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Abstract
Orderly chromosome segregation during the first meiotic division requires meiotic recombi-

nation to form crossovers between homologous chromosomes (homologues). Members of

the minichromosome maintenance (MCM) helicase family have been implicated in meiotic

recombination. In addition, they have roles in initiation of DNA replication, DNA mismatch

repair and mitotic DNA double-strand break repair. Here, we addressed the function of

MCMDC2, an atypical yet conserved MCM protein, whose function in vertebrates has not

been reported. While we did not find an important role for MCMDC2 in mitotically dividing

cells, our work revealed that MCMDC2 is essential for fertility in both sexes due to a crucial

function in meiotic recombination. Meiotic recombination begins with the introduction of

DNA double-strand breaks into the genome. DNA ends at break sites are resected. The

resultant 3-prime single-stranded DNA overhangs recruit RAD51 and DMC1 recombinases

that promote the invasion of homologous duplex DNAs by the resected DNA ends. Multiple

strand invasions on each chromosome promote the alignment of homologous chromo-

somes, which is a prerequisite for inter-homologue crossover formation during meiosis. We

found that although DNA ends at break sites were evidently resected, and they recruited

RAD51 and DMC1 recombinases, these recombinases were ineffective in promoting align-

ment of homologous chromosomes in the absence of MCMDC2. Consequently, RAD51

and DMC1 foci, which are thought to mark early recombination intermediates, were abnor-

mally persistent in Mcmdc2-/- meiocytes. Importantly, the strand invasion stabilizing MSH4

protein, which marks more advanced recombination intermediates, did not efficiently form

foci in Mcmdc2-/- meiocytes. Thus, our work suggests that MCMDC2 plays an important

role in either the formation, or the stabilization, of DNA strand invasion events that promote

homologue alignment and provide the basis for inter-homologue crossover formation dur-

ing meiotic recombination.
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Author Summary

Each chromosome is present in two distinct but homologous copies in diploid organisms.
To generate haploid gametes suitable for fertilization, these homologous chromosomes
must segregate duringmeiosis. To ensure correct chromosome segregation, homologous
chromosomes must align and become connected by inter-homologue crossovers during
early meiosis in most taxa including mammals. Defects in these processes result in infertil-
ity and aneuploidies in gametes. Alignment of homologous chromosomes and crossover
formation entail generation of DNA double-strand breaks and repair of DNA breaks by
meiotic recombination. As part of the repair process, single-strandedDNA ends resulting
from DNA breaks invade homologous DNA sequences and use them as repair templates.
DNA strand invasion events lead to the alignment of homologous chromosomes, and
serve as precursors for crossovers. We discovered that meiotic recombination critically
depends on the helicase-relatedminichromosomemaintenance domain containing 2 pro-
tein (MCMDC2).MCMDC2 likely promotes the formation and/or stabilization of DNA
strand invasion events that connect homologous chromosomes. Thus, MCMDC2 is
required for DNA breaks to effectively promote alignment of homologous chromosomes.
This work reveals a crucial role for MCMDC2 in recombination in mammals, and consti-
tutes an important step in understanding how recombination establishes connections
between homologous chromosomes duringmeiosis.

Introduction

Chromosome segregation during the first meiotic division uniquely differs from chromosome
segregation duringmitosis and the secondmeiotic division [1,2]. Centromeres belonging to sis-
ter chromatids are pulled toward opposite spindle poles during mitosis and the secondmeiotic
division. In contrast, centromeres belonging to homologous chromosomes (homologues) that
originate from different parents are pulled to opposite spindle poles during the first meiotic
division. This bi-orientation of homologue centromeres requires homologues to pair and
become physically linked before segregation [1,2]. In most organisms including mammals,
inter-homologue physical linkages are provided by the collaborative action of sister chromatid
cohesion and inter-homologue crossovers, the latter of which are formed by meiotic recombi-
nation during the first meiotic prophase. Meiotic recombination initiates with the programmed
generation of large numbers of DNA double-strand breaks (DSBs) (200–400 per cell in mice
and humans) by the SPO11 enzyme [3–7]. This results in SPO11-boundDNA ends at break
sites [3,4], which are processed to remove SPO11 from DNA –ends and to produce single-
stranded 3´ DNA overhangs [8]. These single-strandedDNA ends attract RecA-like recombi-
nases DMC1 and RAD51, which form “recombinosome” complexes that promote invasion of
single-strandedDNA ends into homologous DNA sequences to produce so called displace-
ment-loops (D-loops) [9–11]. It is thought that stable strand invasions preferentially occur
into homologues as opposed to sister chromatids duringmeiosis [12–14]. This inter-homo-
logue bias in the formation of recombination intermediates is thought to ensure that DSBs effi-
ciently promote the recognition and the pairing of homologues based on sequence similarity.
DNA breaks are formed and become repaired within the context of chromosome axes,

which are linear proteinaceous chromatin structures that form along cores of chromosomes
duringmeiosis [15–18]. Upon successful homologue pairing, axes of homologues closely align
and get incorporated into a meiosis-specific chromatin structure, called the synaptonemal
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complex. The synaptonemal complex consists of two parallel axes and transverse filaments that
connect the axes to a shared central linear protein structure, called the central element [19].
The synaptonemal complex is thought to signal the end of the homologue pairing process [20–
22] and promote the repair of DSBs by recombination [16,23–28]. This repair involves DNA
synthesis that starts from the 3´end of the invading strands, and uses the invaded homologous
sequence as a template [11]. Meiotic recombination-mediatedDSB repair has two main path-
ways with distinct outcomes: reciprocal recombination/crossovers and non-reciprocal recom-
bination/non-crossovers [5,11]. At least one strand invasion on each chromosome is thought
to be specially stabilized and turned into a crossover. In contrast, most of the strand invasions
are repaired as non-crossovers, which often manifest as gene conversions after the completion
of repair.
Correct homologue pairing and crossover formation require finely balanced activities that

either stabilize or destabilize strand invasions and resultant recombination intermediates. The
BLM helicase has been suggested to destabilize strand invasion intermediates, and this function
might be important for error correction of strand invasions and the dissolution of difficult-to-
repair recombination intermediates [29–34]. The strand invasion intermediate destabilizing
activity of BLM is counteracted by the MutSɣ complex [31,35], which consists of a heterodimer
of MSH4 and MSH5 that form clamps around DNA strand invasion intermediates thereby sta-
bilizing them [36]. Accordingly, MSH4 and MSH5 proteins are necessary for the alignment of
homologues, homologous synaptonemal complex formation and the efficient completion of
DNA repair duringmeiosis in mammals [37–39]. Putative helicases of the minichromosome
maintenance (MCM) protein family have also been implicated in promoting recombination,
althoughMCM proteins were initially discovered as hexameric helicases that are required for
the initiation of DNA replication (reviewed in [40]). In particular, three MCM-relatedDro-
sophila proteins, REC,MEI-217 and MEI-218, form a complex and promote meiotic crossover
formation by stabilizing strand invasion intermediates, opposing BLM function and inhibiting
the non-homologous end joining repair pathway of DNA break repair [41–43]. Although these
proteins are not homologous to MSH4 or MSH5, it was proposed that REC,MEI-217 and
MEI-218 substitute for the MutSɣ complex, which is missing fromDrosophila [43]. MCM8, an
orthologue of REC, plays important roles in homologous recombination in plants and verte-
brates, where the MutSɣ complex is present [44–48]. However, unlikeDrosophila REC, verte-
brate MCM8 is also important for mitotic recombination and DSB repair [45–48]. Mammalian
MCM8 forms a complex with MCM9 in mitotic cells [45,48] and is important for resection of
DNA ends at break sites at the initial stages of homologous recombination in mitotic cells [47].
In contrast to MCM8, MCM9 does not play an essential role in meiotic recombination [45].
Curiously, MCM8 is apparently not needed for resection of DNA ends at break sites in meiosis,
yet it is important for an as yet undefined recombination step that is essential for efficient
homologue alignment and synaptonemal complex formation [45]. This suggests that mamma-
lian MCM8 performsMCM9-independent functions in meiosis, and that likeDrosophila REC
[43], mammalianMCM8might also have a function in stabilizing DNA strand invasion inter-
mediates in meiosis. Interestingly, the REC interactingMEI-217 and MEI-218 proteins of Dro-
sophila also have a predicted orthologue in mammals, calledMCMDC2 [43]. Yet, it has not
been reported if mammalian MCMDC2 is involved in meiotic recombination. Here we
describe the functional analysis ofMcmdc2-/-mice and show that mouseMCMDC2 is crucial
for meiotic recombination and DSB repair. More specifically, we hypothesize that MCMDC2
promotes the formation and/or the stabilization of strand invasion intermediates that permit
alignment of homologues.
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Results

Mcmdc2 is preferentially expressed in the gonads and required for

fertility in both sexes

To address if MCMDC2 could play a role in meiotic recombination we asked ifMcmdc2 tran-
scripts are present in testis. Thus, we used RT-PCR to assess expression levels ofMcmdc2 in 17
somatic tissues and testes of mice (Fig 1a). The RT-PCR analysis indicated thatMcmdc2 tran-
scripts were indeed enriched in testis as compared to somatic tissues (Fig 1a). Furthermore,
analysis of public databases (http://www.germonline.org/Homo_sapiens/geneview?gene=
ENSG00000178460) [49] showed that humanMcmdc2 was preferentially expressed in the tes-
tis, particularly in spermatocytes. Thus, its expression suggested a role forMcmdc2 in meiosis.
Given that theDrosophila homologs of MCMDC2 are required for crossover formation [50–
52], we speculated that mammalian MCMDC2may also function in meiotic recombination.
To test this hypothesis, we attempted to generate antibodies against distinct fragments of
mouseMCMDC2 both in rabbit and guinea pig, however none of our antibodies reliably
detectedMCMDC2, which precluded localization studies of MCMDC2. To directly test the
biological functions of MCMDC2we generated mice whereMcmdc2 was disrupted after the
4th exon (Fig 1b–1d). The targeting strategy was designed to terminate the 681-amino acid-
long MCMDC2 protein after the 95th amino acid (Fig 1b). This was due to the combined
effects of the removal of the 5-7th exons (encodes 96–237 amino acids of MCMDC2) causing a
frameshift, and the insertion of a strong ectopic splice acceptor site and a transcriptional termi-
nator into the 4th intron. RT- PCR analysis confirmed strongly reduced expression ofMcmdc2
exons beyond the 4th exon (including exon 8–11, which are not deleted from the genome) in
testes of theMcmdc2-/-mice (Fig 1d). Even transcripts of exon 3–4, which are upstream of the
deletion, were detected at a lower level inMcmdc2-/- testes than in wild-type testes. MCMDC2
protein fragments that may be produced from these residual transcripts are unlikely to be func-
tional. This is because deletion of the 5-7th exons would allow only a short 95 amino acid N-ter-
minal fragment to be produced from exons 1–4. Even if alternative splicing generated rare
transcripts where sequences from the 4th exon were linked to sequences downstream of the
deleted 5-7th exons, protein products of these transcripts would lack most parts of MCMDC2,
including the entire conservedMCM-like region (SMART: SM00350, amino acids 177–623 of
MCMDC2), because these transcripts would be subject to a frameshift mutation.

Mcmdc2-/-mice were viable and did not show any obvious somatic defects. Although the
previously publishedMcm8-/- andMcm9-/-mice were viable,Mcm8-/- andMcm9-/-mouse
embryonic fibroblasts (MEFs) displayed slow growth and sensitivity to the DNA replication
inhibitor aphidicolin [45]. These phenotypes were attributed to the functions of MCM8 and
MCM9 in mitotic homologous recombination. To test if MCMDC2 had a defect in mitotic cell
cycle due to a possible function in mitotic recombination we establishedMEFs fromMcmdc2-/-

andMcmdc2+/+ litter-mate embryos.MEFs ofMcmdc2-/- and wild-typemice did not differ sig-
nificantly in their growth rate or in their sensitivity to aphidicolin (Fig 2a and 2b). This suggests
that unlikeMCM8 and MCM9, MCMDC2 does not play an important role duringmitotic
growth.
Importantly, while we observedno obvious somatic defects, both sexes ofMcmdc2-/-mice

were infertile (no pups after 113 breeding weeks, n = 3 males and n = 3 females) because both
oogenesis and spermatogenesis were blocked (Fig 2c–2e). Ovaries of 6 weeks oldMcmdc2-/-

females were atrophic, barely discernible, and completely devoid of oocytes (n = 3 mice, Fig 2c
and 2e). This was due to an apparent loss of oocytes perinatally or soon after birth, as oocytes
were still present in ovaries of fetal and newbornMcmdc2-/-mice. Spermatogenesis takes place
within testis tubules, which can be found at 12 distinct stages of the seminiferous epithelial
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Fig 1. Preferential expression of Mcmdc2 in the gonads, and Mcmdc2 targeting in mice. (a) Expression of Mcmdc2 and a “house-keeping” gene (S9)

in testis and a somatic tissue mix measured by RT-PCR. cDNAs were prepared from four RNA mixtures: (1) Equal amounts of RNAs from 17 somatic

tissues (see Materials and Methods for the tissue list) were mixed and 1μg of the resulting mixture was used for RT (17 somatic tissues). (2) Mixture “1”

supplemented with testis RNA at a concentration equal to that of the individual somatic RNAs (17 somatic tissues + 1x testis). (3) Mixture “1” supplemented

with testis RNA at a concentration equal to five times that of the individual somatic RNAs (17 somatic tissues + 5 x testis) (4) Mixture “3” with no RT (17

somatic tissues + 5xtestis noRT). Mcmdc2-specific PCR-products were amplified preferentially from templates that contained testis cDNA. (b) Mcmdc2

targeting strategy. Schematics of the targeting construct, the wild-type (WT) and the modified Mcmdc2 genomic locus. Black boxes represent exons (not to

scale). Recombination at the homology arms (HA) of the targeting construct modifies intron 4 by introducing: 1) an additional exon (SA-IRES-LacZ) that

contains a strong splice acceptor site (SA) and poly-adenylation site (left grey box), 2) a transcriptional unit that contains the strong housekeeping human

ß-Actin promotor (hBactP) driving the neomycin (Neo) resistance gene as a selection marker. This modification of intron 4 also disrupts the Mcmdc2 open

reading frame after the 95th codon (Mcmdc2insertion allele). Recombination catalyzed by FLPe at FRT sites removes the SA-IRES-LacZ exon and the

hBactP-Neo gene, and restores the MCMDC2 ORF (Mcmdc2restored). Mcmdc2restored is a functional allele that can be disrupted by Cre-mediated

recombination between loxP sites (Mcmdc2deletion). Excision of exon 5–7 causes a frameshift after the 80th codon. Cre-mediated recombination between

loxP sites of a Mcmdc2insertion allele results in Mcmdc2insertion-deletion allele. The positions of PCR-genotyping primers are indicated. Red bars mark the

3‘and the internal Southern blot probes; the predicted length of restriction fragments is indicated. (c) Southern blot of DNA from wild-type (+/+) and targeted

Mcmdc2+/insertion (+/i) embryonic stem cell clones (C6 and F7) that were used to derive two independent mouse lines. DNA was digested with Eco31I and
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cycle (stages I-XII). Each stage is identified by the distinct combinations of spermatogenic cells
found within [53]. We observedno late prophase spermatocytes and postmeiotic cells in
Mcmdc2-/-males. This was due to apoptosis of spermatocytes in epithelial cycle stage IV testis
tubules (Fig 2d); in the wild type, stage IV tubules contain spermatocytes at the mid pachytene
stage. Consistent with a complete elimination of spermatocytes at stage IV no histone H1T (a
late prophase marker [54]) positive cells were found inMcmdc2-/- testis tubules (n>200
tubules, Fig 2d). In contrast, histone H1T was increasingly expressed in wild-type spermato-
cytes beyond stage IV as expected.

Mcmdc2 is required for efficient synaptonemal complex formation

Elimination of meiocytes at the observed stages indicated a possible defect in meiotic recombi-
nation inMcmdc2-/-mice. Specifically, persistent asynapsis and failure in DNA break repair is
known to elicit elimination of spermatocytes and oocytes in stage IV testis tubules and perina-
tal ovaries, respectively [55–58]. Therefore we examined synaptonemal complex formation and
markers of meiotic recombination inMcmdc2-/-meiocytes.While chromosome axes readily
formed (as judged by SYCP3 staining), synaptonemal complex formation was severely defec-
tive inMcmdc2-/-meiocytes (as shown by disrupted SYCP1 localization along chromosome
axes) (Fig 3). In the most advanced stages full axes formed along the core of each chromosome
inMcmdc2-/- spermatocytes. Fully assembled chromosome axes can be observed from late
zygotene to diplotene in wild-type spermatocytes. Given thatMcmdc2 -/- spermatocytes were
eliminated at a stage equivalent to wild-typemid-pachytene we postulate thatMcmdc2-/- sper-
matocytes with fully formed axes reached a prophase stage equivalent to wild-type late zygo-
tene to mid pachytene, hence we refer to this stage inMcmdc2 -/- spermatocytes as late
zygotene-pachytene.
In the wild type, all late zygotene spermatocytes had partially synapsed chromosomes and

by early pachytene all autosomes fully synapsed (n = 101 cells, of which 20% were late zygotene
and 80% were early pachytene, Fig 3b). In contrast, inMcmdc2 -/- spermatocytes, synapsis of all
chromosomes was never observed (n>500 spermatocytes) as chromosome axes were unaligned
and remained mostly unsynapsed in late zygotene-pachytene. The transverse filament compo-
nent SYCP1, which marks synapsed axes [59], was detectable in a punctate pattern at very low
levels along unsynapsed chromosome axes, or was detected only at a few foci at intersections of
chromosome axes in 36% of late zygotene-pachyteneMcmdc2 -/- spermatocyte nuclear spreads
(n = 412 cells, Fig 3b). In the rest of the spermatocytes, stretches of SYCP1 were detected along
sections of juxtaposed axes, but the numbers of these synaptonemal complexes were generally
low (a median number of 4 SYCP1 stretches in each spermatocyte, n = 131 cells). Chromo-
somes with different axis lengths were engaged in synapsis with each other, and chromosomes
formed synapsis with more than one partner indicating that synaptonemal complexes fre-
quently formed between non-homologous chromosomes (53% of synaptonemal complex
stretches were unequivocally identified as non-homologous, n = 232 synaptonemal complex
stretches in 62 spermatocytes).Nevertheless, in a significant fraction of cells (14 out of 116
cells) we observed apparently fully synapsed chromosomes (median 1 fully synapsed chromo-
some, range 1–4). We observed a similar chromosome alignment and synaptonemal complex
formation defect inMcmdc2-/- oocytes that were collected from 16 or 18dpc fetuses. At these
stages most wild-type oocyteswere in early (16dpc) or late (18dpc) pachytene stages, and all

hybridized with an internal probe for LacZ (left panel), or DNA was digested with BclI and hybridized with a 3’ probe (right panel). The blots indicate a single

integration of the targeting cassette in the Mcmdc2 locus. (d) RT-PCR was used to detect Mcmdc2 and "house-keeping" Rps9 (S9) transcripts in testes of

wild-type and Mcmdc2-/- (insertion-deletion) mice. Oligo-pairs specific to Mcmdc2 exon 3 and 4, 5 and 6, 6 and 7, 8 and 9, or 10 and 11 were used.

doi:10.1371/journal.pgen.1006393.g001
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Fig 2. Mcmdc2-/- mice are deficient in germ cells from late meiotic prophase onwards in both sexes. (a, b) Growth curves of five (a) or three (b)

independent lines of Mcmdc2+/+ (+/+) and Mcmdc2-/- mouse embryonic fibroblasts. Cells were grown either without aphidicolin treatment (a) or with

aphidicolin treatment for the first 24 hours (b), where 1μM aphidicolin was added at day 0. (a, b) Cell numbers were determined at the indicated time points

in three technical replicates of each fibroblast line. Means and standard deviations of the medians of technical triplicates are shown. Growth curves of

Mcmdc2+/+ and Mcmdc2-/- mouse embryonic fibroblasts are not significantly different (a: p = 0.8201, b: p = 0.9932, two-way ANOVA test). (c) Images of

Mcmdc2+/+ (+/+) and Mcmdc2-/- (-/-) testes (upper panel) and ovaries (lower panel). Scale bars; 500μm. (d) Cryosections of testes from adult Mcmdc2+/+

and Mcmdc2-/- mice. DNA was detected by DAPI, histone H1T (marker of spermatocytes after mid-pachytene) and nuclear cleaved PARP1 (marker of

apoptotic cells) were detected by immunostaining. Outlines of testis tubules are marked by dashed lines. The upper panels of d show stage V-VI and

VII-VIII wild-type testis tubules, which contain several layers of germ cells at distinct spermatogenic stages: Sertoli cells (Se), spermatogonia B (SgB,

stage V-VI), preleptotene (pl, stage VII-VIII), mid-pachytene (pa, stage V-VI), late-pachytene (pa, stage VII-VIII) spermatocytes, post-meiotic spermatids

(sd) and spermatozoa (sp). Lower panels of d show that Mcmdc2-/- meiocytes underwent apoptosis at a stage corresponding to wild-type mid-pachytene in

stage IV tubules. Consequently, spermatocytes were not found in the inner layers of testis tubules beyond stage IV, and post-meiotic spermatids and
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chromosomes in oocyteswith fully formed axes were either fully synapsed (16dpc: 89%,
n = 500, 18dpc: 90%, n = 325 oocytes) or partially synapsed (16dpc: 11%, 18dpc: 10%) (Fig 3d).
In contrast, a large fraction ofMcmdc2 -/- oocyteswith fully formed axes (16dpc: 55%, n = 136,
18dpc: 41%, n = 174 oocytes) lacked synapsis completely or formed only punctate/very short
stretches of synaptonemal complexes at intersections of axes (Fig 3d). Stretches of synaptone-
mal complexes formed in 45% (16dpc) or 59% (18dpc) of oocytes.Among those oocyteswith
SYCP1 stretches, the median number of stretches was 4 at 16dpc (n = 61) and 5 at 18dpc
(n = 103). We also observed apparently fully synapsed chromosomes in 10 out of 61 (16dpc) or
73 out of 103 (18dpc) oocyteswhere SYCP1 stretches were observed. In cells which had fully
synapsed chromosomes, a median number of 1 fully synapsed chromosome was observed at
16dpc (n = 10 oocytes) and 2 at 18dpc (n = 73). The highest number of fully synapsed chromo-
somes we observedwas 8. We detected low levels of punctate SYCP1 signals along unsynapsed
axes inMcmdc2-/-meiocytes in both sexes (male: Fig 3a, female: Fig 3c), although this SYCP1
staining pattern was more obvious in oocytes. This suggested that synaptonemal complex
transverse filament assembly was initiated, although synaptonemal complex formation mostly
failed in the absence of effective homologue alignment inMcmdc2 -/-meiocytes.A similar weak
association of SYCP1 with unsynapsed chromosome axes has been described in DNA strand
invasion-defectiveDmc1-/- andHop2-/-meiocytes [60]. Thus, SYCP1 accumulation along unsy-
napsed chromosome axes may be a general phenomenon that can occur when synaptonemal
complex formation is initiated but cannot be completed along unpaired chromosome axes.
Taken together, these observations showed that MCMDC2 is critical for homologue alignment
and synaptonemal complex formation in both sexes.

MCMDC2 is required for the repair of programmed meiotic DNA breaks

The observeddefects in homologue alignment and synaptonemal complex formation suggested
that early stages of recombination may be defective in the absence of MCMDC2. Single-
stranded DNA ends that are produced after DSB formation are bound by recombinases
RAD51 and DMC1, which form foci along chromosome axes. These foci have been defined as
early recombination nodules by electron-microscopy and are thought to represent recombino-
some complexes [61–66]. DMC1 and RAD51 promote strand-invasion of DNA ends into
homologues [9–11]. This leads to synaptonemal complex formation, and as DNA repair pro-
gresses, the early recombinosomes/recombination nodules lose DMC1 and RAD51 and prog-
ress to become transitional recombinosomes/nodules [61,62,64,65]. Hence, quantification of
DMC1 and RAD51 foci is informative about the number of unrepaired DNA breaks involved
in early stages of recombination in meiocytes.We found that foci of both RAD51 and DMC1
accumulate with similar kinetics in wild-type andMcmdc2-/- spermatocytes in leptotene and
early zygotene stages of prophase (Fig 4c and 4d). Numbers of RAD51 and DMC1 foci dropped
as wild-type spermatocytes progressed to early-mid pachytene. In contrast, high numbers of
RAD51 and DMC1 foci persisted in late zygotene-pachyteneMcmdc2-/- spermatocytes. The
high RAD51 and DMC1 foci numbers inMcmdc2-/- spermatocytes required SPO11 (Fig 4a and
4b). This observation is consistent with the idea that a delay in the repair of SPO11-generated

spermatozoa were also missing from Mcmdc2-/- testes. To illustrate this, stage IV, V-VI and VII-VIII tubules of Mcmdc2-/- mice are shown. Apoptotic (ap)

and non-apoptotic early-mid pachytene (pa) spermatocytes are shown in the stage IV tubule, which was identified by the presence of mitotic intermediate

spermatogonia (m) and intermediate spermatogonia (Int). Stage V-VI and VII-VIII tubules contain somatic Sertoli cells (Se) and spermatogonia B (SgB) or

preleptotene (pl) spermatocytes, respectively, but more advanced spermatogenic cells are missing. Due to elimination at mid-pachytene, histone H1T

positive cells are missing from Mcmdc2-/- testis tubules. (e) NOBOX (oocyte marker) was detected by immunofluorescence on cryosections of ovaries from

6-week-old mice. DNA was stained by DAPI. Oocytes in primordial (pd) and secondary (s) follicles are shown in the section of a wild-type ovary. In

contrast, oocytes are not detected in the shown Mcmdc2-/- ovary section. (d, e) Scale bars; 50μm.

doi:10.1371/journal.pgen.1006393.g002
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Fig 3. Synaptonemal complex formation is defective in Mcmdc2-/- mice. (a, c) SYCP3 (axis marker) and SYCP1 (synaptonemal complex

marker) were detected by immunofluorescence on nuclear surface spreads of Mcmdc2+/+ pachytene and Mcmdc2-/- zygotene-pachytene

spermatocytes (a) and oocytes (c). Two distinct categories of Mcmdc2-/- zygotene-pachytene meiocytes were found. They either had no synapsis

with no or weak punctate SYCP1 along unsynapsed axes (middle rows, a and c), or stretches of SYCP1 formed between some chromosomes that

have managed to synapse (bottom panels, a and c). The spermatocyte shown in the bottom panels of a illustrates the maximum extent of

synaptonemal complex formation observed in Mcmdc2-/- spermatocytes. Although some chromosomes evidently managed to fully synapse

Meiotic Recombination Depends on MCMDC2 in Mice

PLOS Genetics | DOI:10.1371/journal.pgen.1006393 October 19, 2016 9 / 26



programmedDSB breaks causes accumulation of RAD51 and DMC1 foci inMcmdc2-/- sper-
matocytes. To further test if meiotic DSB repair is delayed in the absence of MCMDC2we
detected phospho-serine 139 histone H2AX (ɣH2AX), which accumulates on chromatin in
response to unrepaired DNA breaks and asynapsis in meiotic cells. ɣH2AX decorated chroma-
tin in leptotene and zygotene stages but largely disappeared from autosomal chromatin due to
progression of DSB repair and synapsis in wild-type cells. It remained associated only with the
chromatin of the largely unsynapsed sex chromosomes, which form the sex body at the early
pachytene stage (Fig 4e). In stark contrast to wild-type spermatocytes, late zygotene-pachytene
Mcmdc2-/- spermatocytes failed to form sex bodies and ɣH2AX persisted on autosomal chro-
matin (n>200 cells). Persistent widespread ɣH2AX accumulation on chromatin was depen-
dent on SPO11, asMcmdc2-/- Spo11-/- spermatocytes formed only more localized ɣH2AX-rich
chromatin domains, so called pseudo-sex bodies, which are characteristic of mutants defective
in programmedDSB formation (Fig 4e) [55,67].
We found a similar delay in meiotic recombination inMcmdc2-/- oocytes (Fig 5). We

observed low numbers of DMC1 foci (median 29.5 foci, n = 66 cells) or RAD51 foci (median
21 foci, n = 62 cells) in late pachytene wild-type oocytes at 18dpc (Fig 5b and 5d). Correspond-
ingly, the chromatin of pachytene oocyteswas depleted of ɣH2AX (n>100 oocytes, Fig 5e). In
contrast, both foci of RAD51 (median 162.5 foci, n = 66 cells) and DMC1 (median 173 foci,
n = 64 cells) persisted along unsynapsed axes and ɣH2AX accumulated to high levels through-
out the genome (n>100 oocytes, Fig 5e) in oocytes fromMcmdc2-/- females.
The combination of these observations suggests that MCMDC2 is not required for DSB for-

mation or the loading of recombinases on single-strandedDNA ends. Yet, RAD51/DMC1
appears to be ineffective in promoting homologue alignment and DNA break repair is severely
impaired in the absence of MCMDC2.

Formation of MSH4- and MLH1-marked recombination intermediates

requires MCMDC2

In wild-typemeiosis, successful homologue alignment is accompanied by the appearance of
axis-associatedMSH4 foci that are thought to represent MSH4/5 (MutSγ) complexes within
transitional recombinosomes/recombination nodules [38,61,64]. MutSγ is necessary for robust
homologue pairing and alignment, most likely because it stabilizes strand invasion intermedi-
ates [23,36–39]. Hence, MSH4 foci are inferred to mark stabilized post-strand invasion recom-
bination intermediates that are needed for efficient homologue alignment. Therefore, we tested
if MSH4 forms axis-associated foci inMcmdc2-/-meiocytes (Fig 6a–6d). MSH4 foci numbers
were significantly lower inMcmdc2-/- spermatocytes (median 11.5 foci, in late zygotene-pachy-
tene cells, n = 48) and oocytes (median two foci in 16dpc late zygotene-pachytene oocytes,
n = 48) than in wild-typemeiocytes (median 80 foci in early-mid pachytene spermatocytes,
n = 49, median 139 foci in 16dpc late zygotene and pachytene oocytes, n = 64).

(asterisks in a and c) most synaptonemal complexes are incomplete and often form between apparently non-homologous axes (a inset, arrowheads

mark synaptonemal complex stretches between apparently non-homologous chromosomes that have different lengths). Note that X and Y sex

chromosomes are synapsed only in their short PAR regions in spermatocytes (a, top). Scale bars; 10μm. (b, d) Quantification of synaptonemal

complex formation in Mcmdc2+/+ and Mcmdc2-/- spermatocytes (b) or oocytes (d). Spermatocytes were collected from testes of adult mice, and

oocytes were collected from the ovaries of 16 or 18 days post coitum (dpc) fetuses. Synaptonemal complex development was assessed by detecting

SYCP3 (axis marker) and SYCP1 (synaptonemal complex marker) on nuclear spreads of meiocytes from littermate pairs of wild-type and Mcmdc2-/-

mice. Three categories of synaptonemal complex formation were distinguished in cells with fully formed continuous axes: 1) No synapsis

(characterized by either no SYCP1 stain or punctate weak SYCP1 stain along unsynapsed axes), 2) incomplete synapses (stretches of axes have

formed but there is at least one chromosome without fully completed synaptonemal complex) or 3) full synapsis (all chromosomes are fully synapsed

except the male sex chromosomes). Counted numbers of cells are indicated (n).

doi:10.1371/journal.pgen.1006393.g003
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Fig 4. RAD51 and DMC1 foci persist in Mcmdc2-/- spermatocytes. (a, b, e) Immunostaining showing SYCP3 together with RAD51

(a), DMC1 (b) or γH2AX (e) on nuclear surface spreads of pachytene Mcmdc2+/+, late zygotene-pachytene Mcmdc2-/-, Spo11-/-, and

Spo11-/- Mcmdc2-/—spermatocytes. RAD51 and DMC1 foci are present at comparatively high density along the axes of unsynapsed

sex chromosomes (a, b, asterisk), and are largely absent from synapsed autosomes of Mcmdc2+/+ spermatocytes. Both RAD51 and

DMC1 foci are present in high numbers along the unpaired axes of Mcmdc2-/- spermatocytes. Absence of RAD51 and DMC1 foci is
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MSH4 foci numbers were marginally higher in late zygotene-pachytene than leptotene
Mcmdc2-/- spermatocytes (p = 0.0138, MannWhitney test). This may indicate that
MSH4-marked intermediates still form with low efficiency in the absence of MCMDC2.How-
ever, we observed an increasing punctate anti-MSH4 signal throughout the nuclei of wild-type
meiocytes upon progression to pachytene (see Fig 6a upper panel). This pan-nuclear signal is
unlikely to represent MutSγ complexes bound to recombination intermediates. Thus, a “back-
ground” anti-MSH4 signal inMcmdc2-/- spermatocytesmay provide an explanation for the
low MSH4 foci counts, which show a small increase upon progression from leptotene to late
zygotene-pachytene. Regardless, the strongly reducedMSH4 foci numbers ofMcmdc2-/-meio-
cytes suggest severe impairment in MutSγ function and/or in a recombination step that pre-
cedes recruitment of MutSγ to recombination intermediates.
Most MSH4-marked intermediates are repaired as non-crossovers in late pachytene, but a

minority of them (at least one per homologue pair and on average 23 per cell) is thought to
develop into MLH1-marked late recombinosomes (defined as late recombination nodules by
electron-microscopy) [61,62,64,65,68], which are sites of future crossovers [5,69,70]. Consis-
tent with an impairment in MutSγ-containing recombinosome formation, and consistent with
the elimination of spermatocytes in mid-pachytene, we found noMLH1 foci inMcmdc2-/-

spermatocytes (n = 35 spermatocytes, Fig 6e). We also detected a similar defect in MLH1 foci
formation inMcmdc2-/- oocytes that had full axis (n = 23 oocytes at 18dpc, and n = 47 oocytes
at 20.5dpc/newborn,Fig 6f). Thus, the recombination defect inMcmdc2-/-meiocytes ultimately
prevents the formation of MLH1 foci, which likely represent precursors of a large majority of
meiotic crossovers.

Inhibition of non-homologous synapsis formation is dependent on

SPO11 in the absence of MCMDC2

While analyzing synaptonemal complexes inMcmdc2-/-meiocytes,we noted that synaptone-
mal complex formation was more severely affected inMcmdc2-/-meiocytes than in Spo11-/-

meiocytes (Fig 7). Spo11-/-meiocytes lack programmedDNA breaks, and thus fail in homo-
logue alignment and homologous synaptonemal complex formation. Nevertheless, synaptone-
mal complexes extensively formed between non-homologous chromosomes often creating a
meshwork of interconnected chromosomes in Spo11-/-meiocytes of the most advanced stages
(Fig 7a middle panel). Our observations suggest that MCMDC2 is needed for meiotic DSB
repair and progression beyond the early stages of recombination. Thus, early recombination
intermediates may inhibit non-homologous synaptonemal complex formation inMcmdc2-/-

meiocytes.Alternatively, it is possible that MCMDC2 has a DSB-independent function that is
needed for non-homologues synaptonemal complex formation when homologue alignment is
defective. To distinguish between these possibilities we tested the epistatic relationship between
Mcmdc2 and Spo11. We reasoned that if non-homologous synapsis formation was similarly
limited inMcmdc2-/- and Spo11-/- Mcmdc2-/-meiocytes then this would indicate a DSB-

shown in Spo11-/- and Spo11-/- Mcmdc2-/—spermatocytes. (e) γH2AX preferentially accumulates on the partially synapsed sex

chromosomes of the Mcmdc2+/+ spermatocyte. γH2AX associates with chromatin throughout the nucleus in the Mcmdc2-/-

spermatocytes. γH2AX is largely restricted to the sex chromatin in wild-type pachytene spermatocytes, and to pseudo-sex bodies in

Spo11-/- and Spo11-/- Mcmdc2-/—spermatocytes. Scale bars; 10μm. (c, d) Numbers of RAD51 (c) or DMC1 (d) foci are shown in

leptotene (lepto), early zygotene (e zygo) in Mcmdc2+/+ and Mcmdc2-/-, late zygotene (l zygo) and early-mid pachytene (e-m pa) in

Mcmdc2+/+ and zygotene-pachytene (zyg-pa) in Mcmdc2-/- spermatocytes. Median numbers of foci are marked, and n corresponds to

the number of analyzed spermatocytes in three pooled experiments. DMC1 and RAD51 foci numbers are significantly higher in

zygotene-pachytene Mcmdc2-/- spermatocytes than in late-zygotene or early-mid-pachytene Mcmdc2+/+ spermatocytes (Mann

Whitney test).

doi:10.1371/journal.pgen.1006393.g004
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Fig 5. RAD51 and DMC1 foci persist in Mcmdc2-/- oocytes. (a, c, e) Immunostaining of SYCP3 along with RAD51 (a), DMC1 (c) or γH2AX

(e) on nuclear surface spreads of pachytene Mcmdc2+/+, or zygotene-pachytene Mcmdc2-/- oocytes. Oocytes were collected from the ovaries

of littermate fetuses at 18dpc, which is a time point when most wild-type oocytes are in the late pachytene stage. RAD51 and DMC1 foci are

largely absent from synapsed chromosomes in Mcmdc2+/+ oocytes. Both RAD51 and DMC1 foci are present in high numbers along the

unpaired axes of Mcmdc2-/- oocytes. (e) γH2AX is largely absent from the synapsed chromosomes of the Mcmdc2+/+ oocyte. γH2AX
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independent role for MCMDC2 in non-homologous synaptonemal complex formation. Con-
versely, extensive non-homologous synaptonemal complex formation in Spo11-/- Mcmdc2-/-

meiocyteswould indicate a role for SPO11 and SPO11-dependent recombination intermedi-
ates in the inhibition of non-homologous synaptonemal complex formation inMcmdc2-/-

meiocytes.We found thatMcmdc2-/- did not significantly reduce non-homologous synaptone-
mal complex formation in a Spo11-/- background, and accordingly, we observed significantly
more non-homologous synaptonemal complex stretches in Spo11-/- (p = 0.0001, Mann Whit-
ney test) and Spo11-/- Mcmdc2-/- (p = 0.0001, MannWhitney test) spermatocytes than in
Mcmdc2-/- spermatocytes (Fig 7b). Thus, MCMDC2 is not required for non-homologous syn-
apsis that forms in the absence of SPO11 and programmedDSBs. We conclude that Spo11 is
epistatic toMcmdc2 in “erroneous” non-homologous synaptonemal complex formation, and
that SPO11-dependent recombination intermediates, which fail to promote homologous syn-
aptonemal complex formation in the absence of MCMDC2,most likely interfere with the for-
mation of extensive non-homologous synapsis inMcmdc2-/- spermatocytes.

Discussion

MCMDC2 is needed for early steps in recombination mediated DNA

DSB repair

Our work revealed that the MCM domain-containing protein MCMDC2 is essential for mei-
otic recombination, and hence gametogenesis. In contrast to MCM8 and MCM9, which have
been implicated in homologous recombination during stalled replication fork restart and inter-
strand crosslink repair in mitotically growing cells [45–48], we found no evidence of an impor-
tant role for MCMDC2 in mitotic cells (Fig 2a and 2b). We found thatMcmdc2-/-meiocytes
were defective in recombination-mediated repair of programmedmeiotic DSBs, alignment of
homologues, and synaptonemal complex formation.
DSB repair and synaptonemal complex formation are mutually dependent on each other in

mammalian meiosis [24–28,37–39,60,71,72]. Thus, the severe synapsis formation defect
observed could either be a cause or a consequence of the failed DNA DSB break repair in
Mcmdc2-/-meiocytes.We favor the hypothesis that the primary role of MCMDC2 is in DSB
repair and not in synaptonemal complex formation. In support of this hypothesis, while synap-
tonemal complex formation is not required for correct alignment of homologue axes [24–28],
MCMDC2 and initial steps of recombination that involve the formation of stable inter-homo-
logue strand invasion intermediates are required [37–39,60,71,72]. This implicates MCMDC2
in early recombination steps that are needed for homologue pairing.
Additional support is provided by the observation that DNA DSB repair seems to progress

further in synaptonemal complex-defectivemutants than inMcmdc2-/-meiocytes. RAD51/
DMC1-marked early recombinosomes seem to develop into MSH4-marked transitional
recombinosomes in mutant spermatocytes that lack structural components of the synaptone-
mal complex [24–26]. MSH4 is thought to stabilize inter-homologue recombination intermedi-
ates [11,23,35,36], which is likely important for the extensive homologue pairing that takes
place in synaptonemal complex deficientmeiocytes. In contrast, MSH4 foci counts remained
low inMcmdc2-/-meiocytes, indicating an earlier impairment in recombination that provides a
likely reason for the observed failure in homologue alignment. Thus, defective synaptonemal

associates with chromatin throughout the nucleus in the Mcmdc2-/- oocyte. Scale bars; 10μm. (b, d) Numbers of RAD51 (b) or DMC1 (d) foci

are shown in Mcmdc2+/+ and Mcmdc2-/- oocytes at 18dpc. Median numbers of foci are marked, and n corresponds to the number of analyzed

oocytes in two pooled experiments. DMC1 and RAD51 foci numbers are significantly higher in Mcmdc2-/- than in Mcmdc2+/+ oocytes (Mann

Whitney test).

doi:10.1371/journal.pgen.1006393.g005
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Fig 6. MutSγ and MutLγ foci formation are defective in Mcmdc2-/- meiocytes. (a, b, e, f) Immunostaining of SYCP3 together with

MSH4 (a, b) or MLH1 (e, f) on nuclear surface spreads of pachytene Mcmdc2+/+ or zygotene-pachytene Mcmdc2-/- meiocytes. (a, b)

MSH4 foci are readily detected along synapsed axes of pachytene spermatocytes and oocytes (16dpc). MSH4 foci numbers are much

lower in Mcmdc2-/- meiocytes. (e, f) Typically, a single MLH1 focus is detected along each synapsed axis pair of Mcmdc2+/+ pachytene
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complex formation cannot account for the observeddefect in recombination inMcmdc2-/-

meiocytes. These observations strongly indicate that defective synaptonemal complex forma-
tion is the consequence of failed recombination inMcmdc2-/-meiocytes, and not vice versa.
Consistent with this conclusion, we found that MCMDC2was not required for synaptonemal
complex formation in the DSB formation defective Spo11-/-spermatocytes, which form

spermatocytes and oocytes (from ovaries of newborn mice). MLH1 foci are not present along the unsynapsed axes of Mcmdc2-/-

meiocytes. Scale bars; 10μm. (c, d) Numbers of MSH4 foci in Mcmdc2+/+ and Mcmdc2-/- spermatocytes and oocytes. (c) Spermatocytes

were examined at leptotene (lepto), early zygotene (e zygo) in Mcmdc2+/+ and Mcmdc2-/-, late zygotene (l zygo) and early-mid pachytene

(e-m pa) in Mcmdc2+/+ and zygotene-pachytene (zyg-pa) in Mcmdc2-/- mice. MSH4 foci numbers are significantly lower in Mcmdc2-/- than

in Mcmdc2+/+ spermatocytes from early-zygotene stage onwards (Mann Whitney test). (d) Oocytes with fully formed axes (late zygotene

and early pachytene) were examined from fetal ovaries at the 16dpc developmental time point. MSH4 foci numbers are significantly lower

in Mcmdc2-/- than in Mcmdc2+/+ oocytes (Mann Whitney test). (c, d) Median numbers of foci are marked, and n corresponds to the

number of analyzed meiocytes in two pooled experiments.

doi:10.1371/journal.pgen.1006393.g006

Fig 7. MCMDC2 is not required for extensive non-homologous synaptonemal complex formation in the Spo11-/- background.

(a) SYCP3 (axis marker) and SYCP1 (synaptonemal complex marker) were detected by immunofluorescence on nuclear surface

spreads of zygotene-pachytene Mcmdc2-/-, Spo11-/- or Spo11-/- Mcmdc2-/—spermatocytes. Whereas comparatively few synaptonemal

complex stretches are detected in the Mcmdc2-/-spermatocyte, extensive non-homologous synaptonemal complex formation is seen in

the Spo11-/- or Spo11-/- Mcmdc2-/—spermatocytes. Scale bars; 10μm (b) Quantification of SYCP1 stretch numbers in zygotene-

pachytene spermatocytes with fully condensed chromosome axes of the indicated genotypes. The numbers of synaptonemal complex

stretches is significantly higher in Spo11-/- or Spo11-/- Mcmdc2-/—spermatocytes than in Mcmdc2-/- (Mann Whitney test). The numbers

of synaptonemal complex stretches are not significantly different in Spo11-/- or Spo11-/- Mcmdc2-/—spermatocytes (p = 0.8639, Mann

Whitney test). Median numbers of foci are marked, and n corresponds to the number of analyzed spermatocytes in two (Spo11-/- or

Spo11-/- Mcmdc2-/-) or three (Mcmdc2-/-) pooled experiments.

doi:10.1371/journal.pgen.1006393.g007
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extensive non-homologous synapsis. This observation suggests that MCMDC2 is not involved
directly in synaptonemal complex formation, although we cannot formally exclude the possi-
bility that MCMDC2 plays a direct role specifically in homologous synaptonemal complex for-
mation in a DSB formation-proficient background. Synaptonemal complex formation was
much more limited inMcmdc2-/- than in the DSB formation defective Spo11-/- and Spo11-/-

Mcmdc2-/-meiocytes. Interestingly, synaptonemal complex formation is also reduced in
strand-invasion defectiveDmc1-/- andHop2-/-meiocytes as compared to the DSB formation
defective Spo11-deficientmeiocytes [60]. Thus, accumulation of SPO11-dependent recombina-
tion intermediates may interfere with “erroneous” non-homologous synaptonemal complex
formation in mutants where homologue pairing is defective due to an early block in recombi-
nation. Recombination intermediates might also inhibit non-homologous synaptonemal com-
plex formation in unperturbedmeiosis, which could help to ensure that synaptonemal
complexes form between homologous substrates. Unrepaired DSBs may inhibit non-homolo-
gous synaptonemal complex formation directly. Alternatively, unrepaired DSBs may have an
indirect effect by altering cell cycle-progression. Although, spermatocytes are eliminated in
stage IV testis tubules in both DSB repair defective (e.g.Dmc1-/-, orMcmdc2-/-) and the DSB
formation defective Spo11-/- spermatocytes, it has been proposed that Spo11-/- spermatocytes
progress further in meiotic prophase [55,73]. This is because the mid-late pachytene marker
histone H1T was observed in Spo11-/- spermatocytes but not in DSB repair defective spermato-
cytes, which indicates that unrepaired DSBs likely delay progression throughmeiotic prophase
[55,73].

What is the function of MCMDC2 in recombination?

The accumulation of RAD51 and DMC1 foci inMcmdc2-/-meiocytes indicates that DNA ends
were resected, and single-strandedDNA overhangs recruited strand-invasion promoting
recombinases at break sites. Yet, these inferred RAD51 and DMC1 coated single-stranded
overhangs were unable to efficiently promote homologue pairing. This might indicate that
RAD51 and DMC1 recombinases cannot promote strand invasions effectively in the absence
of MCMDC2. Alternatively, strand invasions and D-loop formation may still occur, but these
recombination intermediates are not stabilized sufficiently to ensure alignment of homologues
and the formation of extensive synaptonemal complexes. The observation that MSH4 foci
numbers are low inMcmdc2-/-meiocytes is consistent with both of these scenarios. In the for-
mer scenario, recombination intermediates that could recruit the MutSγ complex would not
form inMcmdc2-/-meiocytes, henceMSH4 foci could not form either. In the latter scenario,
accumulation of MutSγ complex at strand invasion intermediates/D-loopswould be defective
inMcmdc2-/-meiocytes.Hence, these recombination intermediates would be unstable and
might be dissolved by helicases, e.g. the BLM helicase, which has been proposed to antagonize
MutSγ in its function of stabilizing recombination intermediates [31,35]. It follows, that
MCMDC2would play an important role in MutSγ function in the latter scenario.
MCM proteins are AAA+ ATPases that form hexameric rings on duplex DNA and promote

the melting of double-strandedDNA in an ATP dependent-manner (reviewed in [40]).
MCM2-7 are primarily involved in the initiation of DNA replication [74], but MCM8 and
MCM9 are particularly important for homologous recombination in mitotic cells in vertebrates
[45–48]. MCM8 and MCM9 interact, and are thought to also form hexameric helicase com-
plexes [45,46,48]. MCM8 and MCM9 promote DNA repair by facilitating resection of DNA
ends at DSB sites [47], promoting an as yet undefined post-strand-invasion steps of recombi-
nation [45,46], and melting DNA at sites of mismatches duringmismatch repair in somatic
cells [75]. Despite being crucial for recombination and mismatch repair in mitotically dividing
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cells, MCM9 does not have an essential role in meiotic recombination [45,76]. Thus, MCM8
functions independent of MCM9 in meiosis. TheDrosophila orthologues of MCM8 and
MCMDC2 form a protein complex that is presumed to stabilize strand invasion intermediates
of recombination specifically in meiosis [43]. Furthermore, the meiotic phenotypes ofMcm8-/-

[45] andMcmdc2-/-mice appear very similar, although no data was reported on MutSγ behav-
ior inMcm8-/-. Thus, it is tempting to speculate that MCM8 and MCMDC2 collaborate in
mouse meiosis, and that MCMDC2 replaces MCM9 inMCM8-containing helicase complexes
in meiosis. Curiously, the sequences of Walker A and B motifs, which are domains that are nec-
essary for the ATPase activity of MCMs, are apparently not conserved in eitherDrosophila or
mammalianMCMDC2 proteins [43]. This suggests that MCMDC2 is unlikely to function as
an ATPase, but it may function as a modulator in putative meiotic helicase complexes that con-
tain other MCMs (e.g. MCM8) with an active ATPase domain. Interestingly, theDrosophila
MCM8 orthologue, REC, was proposed to facilitate repair DNA synthesis duringmeiotic
recombination, becausemeiotic gene conversion tracks were significantly shortened in rec
mutants [41]. Putative mammalian MCM8/MCMDC2-containing helicase complexes may
have similar functions. One possibility could be that MCMDC2 promotes unwinding of the
invaded DNA at sites of strand invasions. This could facilitate the formation of extended strand
invasions, and/or may be needed for efficient DNA repair-synthesis starting from the 3´end of
the invading strands. These hypothesized functions would be expected to stabilize strand inva-
sions. Unwinding invaded homologous sequences to promote the formation of extended and
stable D-loops might be particularly important for inter-homologue recombination during
meiosis. The reason is that mismatches that can occur between homologues would likely inter-
fere with extension of D-loops thereby antagonizing the stabilization of inter-homologue
strand-invasion intermediates.

MCMDC2 and MutSγ
The observation that MCMDC2 is required for the accumulation of MSH4 at recombination
intermediates during meiosis raises the interesting possibility that a putative MCMDC2-con-
taining helicase complex and the MutSγ complex may physically interact and collaborate in
stabilizing D-loops. At sites of DNA mismatches, MCM9 forms a complex with MSH2 and
MSH6, which are homologs of MutSγ components MSH4 and MSH5, and the complex of
these proteins is thought to be crucial for correct mismatch repair in mitotically active cells
[75]. Thus, it is possible that functional and/or physical interaction betweenMSH proteins and
“DNA repair-promoting” MCMs is a conservedprinciple in distinct DNA repair pathways.
Relevant to this point is the observation that the MutSγ complex is missing from Schisophora, a
taxon that includesDrosophila [43]. It has been proposed that a complex of REC (Drosophila
melanogaster MCM8) and MEI-217/218 (twoDrosophila melanogaster orthologues of
MCMDC2) proteins substitutes for the functions of the missingMutSγ complex in antagoniz-
ing BLM helicase, stabilizing strand invasion intermediates, and promoting crossover forma-
tion in meiosis inDrosophila [43]. The REC/MEI-217/218 complex may have been capable of
replacingMutSγ in Schisophora becauseMCMDC2-containing complexes and MutSγmight
have interacted and had shared functions in stabilizing DNA strand invasion intermediates in
ancestral taxa where both of these complexes existed. Thus, loss of MutSγ in Schisophora may
have required only a modification to an already pre-existing (and possibly conserved) function
in MCMDC2-containing complexes. This speculative scenario would be certainly consistent
with a putative conserved functional interplay of MutSγ and MCMDC2 in stabilizing recombi-
nation intermediates duringmammalian meiosis. Thus, an important aim of future studies of
MCMDC2 functions will be to address if MCMDC2 forms helicase complexes with other
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MCMs and if these complexes interact physically and functionally with MutSγ to stabilize D-
loops.

Materials and Methods

RNA-isolation and RT-PCR

To testMcmdc2 expression in testes of wild-type andMcmdc2-/-mice, RNA was isolated and
RT-PCR was performed as described earlier [20,77]. The RNA of the somatic tissue mix in (Fig
1a) originated from 17 distinct tissues: liver, brain, thymus, heart, lung, spleen, kidney, mam-
mary gland, pancreas, placenta, salivary gland, skeletal muscle, skin, small intestine, spinal
cord, tongue and uterus. The sequence of transcript-specific primers for RT-PCR were:
Mcmdc2 1R (Fig 1a) 5’-CGTTCCCTGTTGCAGTCTCT
Mcmdc2 1F (Fig 1a) 5’-CCCCACACAGCAAAAGTTCC
s9for (Fig 1a) 5’-GGCCAAATCTATTCACCATGC
s9rev (Fig 1a) 5’-TAATCCTCTTCCTCATCATCAC
Mcmdc2 Exon3 fw (Fig 1d, exon 3/4) 5’-ATTCAAAGCAGAGTTATGCTG
Mcmdc2 Exon4 rv (Fig 1d, exon 3/4) 5’-TTGAGTTTCAGTCTGTAACTGT
Mcmdc2 Exon5 fw (Fig 1d, exon 5/6) 5’-ATCAATATTGTGCTGA AGTTAAC
Mcmdc2 Exon6 rv (Fig 1d, exon 5/6) 5’-ACCAAGTACTCTAAATTTTCTGT
Mcmdc2 Exon6 fw (Fig 1d, exon 6/7) 5’-GATTTCAGTATGTGAGAGTCC
Mcmdc2 Exon7 rv (Fig 1d, exon 6/7) 5’-CTCTTAGGAAAATACCAAGTGA
Mcmdc2 Exon8 fw (Fig 1d, exon 8/9) 5’-ATGAACTAGTGAATAAGATGAAAA
Mcmdc2 Exon9 rv (Fig 1d, exon 8/9) 5’-CTGTCTACAAGCAGAGTGTC
Mcmdc2 Exon10 fw (Fig 1d, exon 10/11) 5’-ACTTTTGAATTTTAGCATGAATCT
Mcmdc2 Exon11 rv (Fig 1d, exon 10/11) 5’-CATCTGACCAATCAGAGTACT

Generation of knockouts and genotyping

Mcmdc2 was targeted in JM8A3.N1.C2 embryonic stem (ES) cells by the EUCOMM-IKMCproj-
ect (project: 93238, ES line:HEPD0781_2_C06 and project: 118859, ES line: HEPD0800_2_F07).
Targeting was based on a so called ‘knockout first’ multipurpose allele strategy [78] (Fig 1). Chi-
meras were generated by laser assisted C57BL/6 morula injections with ES cell clones heterozy-
gote for theMcmdc2 insertion allele (Fig 1c). Progeny of the chimeric animals were crossed to the
outbred wild-typeCD-1mouse line, and to pCAGGs-FLPo [79] and PGK-Cre [80] transgenic
mice to generateMcmdc2 restored,Mcmdc2 deletion, andMcmdc2 insertion–deletion alleles from the
Mcmdc2 insertion allele (Fig 1b). Mice were maintained on the outbred ICR (CD-1) background.
Mice were genotyped by PCR using tail-tip genomic DNAs. Genotyping primers:
LacZfor 5’-TGGCTTTCGCTACCTGGAGAGAC
LacZrev 5’-AATCACCGCCGTAAGCCGACCAC
CreFw 5’-GCCTGCATTACCGGTCGATGCAACGA
CreRv 5’-GTGGCAGATGGCGCGGCAACACCATT
FlpOFw 5’-GCTATCGAATTCCACCATGGCTCCTAAGAAGAA
FlpORv 5’-CAATGCGATGAATTCTCAGATCCGCCTGTTGATGTA
o566 5’-GCAAGAAAACTATCCCGACC
o1046 5’-CACAGTGAGGCCCAATATAAA
o1047 5’-TCCACAGGAAAAGGCAAACG
o1049 5’-GGTGCTAGCCCCTTCCTTTT
o1050 5’-TCACTTGGTATTTTCCTAAGAG
o1147 5’-TGAAAGTTGATATGAAACTGTATA
o1163 5’-AAGGTTGTAGAATTACAGCAGC
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PCR product sizes: with LacZfor/LacZrevprimers,Mcmdc2insertion andMcmdc2insertion–deletion

allele 208 bp, other alleles-no specific product; with o1046/o1047 primers, wild-type allele 244
bp,Mcmdc2insertion allele 225bp,Mcmdc2restored allele 225 bp,Mcmdc2deletion allele no product,
Mcmdc2insertion–deletion allele no product; with o566/o1047/o1050 primers, wild-type allele 561bp,
Mcmdc2insertion allele 542bp,Mcmdc2restored allele 542bp,Mcmdc2deletion allele no product,
Mcmdc2insertion–deletion allele 751bp; with o1049/o1147 primers, wild-type allele 310bp,
Mcmdc2insertion allele effectively not amplifiable product (7370 bp),Mcmdc2restored allele 467bp,
Mcmdc2deletion allele no product,Mcmdc2insertion–deletion allele no product; with o1049/o1163/
o1147 primers, wild-type allele 310 bp (and 3421bp),Mcmdc2insertion allele effectively no amplifi-
able products (7370bp and 10462bp),Mcmdc2restored allele 467bp (and 3559bp),Mcmdc2deletion

allele 690 bp,Mcmdc2insertion–deletion allele effectively not amplifiable product (5683bp). FlpOFw/
FlpORv were used to detect FlpO recombinase transgene (1500 bp), CreFw/CreRv were used to
detect Cre recombinase transgene (750 bp).

Animal experiments

Mice carrying Spo11-null alleles were described earlier [6,7]. Histology in testis, analysis of
RAD51/DMC1 foci or the synaptonemal complex were carried out in mice lines derived from
both independent clones. The phenotypes of all the listed alleles were examined. No obvious
differences were detected in testis histology, RAD51/DMC1 foci accumulation and synapto-
nemal complex formation betweenmice derived from the different ES clones and between the
Mcmdc2 insertion/insertion,Mcmdc2 deletion/deletion, andMcmdc2 insertion–deletion/insertion–deletion

strains. We chose the HEPD0800_2_F07 derivedMcmdc2 insertion–deletion allele for complete
phenotypic analysis, hence this line was used in all the reported experiments. Given that
Mcmdc2 insertion–deletion/insertion–deletion mice lack three exons, which causes a frameshift we
refer to this genotype asMcmdc2 -/-.Mcmdc2 restored/ restored mice were fertile and their sper-
matocytes were indistinguishable from wild-type spermatocytes reconfirming the specificity
of the observedphenotypes in theMcmdc2 insertion/insertion,Mcmdc2 deletion/deletion, and
Mcmdc2 insertion–deletion/insertion–deletion strains. Whenever possible, experimental animals were
compared with littermate controls or with age-matched non-littermate controls from the
same colony. All animals were used and maintained in accordance with the German Animal
Welfare legislation (“Tierschutzgesetz”), the Directive 2010/63/EU of the European Parlia-
ment and of the Council on the protection of animals used for scientific purposes and its Ger-
man implementation (Tierschutz-Versuchstierverordnung–TierSchVersV). All procedures
pertaining to animal experiments were approved by the Governmental IACUC ("Landesdir-
ektion Sachsen”) and overseen by the animal ethics committee of the Technische Universität
Dresden. The license numbers concerned by the present experiments are DD24-5131/287/1
and 24–9168.24-1/2006-13 (tissue collectionwithout prior in vivo experimentation).

Growth curve measurements

Wild-type andMcmdc2-/-mouse embryonic fibroblasts were derived from 12.5–14.5dpc
embryos using standard procedures [81]. We plated 10,000 mouse embryonic fibroblasts in
triplicates in 1ml DMEM (GIBCO) in 24-well plates. Live cells were counted usingMiltenyi
Biotec MACSQuant on day 3, 6, 9, 13 and 15 of cultures without aphidicolin. For aphidicolin
treatment, 10000 cells were plated and incubated with media containing 1μM aphidicolin for
the first 24 hour of the culture. Live cells were counted on day 5, 9, 13, 17 after plating. The
media was changed every 3rd day for both types of cultures.
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Antibodies

In addition to antibodies that were previously described [20,21] we used two commercial anti-
bodies:mouse anti-MLH1 (IF 1:50, BD Biosciences, order number 551092) and rabbit anti-
MLH1 (IF 1:50, Calbiochem, order number D00122409). We also used a chicken anti-SYCP3
antibody that was raised against a His-tagged version of a 99 amino acid-long (from 13E to
111E amino acids) peptide of SYCP3, which we overexpressed in Escherichia coli and purified
using metal ion affinity chromatography. IgYs from the yolk of eggs of immunized chicken
were extracted using a published protocol [82]. Anti-SYCP3 IgYs were affinity purified on
immunizing-antigen coupled NHS-Activated Sepharose 4 Fast Flow beads (Cat#17-0906-01,
Amersham, GE Healthcare) according to standard methods [83].

Immunofluorescence microscopy

Preparation and immunostaining of testis-ovary cryosections and nuclear surface spreads of
meiocyteswere carried out as described before [20,21,84,85]. Recombination foci and synapto-
nemal complex stretches were counted manually on matched exposure images with the use of
the count tool of Photoshop CS5.We counted anti-RAD51, -DMC1, -MSH4 or -SYCP1 signals
that were associated with SYCP3-marked chromosome axes, to avoid counting signals that do
not represent genuine recombination foci (RAD51, DMC1 and MSH4) or synaptonemal com-
plexes (SYCP1).

Statistics

Statistical analysis was carried out with GraphPad Prism 5. For the comparison of independent
samples, the two-tailed non-parametricMann_Whitney (two-sample Wilcoxon rank-sum)
test was used.
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