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Some pitfalls in application of 
functional data analysis approach 
to association studies
G. R. Svishcheva1,2, N. M. Belonogova1 & T. I. Axenovich1,3

One of the most effective methods for gene-based mapping employs functional data analysis, which 
smoothes data using standard basis functions. The full functional linear model includes a functional 
representation of genotypes and their effects, while the beta-smooth only model smoothes the 
genotype effects only. Benefits and limitations of the beta-smooth only model should be studied before 
using it in practice. Here we analytically compare the full and beta-smooth only models under various 
scenarios. We show that when the full model employs two sets of basis functions equal in type and 
number, genotypes smoothing is eliminated from the model and it becomes analytically equivalent 
to the beta-smooth only model. If the basis functions differ only in type, genotypes smoothing is also 
eliminated from the full model, but the type of basis functions used for smoothing genotype effects 
becomes redefined. This leads to misinterpretation of the results and may reduce statistical power. 
When basis functions differ in number, no analytical comparison of the full and beta-smooth only 
models is possible. However, we show that the numbers of basis functions set unequal can become 
equal during the analysis, and the full model becomes disadvantageous.

Rapid progress in next generation sequencing technologies provides new opportunities for detection of rare 
genetic variants that control complex traits. However, statistical methods using single-variant association tests 
that are commonly adopted in genome-wide association studies are generally underpowered for rare variants. 
The statistical power of association analysis increases when the genetic variants in a genomic region are tested all 
at once, not individually1,2.

One of the most powerful regional mapping methods is based on functional data analysis (FDA)3,4. FDA is 
normally used for the continuous functional description of sets of discrete real data, for example, raw longitudinal 
phenotypes. The main rationale of using FDA in this case is reduction of the influence of noise and/or observation 
errors5. FDA has also been introduced into linear regression analysis. Functional linear regression models belong 
to a class in which the predictors are functions and the responses are scalars6–8. This class of models has been 
applied to regional associations analysis as an alternative to standard multiple regression models9. With FDA, the 
predictors of the regression models, namely, the spectrums of the discrete regional genotypes of each individual 
are described by continuous functions. The scalar responses of the regression models are defined as individual 
trait values. The effect of predictors is defined by a set of regression coefficients for the standard multiple regres-
sion or by a continuous function for the functional linear regression.

FDA can use less model parameters than the standard multiple regression, and, as a result, decrease the 
degrees of freedom of the statistical tests. FDA reduces the influence of noise and/or observation errors5. In 
genetic association analysis, functional linear models, unlike standard multiple linear regression models, utilize 
more detailed information on linkage disequilibrium because they consider not only the genotypes of multiple 
genetic variants within a particular region, but also the physical locations of these variants, that is, the order of 
these variants and the distances between them3,9.

With FDA, the genotypes of multiple genetic variants for each individual are described by a smoothing genetic 
variant function (GVF), while the effect of multiple genetic variants on a particular trait is described by a beta 
smoothing function (BSF)3,9. To build a smoothing function, a basis function system defined as a finite set of K 
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standard independent mathematical functions should be set. Two basis function systems, B-spline and Fourier, 
are widely employed in regional association analysis3,10.

Although both GVFs and BSF have been introduced into FDA-based association analysis, only BSF is of inter-
est for gene mapping research because statistical hypotheses are stated in terms of betas. To smooth genotype 
effects (betas), but not the genotypes themselves, a simplified version of the model, i.e., beta-smooth only, was 
proposed3,4,10,11. The statistical properties of the full and beta-smooth only versions of the functional regression 
models have been estimated under different scenarios using both independent and family-based samples3,4,10,11. 
Under these scenarios, the power of the beta-smooth only model was very close to that of the full model. Figure 1 
illustrates this finding for power estimates that we obtained from analysis of the GAW17 family-based data set12, 
when both rare and common genetic variants were used for trait simulation and association analysis. We obtained 
the same results under scenarios that included only rare variants, different proportions of causal variants and uni-
directional effects10. The same results were obtained in other studies using independent samples3,4,11,13. Moreover, 
for most genes tested on real data, the p-values calculated under the full and beta-smooth only models were 
identical (see, for example, Table 2 in ref. 13).

Questions arise: Are the full and beta-smooth only models equivalent and is it necessary to functionally rep-
resent genotypes when analyzing the association between a particular trait and multiple genotypes. To address 
these questions, we define a functional linear mixed model, to test the association using both independent and 
structured samples, and analytically consider scenarios that differ by the type and number of basis functions used 
to model GVFs and BSF.

Models
The traditional linear regression model of multiple additive effects for an arbitrarily structured sample of n indi-
viduals is expressed as:

α β ε= + + + .y X G h (1)

Here y is an (n ×  1) known vector of trait values; X is an (n ×  c) known matrix of c covariates including a col-
umn of 1’s for the intercept; α is a (c ×  1) unknown vector of fixed regression coefficients measuring the effects of 
c covariates; G is an (n ×  m) known matrix of genotypes of m genetic variants in the region, where Gij is coded by 
the number of minor alleles of the jth genetic variant in the i-th individual; β is an (m ×  1) unknown vector of 
fixed regression coefficients measuring the effects of m genotypes, and so Gβ is the regional genotypic component 
of the trait; h is an (n ×  1) random vector of polygenic effects distributed as σN R(0; )g

2 , and ε is an (n ×  1) random 
vector of errors distributed as σN I(0; )e

2 , where σg
2 and σe

2 are the respective components of total variance 
σ σ σ= +g e

2 2 2 of the trait. Here R and I are the ×n n( ) relationship and identity matrices, respectively. Model (1) 
assumes that the phenotypes y follow a multivariate normal distribution with a mean vector α β= +E y X G( )  
and a covariance matrix σ σΩ = +R Ig e

2 2 . If the sample consists of unrelated individuals then R =  I and Ω =  σ2I.

Figure 1.  Statistical power of the FDA-based regional association analysis of familial data (famFLM). 
Compared functional models are: (a) the beta-smooth only model using B-spline basis for BSF (0-B) and the 
full model using B-spline basis for both GVFs and BSF (B-B); (b) the beta-smooth only model using Fourier 
basis for BSF (0-F) and the full model using Fourier basis for both GVFs and BSF (F-F). Power was estimated 
as a proportion of P ≤  2.5 ×  10−6. A region with 50 genetic variants from the GAW17 dataset12 was used for 
simulation. 10% of variants were randomly selected as causal. For each causal variant, the effect size was defined 
as β =  ln(c) |log10(MAF)|/2 (constant c is shown along the horizontal axis).
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We further introduce a functional linear mixed model, which provides functional smoothing of both the 
genotypes and their effects on the trait:

∫α β ε= + + + .y X G t t dt h( ) ( ) (2)0

1

Here, = …  G t G t G t( ) ( ( ), , ( ))n
T

1  denotes an ×n( 1) unknown vector of continuous genetic variant functions 
(GVFs), and β t( ) denotes an unknown continuous beta smoothing function (BSF) under t. In actual data, t1,… ,tm 
are the ordered physical positions of genetic variants in the region [t1, tm]. We scale [t1, tm] to [0, 1] and let t be a 
real number in [0, 1] that defines the position of a particular genetic variant in the scaled region. By applying 
FDA, GVFs and BSF can be described by sets of KG and Kβ basis functions, respectively. Then, according to10, G t( ) 
and β t( ) are estimated as

Φ Φ Φ φ= −
G t G t( ) ( ) ( ) (3)T 1

and

β ψ β= t t( ) ( ) ,T
F

where φ(t) =  (φ1(t),… ,φKG(t))T is a (KG ×  1) vector of basis functions, which were used to smooth the genotypes; 
Ф is an (m ×  KG) matrix with element Фij =  φj(ti); ψ(t) =  (ψ1(t),… ,ψKβ(t))T is a (Kβ ×  1) vector of basis functions, 
which were used to smooth the genotype effects; and, finally, β β β= …

β
( , , )F F F

T
K1

 is a (Kβ ×  1) vector of regres-
sion coefficients.

Substituting the expressions for G t( ) and β t( ) from (3) to equation (2) yields

α β ε= + + +y X GW h , (4)F

where

∫ φ ψ= .−Ф Ф ФW t t dt( ) ( ) ( ) (5)
T T1

0

1

The (m ×  Kβ) smoother-matrix W is constructed from two sets of basis functions, φ(t) and ψ(t), intended for 
smoothing genotypes and their effects, respectively. Matrix W depends on the type and number of the given basis 
functions, as well as on the positions of genetic variants in the region. Models (1) and (4) differ by regional geno-
typic components: Gβ versus GWβF. Moreover, the parameters associated with genotype effects appear as vector 
βF of size (Kβ ×  1) in model (4) and as vector β of size (m ×  1) in model (1).

A simplified functional linear model, which does not smooth genotypes, can be constructed by discretization 
of the full functional linear model (4) (Chapter 15 in ref. 5). In this case, only beta smoothing function β t( ) is used 
with set ψ(t) of βK  basis functions:

α Ψβ ε= + + + .y X G h (6)F

In model (6), Ψ is an (m ×  Kβ) smoother-matrix constructed similarly to the (m ×  KG) matrix Φ from model 
(4), i.e., Ψij =  ψj(ti); so the matrix Ψ depends on the set of basis functions and the positions of the genetic variants. 
Model (6) is called beta-smooth only3,4,11,13.

Test statistics
To test for an association between the genomic region and the trait, we test null hypothesis H0: β = 0F  against 
alternative hypothesis H1: β ≠ 0F  with test statistics using the residual sums of squares (RSS). For example, this 
test statistics could be5,14

−

− −
−

.β

β
F test

RSS RSS K
RSS n K

Score test RSS RSS
RSS n

:
( )/

/( 1)
or :

/
0 1

1

0 1

0

Here σ α α= − Ω −−RSS y X y X( ) ( )T
0

2 1  and σ α α= − Ω −−RSS y X P P y X( ) ( )T T
1

2 1  are the sums of the 
squares of residuals under H0 and H1, respectively; Ω, σ2 and α are estimated under H0 and P is a projection 
matrix given as

= − Ω Ω− − − −P I GW W G W GW W G( )T T T T1 1 1 1

and

Ψ Ψ Ψ Ψ= − Ω Ω− − −P I G G G G( )T T T T1 1 1

for models (4) and (6), respectively.

Comparison of the different models.  A comparison of expressions (4) and (6) indicates that regional 
genotypic components of trait y under the models have similar forms: either GWβF or GΨβF. In these expres-
sions, G denotes the matrix of real genotypes, βF is a vector of Kβ estimated regression coefficients, and W and 
Ψ are the (m ×  Kβ) smoother-matrices. These transforming matrices allow the genotypes of m variants with Kβ 
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regression coefficients to be combined to calculate the regional genotypic component of the trait. The parameters 
of interest in both models are the regression coefficients βF. When the numbers, Kβ, of the coefficients are equal in 
two models, the degrees of freedom of statistical tests in these models are equal, too. For the F-test, df1 =  Kβ and 
df2 =  n −  Kβ −  1, and the score test is approximated by the χ 2 distribution with df =  Kβ.

Models (4) and (6) differ in smoother-matrix construction. Smoother-matrix W in model (4) is defined by 
two sets of basis functions, namely, φ(t) and ψ(t). By contrast, smoother-matrix Ψ in model (6) uses only one 
basis function set, ψ(t). Formally, we cannot trace whether the genotypes, or their effects, or both are smoothed 
in each model, because any smoother-matrix is simply a transforming matrix constructed using the set(s) of basis 
functions and the positions of the genetic variants. Therefore, the biological meaning attributed to the smoothing 
process is lost when the models are formally described by expressions (4) and (6).

The regression coefficients (beta-parameters) of models (4) and (6) are estimated using the maximum likeli-
hood approach as:

β α= Ω Ω −− − −W G GW W G y X( ) ( )F
T T T T1 1 1

and

β Ψ Ψ Ψ α= Ω Ω −− − −G G G y X( ) ( )F
T T T T1 1 1

respectively.
With these estimates, it is easy to calculate the regional genotypic component of trait y defined by models (4) 

and (6) as:

β α= Ω Ω −− − −GW GW W G GW W G y X( ) ( ) (7)F
T T T T1 1 1

and

Ψβ Ψ Ψ Ψ Ψ α= Ω Ω −− − −G G G G G y X( ) ( )F
T T T T1 1 1

respectively.
To compare models (4) and (6), we present W in (5) as the product of three matrices, W1, W2, and W3:

= ФW ,1

= −Ф ФW ( ) , (8)T
2

1

and

∫ φ ψ=W t t dt( ) ( ) ,T
3

0

1

of dimensions ×m K( )G , (KG ×  KG) and (KG ×  Kβ), respectively. Unlike matrices W1 and W2, matrix W3 is inde-
pendent of the actual data, and is defined only by sets of basis functions φ(t) and ψ(t).

Expression (7) describing the regional genotypic component of trait y in model (4) can be rewritten in terms 
of matrices W1, W2 and W2 as:

β α= Ω Ω − .− − −GW GW W W W W W G GW W W W W W G y X( ) ( ) (9)F
T T T T T T T T

1 2 3 3 2 1
1

1 2 3
1

3 2 1
1

Note that matrix W2 is always invertible, while the invertibility of matrix W3 depends on how KG and Kβ relate 
to each other. Here, only two situations are possible: KG =  Kβ and KG >  Kβ, because the number of basis functions 
for GVFs should not be less than that for BSF10.

KG = Kβ situation.  If KG =  Kβ, matrix W3 is invertible (see (8)). Therefore, matrices W2 and W3 can be can-
celed in expression (9). Therefore, GWβF is expressed only in terms of W1, G, and Ω, i.e., using (8) in terms of Φ, 
G, and Ω:

β α= Ω Ω − .− − −Ф Ф Ф ФGW G G G G y X( ) ( )F
T T T T1 1 1

Hence, when KG =  Kβ, model (4) is defined by only one set of basis functions φ(t), and does not use the second 
set, ψ(t). In this situation model (4) simplifies to model (6), where Ψij =  φj(ti).

In particular, if model (4) employs two sets of basis functions identical in type and number, then ψ(t) =  φ(t) 
and model (4) just reduces to its simplified version (6). In mathematical terms, the model with “double” smooth-
ing becomes equivalent to that with “single” smoothing. In terms of biological meaning, the model with both gen-
otypes and betas smoothed becomes equivalent to that with beta smoothing only. A comparison of expressions 
(4) and (6) demonstrates that the equivalence of models (4) and (6) is explained by the equivalence of regional 
genotypic components of the trait. Although the BSFs under models (4) and (6) may be different, as is shown in 
ref. 11, Fig. 1, the regional genotypic components remain identical. A majority of published studies that compare 
the statistical power of the full and beta-smooth only models use two sets of basis functions equal in type and 
number. In light of our results, it becomes clear that the similarity of power estimates for two models is explained 
by their analytical equivalence rather than by numerical similarity.
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If model (4) employs two sets of basis functions that differ only in their type then ψ(t) ≠  φ(t) and model (4) 
reduces to model (6), in which the type of basis functions is φ(t) rather than ψ(t). In terms of biological meaning, 
the set of basis functions selected for genotype smoothing in the full model switches to beta smoothing. In this 
case, the full model may be misleading and/or underpowered. For example, betas are expected to be smoothed 
by the Fourier basis if the B-spline and the Fourier bases are set for GVFs and BSF, respectively. The results of 
analysis are in fact equivalent to those obtained from beta-smooth only model with the B-spline basis employed 
(Fig. 2a). In this situation, the researcher is misled about the type of basis functions used for beta smoothing. If 
the researcher had initially used the beta-smooth only model with the Fourier basis (instead of the full model), 
the statistical power of analysis would have been increased (Fig. 2b).

In any case, the full model is unjustified at KG =  Kβ, for the same (or better) association analysis results can 
more easily be obtained using beta-smooth only model (6).

KG > Kβ situation.  Only when KG >  Kβ, matrix W3 is not invertible (because this matrix is not square) and 
cannot be canceled in expression (9). As a result, the statistics under models (4) and (6) are different. Although 
the degree of freedom remains the same for both models, their smoothing strengths may differ. It is not a priori 
clear which model will have a greater smoothing strength. Moreover, increase in smoothing strength does not 
always lead to increase in power. As a result, it is impossible to predict when the full model is more powerful than 
the beta-smooth only model. Figure 3 illustrates that power can change unpredictably when using the full model.

If the researcher still decides to use the full model with two sets of basis functions, the number of basis func-
tions for GVFs and BSF should be controlled to ensure that KG >  Kβ. Otherwise, the full model may become dis-
advantageous, as we demonstrated previously. However, the number of basis functions defined by the researcher 
may be changed during analysis. Such situations occur due to trivial restrictions of FDA methods. In particular, 
the number of genetic variants in the region should not be less than the number of basis functions for GVFs, and 
the number of basis functions for GVFs should not be less than that for BSF, that is, m ≥  KG ≥  Kβ10. The available 
software packages for FDA-based association analysis reduce the number of basis functions for BSF to that for 
GVFs; that is, Kβ becomes equal to KG when the condition KG ≥  Kβ is not satisfied. When the genotype matrix 
includes linear-dependent genotype columns, the number of genetic variants analyzed in the region is reduced 
to ensure that the matrices are invertible. If the number of genetic variants is reduced to less than the declared 
KG value, then this value automatically decreases to m. In this case, Kβ may become equal to KG. The KG value is 
difficult to control; therefore, the predictability of the behavior of the model with both GVFs and BSF decreases 
even in those rare cases, when certain advantages can be expected. On the other hand, smoothing strength can 
easily be regulated without GVFs by adjusting the Kβ value in the beta-smooth only model.

In all cases, the full model increases the running time10, is less predictable and is more difficult to interpret 
when KG >  Kβ.

Conclusions
We have demonstrated that there is no reason to use the full models that utilize equal sets of basis functions, 
because the same results can easier be obtained using beta-smooth only models. As far as the full models that use 
different sets of basis functions are concerned, we have identified several situations, in which genotype smoothing 
is counterproductive in that it may cause an unpredictable behavior of the model and reduce statistical power. 

Figure 2.  Comparison of model (4) using B-spline basis for GVFs and Fourier basis for BSF with model (6) 
using B-spline (a) or Fourier (b) basis for BSF. KG =  Kβ =  25. For two models compared in panel (b), powers 
estimated as a proportion of P ≤  2.5 ×  10−6 were 0.861 and 0.876 for the full and beta-smooth only models, 
respectively. The solid line indicates a one-to-one correspondence; the dotted line is the linear regression line. 
The same data as in Fig. 1 were used.
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Moreover, we have identified several situations, in which unequal numbers of basis functions defined by the 
researcher become equal during the analysis, and the full model becomes equivalent to the beta-smooth only 
model. Thus the full model offers only illusory benefits in practice. It has hidden pitfalls that should be taken into 
consideration in planning functional association analyses.
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Figure 3.  Statistical power of the beta-smooth only and full models when KG > Kβ. Notations are the same 
as in Fig. 1. Numbers in legend are the numbers of basis functions: for example, B20–B15 means that 20 and 15 
B-spline functions were used for GVFs and BSF, respectively. The same data as in Fig. 1 were used.
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