estimated transition temperatures for lead bulk and lead film in 
which the normal processes are considered . Without Rashba interaction, BCS transition temperature equation 

ω λ µ. − − −⁎~T 1 13 exp{ ( ) }c D
1  is used to estimate Tc for lead bulk and lead film and noted by . 

ω λ µ. − . − −⁎~T 1 13 exp{ [0 5( )] }c D
1  is used to estimate Tc in the presence of the Rashba interaction in 2DEG. 

It is approximated by preserving the first term in the right of Eq. (57) under the Δ σ →  0 limit and the evaluated Tc 
is noted by ⊙ . The experimental Tc for lead bulk is from ref. 67. The experimetal values for Pb film on Si(111) 
ranged from 1.5~7 K were reported in refs 20–22.
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The superconducting state parameters. In this subsection, we give the outlines of how the 
electron-phonon interaction and Coulomb interaction are considered. The details can be found in Appendix C of 
Supplementary Information. For the free electron case, both spin-up and spin-down electrons have the equivalent 
contribution to the gap energy. However, in the presence of the Rashba interaction, the spin degeneracy is lifted 
and the gap energy is spin-band dependent.

From Eq. (25), the first term and second term in the brace of the summation are the intraband and the inter-
band pair scattering contribution. We replace ∫∑ σ σ σ

ϕ

π σΩ
f N d fl l( )by (0) ( )all

d
l l,

1
2

l . Here

η α=± N N(0) (0)
2

[1 ( )] (45)

is the electron density of states for spin χ± state at the Fermi energy and

�
ε

� �
η α α α

=
















+
















⁎⁎ ⁎m m m( ) / 2

(46)
F

2 2 2

2
1
2

is the deviation of density of states due to Rashba splitting. Thus

∫ ∫∑
ϕ
π

ϕ ϕ∆ = −
′

−
∆
.σ

σ
σ

ω

ω

σ

π ζ ϕ ϕ σ

σ
σ σ

′=±
′

−
′

− − ′

′
N d d V e

E
1
4

(0)
2

cos( )
(47)

i
k l,

l
k ,l k l

l

l
,

0

2 ( ) ,

,D

D
k l

The gap energy

ϕ∆ = ∆σ
ζϕ

σ
−ecos (48)i

k, k k

is used to solve gap equation Eq. (47).
We have to note that the more general form ϕ ϕ∆ = ∆ + ∆ζϕ

σ σσ
−e ( cos sin )i

k, k k1 2k  can usually be written 
as ϕ ϕ∆ = ∆′ −σ

ζϕ
σ

−ecos( ) i
k, k 0 k where ∆′ = ∆ + ∆σ σ σ1

2
2

2  and the cos(ϕk −  ϕl) in Eq. (47) can be written as 
cos(ϕk −  ϕl) =  cos[(ϕk −  ϕ0) −  (ϕl −  ϕ0)]. The solution will be similar to ϕ∆ = ∆σ

ζϕ
σ

−ecos i
k, k k besides a phase 

shift ϕ0.
Small variation of Δ k,σ in Ek,σ will be neglected such that  = + ∆ + ∆σ σ σ σσ ~Ek k, k, k,

2 2 2 2  is 
used in Eq. (47). For = +V V Vph C

k l k l k l, , , , we discuss the phonon mediated scattering process and the Coulomb 
interaction contribution to the gap energy separately. We use the model proposed by Morel and Anderson33 to 
analyze the parameters in the gap equations.

The effective potential of the phonon-mediated scattering, in view of Eq. (13) and Eqs (C3, C6, C7 and C10) in 
Appendix C of Supplementary Information. is

λ
ϕ ϕ

= −





−

−
+ −







σ σ

σ σ σ σ
σ σ′

− ′

′ ′
V N

a b
(0) 1 ( )

cos( )
,

(49)
ph

k ,l
k l

k l k l k l

1
2

, ,

 

where

λ =




 +







q

q q
1
2 (50)

TF

TF D
2
3

2

plays the role of dimensionless electron-phonon coupling constant “N(0)V” in BCS theory41,42. Here qD is the 
Debye wave vector. Interested readers can find derivation in Appendix C of Supplementary Information. Here 

= − − + =σ σ σ σ σ σ σ σ σ σ′ ′ ′ ′ ′a c k l b c k l( ) ( ), 2k l k l k l,
2 2 2 2

,
2   and c is the velocity of longitudinal phonon. Since kσ 

and lσ′ are close to Fermi wave vector of σ and σ′  band respectively, |akσ, lσ′| <  |bkσ, lσ′| and the principle value 
∫ ϕ =
π

ϕ+
dP 0

a b0

2 1
cos [ ]

 for|a| <  |b| will be applied.
The effective Coulomb interaction potential is taken as

=
+ ω

ω( )
U U

U1 ln (51)

C eff
C

N C

,
(0)
2

m

D

by Bogoliubov et al.43. Here π

+
π

~UC e

q k

2

TF F

2

4
 is the average of the screened Coulomb potential VC in 2D case as the 

discussion of Eq. (C14) in Appendix C of Supplementary Information. The dimensionless Coulomb coupling 
strength parameter

µ µ

µ
=
+ ε

ω

⁎

( )1 ln (52)
F

D

plays the role of the Coulomb psuedopotential in refs 33,43,44 where
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µ =

=




 +





π

N U

q

q k

(0)
2

1
2 (53)

C

TF

TF F
4

The gap equation, Eq. (47), including both electron-phonon and Coulomb interaction can be written as

�

ε

ε ε

∫

∑

∑

λ µ σ η α
ω

λ σ η α

∆ = −





− ′ ∆




 ∆












+





− ′
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.

σ
σ

σ
σ

σ ω
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σ σ σ σ

σ σ

σ
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b E
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4

[1 ( )]

( )

(54)

D

l

k l k l

k l l

1

,

,
2

,
2

,

D

D

The dimensionless coupling strength in first term is composed of the sum of two bands and is roughly 
λ µ− ⁎( )1

2
 which is about one half of the ordinary 2DEG strength parameter (λ −  μ* ) as shown in Eq. (C17) in 

Appendix C of Supplementary Information. We have to note that the 1
2

 factor comes from the average of cos2 ϕ. 
The gap energy Δ σ in the Rashba case should be smaller than in the free electron case due to the reduction of the 
coupling strength.

The first term in Eq. (54) dominates the right hand side of the equation. The last terms can be roughly esti-
mated by taking ~Ek k  and ~b c k2 F

2 2. The integral for the last term is of the order ∆ ∆ω
~

c k

k

k
1
4

1
4

D

F

D

F

2

2 2

2

2
 which is 

much smaller than ∆ ω−
∆( )sinh 1 D  because k

k
1
4

D

F

2

2
 is usually much smaller than 1 and ω−

∆( )sinh 1 D  is usually larger 
than 1 in the numerical result.

The finite temperature gap energy and transition temperature Tc. The finite temperature gap 
energy equation can be obtained through Eqs (15) and (18). Substituting = −σ σ

∆ σ

σ
A f E[1 2 ( )]

El l, 2 ,
l

l

,

,
 where f(El,σ) 

is the Fermi-Dirac distribution function in Eq. (17), we obtain
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−
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2
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2

cos( ) tanh
2
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2 (55)
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i
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i
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l
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l

l

l

l

l
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,
( ) ,

,

,

,

,

,

( ) ,

,

,

,

,

,

k l

k l

Similar to the zero temperature case, the interband and intraband pairs scattering contributions to the gap 
energy in the second summation dominate. The partial cancellation between interband and intraband pairs scat-
tering in the first summation would reduce its contribution to the gap energy severely and can be neglected. 
Assuming a p-wave like gap energy ϕ∆ = ∆σ σ

ζϕ−e cos( )i
k k, k  in Eq. (55) and replacing ∑ σ σΩ

f Nl( ) by (0)all l
1  

∫ ε σ
ϕ

π σ
d f l( )

d
l, 2

l , we obtain
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At transition temperature T =  Tc, Δ σ →  0, it can be further simplified as
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The first term usually dominates the right side of Eq. (57). Here again, the effective strength in the Rashba case 
is roughly half of the 2DEG case because of the angular dependence of Δ . As a result the critical temperature in 
the Rashba case becomes much smaller than that of conventional s-wave superconductor due to the exponential 
relation to the inverse of the coupling strength.

Lead film. The Rashba effect14–16 and superconductivity20–22 had been reported seperately for the Pb film 
grown on Si(111) with Tc ranged from 1.5 K ~ 7K. Therefore, our model may be realized in lead thin film. The 
large effective mass of electrons in the quantum well state is taken to be 10 me

45. The lattice constatnt for Pb(111) 
film is = .a 3 50 Å2

2 0
21 where a0 =  4.95 Å is the lattice constant of bulk lead. Thus the atomic density of the 

Pb(111) plane is 9.43 nm−2 46, .
−

~q 37 8ÅTF
1and .

−
~q 1 09ÅD

1 in the 2D case. All the parameters are list in 
Table 1. We solve Eq. (54) numerically for the case of Pb-film. The relation between gap energy and the Rashba 
strength α is shown in Fig. 2(a). In the Pb-film case, ∆ ∆ ∆ ∆ ω−

∆
~ ~ ( )5 sinh ,k

k
1
4

1
8

1D

F

D
2

2
 the first term in 

Eq. (54) surely dominates as we expect in section B. The relation between the transition temperature and Rashba 
strength for the Pb-film is also evaluated numerically and shown in Fig. 2(b). The estimated transition tempera-
tures for bulk lead and lead film in which the normal processes are considered are shown in Table 1(b). We find 
that transition temperature Tc of p-wave superconductivity in the presence of the Rashba interaction is roughly 
0.63 K as shown in Table 1(b). Hence, our calculation up to now can not account for the experimental finding in 
refs 20–22.

2-dimensional umklapp processes
In order to make perform a more accurate calculation and be able to explain exprimental results, we consider 
Umklapp processes in this section.

In the estimations of transition temperature and gap energy, the dimensionless electron-phonon coupling 
strength λ is an important factor. In 3-dimension case, Morel and Anderson proposed that λ is a state parameter 
and can be expressed as λ =

+
[ ]

q

q q

1
2

TF

D TF

2

3
5

2 2
. In that approximation, λ is usually smaller than 1

2
 and is suitable for the 

weak coupling case. However, the Umklapp scattering was not included in that approximation and λ is usually 
underestimated47. For the strong-coupled superconductor, the self energy calculations is usually treated with the 
Eliashberg equation48,49 and the effective coupling strength can be properly renormalized. The transition temper-
ature equation obtained by Macmillan50 can be applied to calculate of a number of metals and alloys. The 
electron-phonon coupling constant λ is defined as

∫λ
α ω ω

ω
ω≡

ω F
d2

( ) ( )

(58)
q q

q
q

0

2

in Macmillan’s analysis50. Scalapino, Wada and Swihart34 estimated α2(ωq) by including both normal processes 
and umklapp contribution with appropriate F(ωq), and then evaluated the coupling strength λ. They were able 
to get results close to the experimental data34–36. In the previous section, we discuss the superconducting state 
parameter mainly following the model proposed by Morel and Anderson33 in the absence of the Umklapp pro-
cesses. In this section, we estimate the 2D superconducting state parameters λ by revising the the model of 
Scalapino, Wada and Swihart34 for 2DEG.

The phonon coupling kernel

∫ ∫

∫

∑α ω ω
π

δ ω ω

=
′
′

−

ν
ν

ν

′

′

−

−

F dp dp
v

g

dp

( ) ( )
(2 )

1

( )/ (59)

S S
F

S

p p

p p

2
2 ,

2

,

F F

F

is used to evaluate λ in Eq. (58) for the 2D case. SF is the Fermi surface and we assume p −  p′ =  q +  K where K is 
a reciprocal lattice vector. The electron-phonon matrix element is

= − + ⋅ +νν+g i n
M

Vq K q K( ) ( )
(60)

c D
q K, q

2

where V2D(q +  K) is the effective Coulomb pseudo-potential and the phonon polarization is denoted by ν. The 
phonon density of states F(ω) is

∫ ∫

∑

∑

ω ω

π
δ ω ω

π

=

= −

ν
ν

ν
ν

F F

d q d q

( ) ( )

(2 )
( )/

(2 ) (61)
q

2

2 ,

2

2

and the effective phonon coupling α2(ω) can be defined from Eqs (59) and (61). There is one longitudinal (l) 
mode and one transverse (t) mode for the phonon polarization and

∑α ω ω α ω ω= .
ν
ν νF F( ) ( ) ( ) ( )

(62)
2 2
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The first Brillouin zone is approximated by a circle of radius qD and

ω
ω

= .ν
ν ω ω=ν

F
q

q
d dq

( ) 2
/

(63)D q
2

2

,
q,

Thus the effective phonon coupling is

∫∑α ω
π
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ω
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=

−
+

− + |
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ω ω
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+

=ν



( )
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D
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q K,

2
2

2

2

2

2

,

F

q,

where K is a reciprocal lattice vector. Because electron-phonon coupling has contribution only when |q +  K| <  2kF, 
there are 18 reciprocal lattice vectors K involved in the Umklapp processes listed in Table 2.

We follow the procedures in refs 34–36 to evaluate α ων ( )2  and Fν(ω) for lead. The potential in Eq. (60) of 
Harrison’s form is

π β=




−

+




+V e Z

q
q qq( ) 2 /(1 / )

(65)
D

TF
2

2

where β =  60 Ry-atomc unit of area (a )B
2  34. Fν(ω) is assumed to vary as ω at low frequency regime in order to 

obtain the linear dispersion. There are two peaks in phonon density of states, one transverse peak at 4.4 meV and 
one longitudinal peak at 8.5 meV for the bulk Pb. These peaks are also adopted in Pb-film case. We use the cutoff 
Lorentzians to approximate the peak of Fν(ω).
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ω ω ω

ω ω ω ω ω
ω ω
ω ω

ω ω ω

=







≤





 − +

−
+







≤ ≤
+

+ ≤ .

ν

ν ν

ν
ν ν ν ν

ν

ν ν

ν ν

F

v q

A( )

2 /( ) ,
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D
2 2

0

1
2

2
2

2
2

3
2

0

1 3

1 3

Normalization of Fν(ω) and continuity of Fν(ω) are used to determine Aν and ων0. ων3 =  3ων2 is used in the 
Lorentzians. The parameters used in the calculation, the calculated coupling strength and the transition temper-
ature for 2DEG are listed in Table 3. α2(ω) is a smooth function of ω and the value of α2(ων0) can be adopted for 
α2(ω) to evaluate λ. The effective phonon coupling strength λ =  1.05 and effective Coulomb interaction strength 
μ*  =  0.1 for Pb film in 2DEG case. In this strong coupling case, the effective coupling strength is renormalized by 
Z(0) =  1 +  λ and the renormalized coupling strength constants are λ = λ

λ+re 1
 and µ = µ

λ+
⁎ ⁎

re 1
.

In the precence of Rashba interaction in 2DEG, the coupling strength constants are about one-half of those for 
the free electron case and λ =  0.525 and μ*  =  0.05 are taken for the presence of Rashba interaction case. 
Considering the renormalization effect, the renormalized coupling strength constants λre =  0.344 and μre =  0.033 
are adopted in Eqs (54) and (57), the relation between gap energy Δ  and to Rashba strength α and transition 
temperature Tc relative to Rashba strength α are shown in Fig. 3(a,b) respectively. ~T 4Kc  in the presence of 
Rashba interaction case. The experimental Tc ranged from 1.5~7 K for lead film on Si(111) are reported in refs 
20–22.

We have to note that as shown in the Table 3, the transverse phonon coupling α ω = .( ) 1 70t t
2

1  is larger than 
that of the longitudinal phonon coupling α ω = .( ) 1 09l l

2
1 . However, such transverse phonon mode is not included 

in the model estimation of last section in the absence of Umklapp process. The transverse mode which comes 
from the Umklapp processes has important contribution to the electron phonon coupling. Hence, the gap energy 
and transition temperature is enhanced while including the umklapp processes and the final result agrees reason-
ably well with experiments.

Finally, we discuss the effect of the band structure in lead. The strong-coupling superconductivity of lead was 
described very well by Eliashberg formalism48,51 with practical physical quantities such as phonon spectra and 
electron density of states. In that and subsequent treatments, the Fermi surface was assumed to be spherical like 
what we have done in this work. Later, lead was reported to be a two-band superconductor52,53, albeit with two 

K(Å−1) Number of K

1.79 6

3.11 6

3.59 6

Table 2.  Reciprocal lattice vectors K involve in the umklapp processes.
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very close energy gaps. Our calculation is a reasonable approximation in the case of lead. The argument is pre-
sented in Appendix E of of Supplementary Information.

The observation of the p-wave superconductivity
We discuss how our calculation can be verified by experiments in this section. For the conventional superconduc-
tor, the excitation probability of the quasiparticles of isotropic gap energy Δ  is proportional to exp[− Δ /kBT]. 
Thus, the power law T dependence of specific heat54 at T T c is inconsistent with isotropic gap prediction. This 
power law T dependence is due to the allowed states around the nodes in the superconducting gaps and is a fea-
ture of the unconventional superconductor. This can be applied to verify the nodes of this p-wave like gap energy.

Transverse ultrasound attenuation can be used in gap-anisotropic systems and probe the electronic gap nodes. 
By analyzing the quasiparticle contribution in the transverse ultrasound attenuation, the relationship between 
the quasiparticle gap structure and the electron viscosity tensor can be examined55. For temperature low enough, 
the quasiparticles are entirely concentrated within the gap nodes of the excitation spectrum. The attenuation due 
to certain node is related to the propagation direction and polarization direction of the sound wave. If neither 
direction is perpendicular to the node position vector in k-space, the attenuation is activated55. It had been used 
to locate the gap lines and nodes of anisotropic superconductor UPt3 56. The ultrasonic attenuation measurements 
on p-wave superconductor Sr2RuO4 57 and d-wave cuprate superconductors YBa2CuO3+x 

58 were also performed.
The tunneling spectroscopy were used to analysis gap profile in superconductivity. When an electron tunnels 

from a normal metal to an anisotropic superconductor, the tunneling depends on the angle between the super-
conducting crystal orientation and the interface because of the anisotropic gap59. For example, the zero-bias con-
ductance peaks (ZBCPs) of a superconductor/insulator/normal metal tunneling conductance curve was reported 
in d-wave superconductors60,61 which is the consequence of the Andreev bound states62,63 and only exist in the 

ν

ων0 ων1 ων2 Aν vν α ων ν( )2
1

λ μ* Z(0)
λre = (λ)/

(Z(0))
µ ⁎

re = (μ*)/
(Z(0))

Tc

(meV) (meV) (meV) (meV) (km/s) (meV) (K)

Lead 
bulk Free electron

t 2.5‡ 4.4‡ 0.75‡ 0.39‡ 1.07‡ 1.09
1.32 0.10 2.32 0.569 0.043 8.69

l 7.1‡ 8.5‡ 0.50‡ 0.25‡ 2.42‡ 1.26

Lead 
film 

2DEG (without 
Rashba interaction)

t 3.2 4.4 0.75 0.34 1.07 1.70 1.05 0.10 2.05 0.512 0.049 6.51

l 7.3 8.5 0.50 0.22 2.42 1.09
0.525 0.05 1.525 0.344 0.033 ~42DEG (with 

Rashba interaction)

Table 3.  The parameters for phonon density of states used in Eq. (66) and electron-phonon coupling in 
Eq. (64). The values with ‡ index are adopted from ref. 36. The adoption of phonon peak energy ων1, the width 
of Lorentzians ων2 and sound velocity vν for the lead film are the same as those of bulk lead. The Macmillan 
transition temperature equation = 


− 


ω λ

λ µ λ.
. +

− + .⁎T expc 1 45
1 04(1 )

(1 0 62 )
D  50 is used to estimate Tc for the free electron 

case. The experimental Tc for bulk lead is 7.19 K which corresponds to λ =  1.12 and μ =  0.1. The Debye 
temperature ωD is 105 K. Coupling strength constants λ, μ and the zero energy renormalization factor 
Z(0) =  1 +  λ are also listed in Table. The renormalized coupling strength constants λre =  0.344 and μre =  0.033 
are adopted in Eq. (57) for the presence of Rashba interaction case and the estimated Tc~4 K. The experimental 
Tc ranged from 1.5~7 K for lead film on Si(111) are reported in refs 20–22.

Figure 3. The Rashba effect in superconductivity for the Pb-film. The coupling strength is estimated by 
Scalapino, et al.’s model approximation. (a) The relation between the gap energy Δ σ and Rashba strength α 
where the p-wave gap energy is Δ k,σ =  Δ σcos ϕk and σ =  ± . (b) The relation between the critical temperature Tc 
and Rashba strength α.
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interface of junction. There should also be clear ZBCPs in the crystal node orientations in our p-wave like super-
conductor junctions . It is different from the flat U-shape conductance curve with no ZBCP for the s-wave case.

In addition, for both the diffusive normal metal/p-wave superconductor junction and diffusive normal 
metal/d-wave superconductor juction, while the gap node direction is along the interface, the injected and 
reflected quasiparticles feel different sign of the pair potentials and mid-gap Andreev resonant state (MARS) 
form. The p-wave or d-wave superconductivity at such normal metal/unconventional superconductor junction 
still can be distiguished by the charge transport property64. In d-wave superconductor, the destructive angular 
average of the proximity effect in MARS would result in zero proximity. However, in p-wave superconductor, 
the destructive average of the proximity effect in MARS is avoid and the proximity is finite. The proximity effect 
can be investigated from the local density of states (LDOS) in the normal metal side of the normal metal/super-
conductor junction. In p-wave superconductor case, there should be zero energy peak of LDOS in the normal 
metal side because of the penetration of the MARS from the superconductor side into the normal metal region. 
In d-wave superconductor case, there are zero proximity in MARS and LDOS in the normal metal side is a con-
stant and still flat at zero energy. This difference is suggested to originate from the symmetry of the induced odd 
frequency pairing65,66. Thus, the p-wave and d-wave superconductor can be distinguished.

Conclusion
We investigate the effect in the superconductivity in the presence of the Rashba interaction. The presence of the 
Rashba field requires a new basis. Consider only the pairing in the same band, we obtain the coupled gap equa-
tions of two bands. Due to the partial cancellation between the intraband and interband pairs scattering, the 
dominant gap function is p-wave like ϕ∆ = ∆ ϕecos i

p p p. In addition to the phase dependent gap function sug-
gested in ref. 24, the magnitude of gap function is also modulated by cos(ϕp) in our investigation. The factor 
cosϕp gives rise to an extra factor of 1

2
 in the gap equation so that the dominant coupling strength parameter is 

λ µ− ⁎( )1
2

 which is one half of that of the ordinary 2DEG case. As a result, the gap energy (transition tempera-
ture) would be an order of magnitude smaller than the 2DEG case if only the normal-process is considered.

The Pb film on Si(111) is a system where the Rashba interaction exist and can be the case analyzed in this 
article. We estimate the 2D coupling strength parameters by generalizing the 3D model estimation of Morel and 
Anderson33. Considering only the normal process of electron-phonon interaction, we find that Tc is of the order 
0.6 K in the presence of the Rashba interaction. When the Umklapp processes are included, the coupling strength 
parameter may be larger than 1 and has to be renormalized in this strong coupling case. The calculated Tc is of the 
order 4 K in the presence of Rashba interaction. Our calculation shows that the Umklapp processes provide the 
major contribution to the electron-phonon interaction.
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