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Abstract: Chronic kidney disease (CKD) causes secondary hyperparathyroidism (SHPT). The cardinal
features of SHPT are persistence of normocalcemia as CKD progresses and dependence of the
parathyroid hormone concentration ([PTH]) on phosphate influx (IP). The tradeoff-in-the-nephron
hypothesis integrates these features. It states that as the glomerular filtration rate (GFR) falls,
the hosphate concentration ([P]CDN) rises in the cortical distal nephron, the calcium concentration
([Ca]CDN) in that segment falls, and [PTH] rises to maintain normal calcium reabsorption per volume
of filtrate (TRCa/GFR). In a clinical study, we set GFR equal to creatinine clearance (Ccr) and IP

equal to the urinary excretion rate of phosphorus (EP). We employed EP/Ccr as a surrogate for
[P]CDN. We showed that TRCa/Ccr was high in patients with primary hyperparathyroidism (PHPT)
and normal in those with SHPT despite comparably increased [PTH] in each group. In subjects
with SHPT, we examined regressions of [PTH] on EP/Ccr before and after treatment with sevelamer
carbonate or a placebo. All regressions were significant, and ∆[PTH] correlated with ∆EP/Ccr in
each treatment cohort. We concluded that [P]CDN determines [PTH] in CKD. This inference explains
the cardinal features of SHPT, much of the evidence on which other pathogenic theories are based,
and many ancillary observations.

Keywords: chronic kidney disease; secondary hyperparathyroidism; phosphate; calcium; parathyroid
hormone; cortical distal nephron; distal convoluted tubule

1. Introduction

Chronic kidney disease (CKD) causes the parathyroid hormone concentration ([PTH]) to rise to
abnormally high values. This phenomenon, secondary hyperparathyroidism (SHPT), begins early in
the course of CKD and increases in prevalence and severity as the glomerular filtration rate (GFR)
falls [1–5]. A secondary skeletal lesion, osteitis fibrosa, evolves with SHPT and presumably contributes
to the increased fracture risk of patients with CKD [6,7]. Excessive PTH may also play a role in
extraskeletal manifestations of uremia [8,9].

SHPT exhibits two reproducible characteristics: the ionized calcium concentration ([Ca]i) is
consistently physiologic until GFR is severely reduced [1,3], and [PTH] varies directly and substantially
with phosphate influx (IP). In experimental CKD, [PTH] is elevated at customary IP but falls to normal
if IP is reduced in proportion to GFR [10–14]. We have not found a reported exception to this rule.

The pathogenesis of SHPT is unresolved. In this paper we present a hypothesis,
tradeoff-in-the-nephron, that integrates the primacy of IP with the paradox of normal [Ca]i and high
[PTH]. The hypothesis is compatible with evidence on which other pathogenic theories are based, and it
illuminates many ancillary observations. We suggest that resistance to the calcemic action of PTH arises
in the cortical distal nephron (CDN), where PTH regulates calcium reabsorption [15]. An increased
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phosphate concentration at that site ([P]CDN) reduces the concentration of calcium ([Ca]CDN) through
formation of complexes, and secondarily necessitates high [PTH] to maintain normal [Ca]i [16–18].
Since tradeoff-in-the-nephron depends entirely on inferred events in glomerular filtrate, we emphasize
that the hypothesis pertains only to CKD that does not require dialysis. Abbreviations are defined at
the end of the paper.

2. Explications of Secondary Hyperparathyroidism: A Chronology

2.1. The Primacy of Phosphate Influx

We define influx of phosphate (IP) as the net rate of phosphate flow from all sources into
extracellular fluid. When plasma is in equilibrium with respect to phosphate, IP determines, equals,
and is measurable as the urinary excretion rate, EP [19–21]. At any GFR, in animals or humans,
[PTH] varies promptly and directly with oral or intravenous IP [22–37]. If a change in IP persists,
the resulting change in [PTH] also persists [23,24,26,31,34,36,37].

[Ca]i or the total serum calcium concentration ([Ca]s) may vary inversely with IP [22,24,32], but IP

affects [PTH] whether calcemia changes perceptibly or not [12–14,28,30,33–37]. The serum phosphorus
concentration ([P]s) may vary directly with IP [17,18], but IP affects [PTH] whether [P]s changes or
not [36,37]. SHPT is often associated with glandular hyperplasia, but reduction of IP normalizes [PTH]
despite persistence of hyperplasia [28,29]. When the loss of GFR is modest, high [PTH] may coincide
with low-normal [P]s at normal EP [36,38], and an oral bolus of phosphate may raise [PTH] even
though [P]s falls [32]. In disorders characterized by impaired proximal tubular phosphate reabsorption,
high IP induces SHPT even if low [P]s persists [39].

In the 1970s, Slatopolsky and colleagues reported that extreme limitation of IP prevented SHPT
in 5/6 nephrectomized dogs, and subsequently showed that reduction of dietary phosphate in
proportion to GFR produced an identical result [10,11]. In the same model, Kaplan and colleagues
documented reversal of established SHPT with proportional phosphate restriction [12]; subsequently,
other investigators duplicated or approximated this result in animals and humans [13,14,24,33–37,40].
Although a reduction in IP increased the concentration of 1,25-dihydroxyvitamin D (1,25D) in
mild CKD [35,36], the same intervention lowered [PTH] without raising [1,25D] in more advanced
disease [13,14,33,34,40,41].

2.2. The Original Tradeoff Hypothesis

Bricker proposed the following sequence of events to explain the role of phosphate in SHPT [42]:
intake and gastrointestinal absorption of phosphate continue unabated as nephrons are lost;
a temporary rise in plasma phosphate ([P]p) reduces [Ca]i through formation of complexes; parathyroid
cells sense this reduction and raise [PTH] in response; increased [PTH] restores normal [Ca]i through
actions on target organs and simultaneously corrects [P]p by reducing tubular phosphate reabsorption.
A “tradeoff” thus occurs in which SHPT is the price paid for normal [Ca]i and [P]p.

Eventually, evidence appeared that was discordant with Bricker’s synthesis. Investigators identified
patients with what would now be called Stage 3 CKD in whom [PTH] was increased despite low-normal
[P]s [36,38], and oral phosphate raised [PTH] in such patients even though [P]s fell simultaneously [32].
In patients with hypophosphatemia due to impaired phosphate reabsorption, high IP raised [PTH]
without correcting [P]s [39]. In vitro, modest increments in [P]p did not reduce [Ca]i [43].

2.3. Skeletal Resistance to PTH

As Slatopolsky, Kaplan, and their colleagues were linking SHPT to IP, others focused on the
paradox of high [PTH] and normal [Ca]i. A source of calcium seemed resistant to PTH, and the
skeleton was assumed to be that source. We have found no evidence that the CDN was considered.

Massry and colleagues measured effects of infused parathyroid extract (PTE) on the serum
calcium concentration ([Ca]s) in humans. PTE raised [Ca]s by more than 1.0 mg/dL in subjects with
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normal GFR and by approximately 0.5 mg/dL in patients with mild, advanced, or end-stage renal
disease [44]. Llach and colleagues examined responses to endogenous PTH by infusing the chelating
agent ethylenediaminetetraacetic acid (EDTA); in comparison to control subjects, patients with mild
CKD responded to EDTA with more severe hypocalcemia, much higher [PTH], and a more delayed
recovery of [Ca]s [45].

Three hypotheses were offered to explain the blunted calcemic response in CKD: a deficiency
of 1,25-dihydroxyvitamin D (1,25D) undermined the effect of PTH on osteolysis; circulating
phosphate mediated skeletal resistance by an unknown mechanism; and chronically increased [PTH]
down-regulated PTH receptors in bone. In dogs made uremic by ureteral ligation or nephrectomy,
preliminary administration of 1,25D improved but did not normalize the calcemic response to PTE [46].
Somerville and Kaye found that 1,25D ameliorated PTH resistance in chronic but not acute renal
failure [47]; in contrast, phosphate was the agent of resistance when uremia was created by intravenous
infusion of urine from intact kidneys [48]. In an isolated rat-tail preparation, the same investigators
demonstrated that phosphate could inhibit calcium release from bone [49].

In 5/6 nephrectomized dogs, Kaplan and colleagues observed that neither 1,25D nor phosphate
restriction could normalize the calcemic response to PTH even though each intervention restored it
partially [50]. Rodriguez and colleagues also achieved partial improvement with these interventions
but found that parathyroidectomy restored the calcemic response completely [41,51]. It should be
noted that parathyroidectomized animals were maintained with a high-calcium diet post-operatively
and a low-phosphate diet during the PTH infusion [51].

We are reluctant to attribute SHPT to skeletal resistance to PTH. If kidneys are functional, and if
GFR is assumed to equal creatinine clearance (Ccr), then the flux of calcium into plasma (ICa) equals
the urinary excretion rate (ECa), and the impact of ICa on [Ca]i is measurable as calcium excreted per
volume of filtrate (ECa/Ccr) [16]. If the skeletal resistance theory is correct, we should not see normal
[PTH] when ECa/Ccr is low, or high [PTH] when ECa/Ccr is high. However, we found normal [PTH]
despite minimal ECa/Ccr in some control subjects, and high [PTH] despite robust ECa/Ccr in some
patients with CKD [16]. Low ICa did not provoke SHPT at normal GFR, and high ICa did not prevent it
at reduced GFR. We doubt that the skeleton is the principal site of PTH resistance in SHPT.

2.4. Deficiency of 1,25-Dihyroxyvitamin D

The active metabolite of vitamin D, 1,25-dihydroxyvitamin D (1,25D), is synthesized throughout
the nephron [52]. Its concentration falls as nephrons are lost, and SHPT is widely attributed to
this phenomenon [1,2,4,5]. In theory, a reduction in [1,25D] could necessitate a rise in [PTH]
by compromising intestinal absorption and tubular reabsorption of calcium [15,35,53], but the
preferred explanation for SHPT at present is loss of the suppressive effect of 1,25D on PTH gene
transcription [54,55]. This attribute of the metabolite is the basis for treatment of SHPT with vitamin D
receptor activators (VDRAs) [56].

Despite the calcemic and genomic effects of 1,25D, evidence from multiple sources suggests
that low [1,25D] does not cause high [PTH] in CKD. Levin and colleagues found normal [PTH] and
low [1,25D] in 13% of a large sample with CKD [4]. Some investigators found inverse relationships
between [PTH] and [1,25D] [1,2,4,5], but we did not [16,17]. Although 1,25D appeared to mediate the
interaction between IP and [PTH] in mild CKD [35,36], high IP increased [PTH] in an animal model
when [1,25D] did not fall [57], and low IP reduced [PTH] in advanced disease when [1,25D] did not
rise [13,14,33,34,40,41]. If phosphate restriction can normalize [PTH] while [1,25D] remains suppressed,
then deficiency of 1,25D cannot be the proximal cause of SHPT.

2.5. Direct Stimulation of PTH Secretion by Circulating Phosphate

In 1996, two groups showed that parathyroid tissue from normal rats secreted PTH in proportion
to the phosphate concentration ([P]) in culture medium [57,58]. Two years later, the observation was
repeated with hyperplastic tissue from patients with SHPT [59]. Whereas changes in [Ca]i altered



Nutrients 2017, 9, 427 4 of 15

[PTH] within one hour [58], changes in [P] did so over 3–5 h [57,58]. [P] did not affect PTH gene
transcription [57,59]; observations by Moallem and colleagues suggested indirectly that cytosolic
proteins stabilized PTH mRNA in response to high [P] [60].

Evidence of a direct relationship between [P]s and [PTH] was also found in vivo. Takahashi,
Slatopolsky, and their colleagues demonstrated strong linear correlations between [PTH] and
[P]s in rodents subjected to 5/6 nephrectomy [28,57]. Kates and colleagues confirmed a similar
relationship in humans with CKD, but it was demonstrable only in subjects with serum creatinine
([cr]s) ≤3.0 mg/dL [61]. On some occasions our group also found significant linear regressions of
[PTH] on [P]s [18].

We do not doubt that hyperphosphatemia increases PTH synthesis in CKD. However,
when kidneys are functional, correlations between [P]s and [PTH] may reflect dependence of both
concentrations on a third variable. If EP and TRP are rates of excretion and tubular reabsorption of
phosphorus, [P]s equals the sum of EP/Ccr and TRP/Ccr [19]. EP/Ccr quantifies the contribution of IP

to [P]s, but it also serves as a mathematical surrogate for [P]CDN, which we believe to be the principal
determinant of [PTH] in CKD [17,18]. In patients with Stage 3 and 4 CKD, we found that [PTH] varied
directly with EP/Ccr and [P]s before administration of sevelamer or a placebo, but with EP/Ccr alone
after treatment [17]. We therefore attributed the correlation of [PTH] with [P]s to a dependence of
both concentrations on EP/Ccr [18]. In our study and that of Kates and colleagues, most values of [P]s

were in the normal range and were in fact lower than many fasting values of control subjects without
SHPT [17,18,61,62]. Consequently, we suspect that [P]CDN, as represented by EP/Ccr, determined
[PTH] in both studies. When kidneys are functional, the putative effect of [P]s on [PTH] cannot be
separated from that of [P]CDN.

2.6. Impaired Suppression of the PTH Gene by Fibroblast Growth Factor 23 (FGF23)

FGF23 is a hormone made predominantly but not exclusively by osteocytes [63,64]. In CKD,
its concentration is already increased when [PTH] begins to rise [32,65]. Its effects on parathyroid glands
and renal tubules are initiated by simultaneous binding to a cognate receptor, FGFR1c, and a co-receptor,
the membrane form of klotho [66]. When GFR is normal, FGF23 suppresses transcription of the PTH
gene [67], but this action dissipates as GFR falls because FGFR1c and klotho recede in parathyroid
tissue [68,69].

PTH and FGF23 reduce proximal tubular phosphate reabsorption by promoting removal of
sodium-phosphate co-transporters from the brush border membrane [66], and both hormones increase
calcium reabsorption in the distal convoluted tubule [70]. The actions of the two hormones are
thought to be integrated at both sites, and both may be required to maintain normal [P]s and [Ca]i in
CKD [70–72]. In theory, it is possible that the loss of the genomic effect of FGF23 in parathyroid tissue
facilitates synthesis of PTH in CKD. It is also possible that the calcium-reabsorbing action of FGF23
promotes reversal of SHPT when IP is reduced in proportion to GFR [12–14,29].

2.7. Deficiency of 25-Hydroxyvitamin D (25D)

Although definitions of vitamin D insufficiency and deficiency are debated, [25D] ≥30 ng/mL
(74.9 nmol/L) is generally accepted as evidence of full repletion [73–76]. Nevertheless, in CKD,
use of vitamin D supplements to achieve [25D] of 30–40 ng/mL (99.8 nmol/L) has yielded marginal
reductions of [PTH] [77–79]. To examine effects of higher [25D], Sprague and colleagues administered
three doses of extended-release calcifediol [25D] to subjects with CKD [80]. A dose of 30 mcg/day
achieved a mean [25D] of 37.3 ng/mL (93.1 nmol/L) and a 20.9% reduction in [PTH]; corresponding
results of 60 and 90 mcg/day were [25D] of 66.9 and 84.8 ng/mL (167.0 and 211.7 nmol/L) and
reductions in [PTH] of 32.8% and 39.3%, respectively. [1,25D] rose with the dose of 25D. The effect of
[25D] between 30 and 40 ng/mL was again modest, and the response to higher doses was incomplete.
A more protracted trial yielded qualitatively similar results [81]. Although ample doses of 25D induce
partial reversal of SHPT, vitamin D insufficiency is not the primary cause of SHPT in CKD.
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3. Tradeoff-in-the-Nephron

The ultrafilterable fraction of plasma calcium (Cauf) consists of Cai and a small amount bound
to organic anions in complexes [82]. In normal health, [Ca]uf is maintained by influx from the
gastrointestinal tract and by tubular reabsorption of filtered calcium. ICa determines and equals
ECa [16].

The filtration rate of calcium, (GFR)[Ca]uf, is the sum of its excretion and reabsorption rates:

(1) GFR[Ca]uf = ECa + TRCa. Division by GFR yields a formula for [Ca]uf:
(2) [Ca]uf = ECa/GFR + TRCa/GFR. If creatinine clearance (Ccr) is assumed to equal GFR, then:
(3) [Ca]uf = ECa/Ccr + TRCa/Ccr = [Ca]u[cr]s/[cr]u + TRCa/Ccr. It follows that:
(4) TRCa/Ccr = [Ca]uf − ECa/Ccr = [Ca]uf − [Ca]u[cr]s/[cr]u [16].

At both normal and reduced GFR, [Ca]uf is on average 0.4–0.6 mg/dL greater than [Ca]i [16,82].
In our experience, mean [Ca]i of 5.0 mg/dL (1.25 mmol/L) was accompanied by mean [Ca]uf of
5.4 mg/dL. Since ICa and ECa fell in tandem with GFR, ECa/Ccr and TRCa/Ccr approximated 0.1 mg/dL
and 5.3 mg/dL at any GFR [16].

We used Equation (4) to examine TRCa/Ccr as a function of [PTH] in seven patients with
primary hyperparathyroidism (PHPT), 29 patients with CKD (mean MDRD estimated GFR of
29.5 mL/min/1.73 m2, range 14–49), and 28 controls with normocalcemia and estimated GFR
>60 mL/min/1.73 m2 [16]. Because of wide dispersion around mean values, [PTH] was not significantly
different in PHPT and SHPT even though the 11 highest values in the study were seen in the latter,
but concentrations were significantly higher in both of these groups than in controls. Fasting ECa/Ccr,
the measurable consequence of calcium influx, was comparable in all three groups. This finding led to
the conclusion that increased TRCa/Ccr, not increased ICa, had caused hypercalcemia in PHPT [16].
Simultaneously, the results showed that [PTH] sufficient to increase TRCa/Ccr in PHPT had maintained
normal TRCa/Ccr in SHPT (Figure 1). We therefore inferred that the CDN is partially resistant to the
calcemic effect of PTH in CKD [16].

We reasoned that under conditions of reduced GFR and normal IP (measurable as EP),
the concentration of phosphate in the CDN ([P]CDN) would be greater than normal, as Bank and
colleagues had demonstrated by micropuncture [83]. We hypothesized that high [P]CDN would
reduce the availability of Ca for reabsorption through the formation of soluble complexes or crystals,
and would, thereby, necessitate increased [PTH] to maintain normal TRCa/Ccr, [Ca]uf, and [Ca]i.
We believed that this hypothesis would elucidate the role of phosphate influx in the pathogenesis of
SHPT and would explain the persistence of normocalcemia despite high [PTH] in CKD.

Supporting evidence for the hypothesis was available. Tiselius and colleagues had argued that
distal tubular filtrate is normally supersaturated with calcium-phosphate compounds, and had shown
with in vitro simulations that calcium-phosphate crystals would be the first to form in the CDN after
addition of calcium [84,85]. In rats subjected to 3/4 nephrectomy, Haut and colleagues had found that
a high-phosphate diet promoted calcium deposition in lumens and cells of cortical nephrons, and had
shown that kidney calcium content rose on this diet even if [P]s remained normal [86]. Biopsies had
also revealed calcium deposition within CDNs of patients with phosphate-induced acute kidney
injury [87]. Most importantly, treatment of SHPT with the calcimimetic agent cinacalcet had reduced
[PTH], [Ca]s, and calcium reabsorption, but had not reduced ECa (or by inference, ICa) [71].
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and secondary hyperparathyroidism (PHPT and SHPT). All data are derived from morning fasting 
specimens of urine and serum or plasma. Circles represent normal controls. Triangles and diamonds 
represent patients with PHPT and SHPT (CKD), respectively. Frame (a) shows that the lowest 
recorded values of ECa/Ccr in controls were compatible with normal [PTH]. It also shows that a 
minority of patients with CKD exhibited high ECa/Ccr and high [PTH] simultaneously. Frame (b) 
shows that [PTH] capable of causing high TRCa/Ccr in patients with PHPT maintained normal 
TRCa/Ccr in patients with CKD. Reproduced from [16] with permission of the publisher (Dustri-
Verlag). ECa, Urinary excretion rate of calcium, mass/time; Ccr, Creatinine clearance (volume/time); 
TRCa, Rate of tubular reabsorption of calcium, mass/time; PTH, Parathyroid hormone; CKD, Chronic 
kidney disease. 
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Figure 1. Plots of ECa/Ccr and TRCa/Ccr against [PTH] in control subjects and patients with primary
and secondary hyperparathyroidism (PHPT and SHPT). All data are derived from morning fasting
specimens of urine and serum or plasma. Circles represent normal controls. Triangles and diamonds
represent patients with PHPT and SHPT (CKD), respectively. Frame (a) shows that the lowest recorded
values of ECa/Ccr in controls were compatible with normal [PTH]. It also shows that a minority of
patients with CKD exhibited high ECa/Ccr and high [PTH] simultaneously. Frame (b) shows that [PTH]
capable of causing high TRCa/Ccr in patients with PHPT maintained normal TRCa/Ccr in patients with
CKD. Reproduced from [16] with permission of the publisher (Dustri-Verlag). ECa, Urinary excretion
rate of calcium, mass/time; Ccr, Creatinine clearance (volume/time); TRCa, Rate of tubular reabsorption
of calcium, mass/time; PTH, Parathyroid hormone; CKD, Chronic kidney disease.

We published evidence for the tradeoff-in-the-nephron hypothesis in 2014. Our underlying
assumptions were that glomerular filtration of phosphate is virtually complete [88]; IP determines
and equals EP at any GFR [19–21,25,35]; [P]CDN rises at customary IP as GFR falls [83]; and increased
[P]CDN promotes complexation of Ca as described above [84–87]. For simplicity, we also assumed that
delivery of filtered phosphate to the CDN equals EP even though phosphate may be secreted into the
distal nephron in CKD [83,89].

Twenty-nine patients with eGFR of 14–49 mL/min/1.73 m2 participated in a study designed
to examine the tradeoff-in-the-nephron hypothesis [17]. They were seen in a research clinic on five
occasions, each separated by four weeks. Informed consent was obtained at the first visit, and patients
who were taking intestinal phosphate-binding agents discontinued them at that time. A course of
cholecalciferol was prescribed at the second visit to minimize any possible contribution of vitamin D
deficiency to SHPT. Patients were instructed in a phosphate-restricted diet at the third visit and were
asked to continue the diet through the end of the study. At the fourth visit, subjects were randomly
assigned to a course of sevelamer carbonate or placebo with meals. Metabolic studies obtained at this
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visit revealed that the dietary instruction had been ineffective. Results of the therapeutic trial were
ascertained at the fifth visit.

We argued algebraically that EP/Ccr is proportional to [P]CDN and hypothesized that [PTH]
would therefore vary directly with EP/Ccr [17]. The purpose of sevelamer carbonate administration
was to reduce this ratio. ∆EP/Ccr was negative in all sevelamer recipients, and the mean change was
−0.5 ± 0.1 mg/dL. In placebo recipients, ∆EP/Ccr was evenly distributed over a range of positive and
negative values, and the mean change was 0.04 ± 0.12 mg/dL. We interpreted dispersion around this
mean as evidence of random variation in phosphate intake.

In both groups, we found significant linear regressions of [PTH] on EP/Ccr and of ∆[PTH] on
∆EP/Ccr after treatment (Figure 2). Sevelamer recipients in whom ∆[PTH] did not vary with ∆EP/Ccr

tended to have extremely low ECa/Ccr. The results supported the hypothesis that high [P]CDN

necessitates high [PTH] to achieve normal TRCa/Ccr, and also suggested that sufficient [Ca]CDN is
essential to the salutary effect of reduced IP on [PTH] [17].Nutrients 2017, 9, 427 8 of 15 
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Figure 2. Relationship of [PTH] to EP/Ccr in sevelamer and placebo recipients. Squares pertain to the
sevelamer group and diamonds to the placebo group. Graphs (a) and (c) show regressions of [PTH]
on EP/Ccr before and after administration of sevelamer carbonate for four weeks. Graphs (b) and (d)
show the same regressions before and after administration of a placebo for four weeks. Graphs (e)
and (f) show regressions of ∆[PTH] on ∆EP/Ccr in the sevelamer and placebo groups, respectively,
where “∆” = change during treatment. All regressions are statistically significant. Adapted from [17]
with permission of the publisher (Dustri-Verlag). EP, urinary excretion rate of phosphorus, mass/time;
Ccr, creatinine clearance, volume/time.
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4. Compatibility of Tradeoff-in-the-Nephron with Existing Data

Tradeoff-in-the-nephron is a straightforward hypothesis. It states that high [P]CDN reduces
[Ca]CDN by complexation and thus necessitates high [PTH] to maintain normal calcium reabsorption.
[P]CDN may rise as a consequence of high IP at a normal GFR or normal IP at a reduced GFR.
The hypothesis implies that [PTH] rises in either circumstance, and this implication has been confirmed
repeatedly [10–14,22–37,40,41,50]. Tradeoff-in-the-nephron explains the tight relationship of [PTH] to
IP in CKD and accounts for the requirement of high [PTH] to maintain normal TRCa/Ccr and [Ca]i.
If EP/Ccr is proportional to [P]CDN, it follows that [PTH] should be a recognizable function of EP/Ccr.
Our work has supported this inference [17,18].

In theory, calcium, 1,25D, or phosphate could affect the synthesis and release of PTH in CKD.
Of these, only calcium regulates immediate secretion of stored hormone through its interaction
with the membrane calcium receptor [90]. If IP affects [PTH] by determining calcium availability
for reabsorption, then changes in IP should alter [PTH] quickly. In vivo and in vitro studies have
confirmed this expectation [24,30,31,58].

Tradeoff-in-the-nephron explains why [PTH] was high as long as EP/Ccr was high [23,26]
and low as long as EP/Ccr was low [34]. The hypothesis explains why [PTH] fell with IP while
hyperphosphatemia persisted [27,40]. It accounts for the chronicity of SHPT in CKD, in which [P]CDN is
continuously increased at normal IP [83]. The hypothesis explains why [PTH] correlated with EP but not
[P]s in early CKD [91], and with EP/Ccr but not [P]s after administration of sevelamer or placebo [17].
It accounts for increased calciuria despite high [PTH] after an oral bolus of phosphate [32]. It explains
why [PTH] was elevated in patients with mild CKD, normal IP and low-normal [P]s [35,36], and why
[PTH] rose after a bolus of phosphate even though [P]s fell simultaneously [32]. The hypothesis
provides a mechanism for high [PTH] in response to high IP despite persistent hypophosphatemia [39].
Most importantly, it predicts normalization of [P]CDN, EP/Ccr, and [PTH] when IP is reduced in
proportion to GFR [10–14,17,24,28–30,50].

The principal alternatives to tradeoff-in-the-nephron involve skeletal resistance to the calcemic
action of PTH, the effect of 1,25D to suppress transcription of the PTH gene, and direct stimulation
of PTH synthesis and secretion by circulating phosphate. Much of the evidence for these theories is
compatible with our hypothesis. In subjects with functioning kidneys, 1,25D could have enhanced
the calcemic response to PTH through its independent effect on calcium reabsorption in the CDN [15].
In addition to limiting calcium egress from bone [41,49], phosphate could have introduced resistance to
PTH in the CDN by the mechanism implied in our hypothesis. Instead of making bone more sensitive
to PTH, parathyroidectomy could have necessitated a diet that ensured maximal calcium reabsorption
from the CDN in response to the hormone [51].

Recurrent themes emerge from studies of the calcemic response to PTH. Typically, the magnitude
of the response was less at reduced than at normal GFR, and preparatory phosphate restriction or
1,25D administration mitigated but did not eliminate this difference [38,41,44–47,50,51]. A notable
exception occurred when IP was brought to zero in a model of uremia that left kidneys intact; in that
instance, the calcemic response was restored completely [48]. These observations make sense if PTH
acted on the CDN as well as the skeleton to raise [Ca]s. When filtrate contained no phosphate, a full
complement of nephrons permitted a normal response to PTH even though experimental animals
were uremic [48]. In other studies, a deficit of nephrons imposed a limit on the response to PTH that
neither phosphate restriction nor 1,25D could overcome [38,41,44–47,50,51].

The premise that the CDN is the site of PTH resistance is also supported by effects of the
calcimimetic agent cinacalcet. In patients with Stage 3 and 4 CKD, the drug reduced [PTH] by
43.1%, but simultaneously kept mean [Ca]s between 8.5 and 9.0 mg/dL even though ECa rose or
remained unchanged [71]. Since ICa determined ECa, and since ICa and TRCa maintain [Ca]uf at a given
GFR [16], it follows that reduction of [PTH] with cinacalcet led to reduction of TRCa/GFR. High [PTH]
was apparently required for reabsorption sufficient to maintain normocalcemia [71].
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The capacity of VDRAs to suppress PTH gene transcription can be exploited before ESRD is
reached [77,92], but efficacy of the intervention does not confirm reversal of pathogenesis. If deficiency
of 1,25D were the cause of SHPT, then normal [PTH] would be incompatible with low [1,25D]
in CKD. Numerous investigators have documented this combination after sufficient reduction of
IP [13,14,33,34,40,41], and tradeoff-in-the-nephron explains why the combination is possible.

EP/Ccr is a determinant of [P]s, and [P]s is a linear function of EP/Ccr in CKD [18,20,28,57,61].
At the same time, EP/Ccr is approximately proportional to [P]CDN [17,18]. If [PTH] varies directly
with [P]s in vivo, the reason may be that [PTH] also varies directly with EP/Ccr. We suggest that
this confounding association is responsible for correlations between [PTH] and [P]s in Stage 3 and
4 CKD [18,61].

5. Therapeutic Implications of Tradeoff-in-the-Nephron

Tradeoff-in-the-nephron implies that [PTH] is normal if [P]CDN is normal. EP/Ccr is our surrogate
for [P]CDN. Since IP determines EP, a reduction of IP in proportion to GFR yields normal EP/Ccr.
Proportional reduction of IP was precisely the intervention that prevented and reversed SHPT in
animal models of CKD [10–14,50]. It follows that normalization of EP/Ccr should do the same for
patients with SHPT.

In the 1980s and 1990s, European investigators employed severe dietary phosphate restriction to
reduce [PTH] in patients with CKD [33,34,40]. Today, in the United States, a similar result requires
a drastic revision of eating habits, including avoidance of phosphate preservatives [93,94]. This effort
is necessary because to date, the most successful human studies of intestinal phosphate binders
have reduced EP by 25%–50% and [PTH] by 13%–35% [37,95–98]. Our theory and many animal
studies suggest that EP/Ccr must be reduced to normal to reverse SHPT completely; if GFR has
been reduced by 80%, EP must be reduced by 80%. In addition to diet and binders, blockade
of sodium-hydrogen exchanger 3 (NHE3) and inhibition of the intestinal sodium-phosphate 2b
co-transporter may ultimately be required to lower IP sufficiently [99,100]. Our experience suggests
that normal ECa/Ccr must also be established [17,91]. Attainment of [25D] >30 ng/mL may reduce
[PTH] modestly, but we endorse it for other reasons [74]. We presume that normalization of [PTH] is
desirable, but concede that the point is debatable [101].

6. Conclusions

Discordant empiric observations undermine each of the major theories concerning the
pathogenesis of SHPT. We have sought a unifying explanation for the two most consistent features
of the syndrome, which are dependence of [PTH] on IP and persistence of normal [Ca]i until CKD
is far advanced. Tradeoff-in-the-nephron accounts for these features. The hypothesis also provides
alternate explanations for much of the evidence on which other theories are based, and it sheds
light on numerous ancillary observations. It traces SHPT to high [P]CDN and predicts normal [PTH]
at normal EP/Ccr. An abundance of evidence is consistent with this prediction. The veracity of
tradeoff-in-the-nephron is testable in patients by rigorous but feasible interventions.
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Abbreviations

CKD Chronic kidney disease
GFR Glomerular filtration rate (volume/time)
Ccr Creatinine clearance (volume/time)

PTH Parathyroid hormone
PTE Parathyroid extract

PHPT Primary hyperparathyroidism
SHPT Secondary hyperparathyroidism
CDN Cortical distal nephron
[Ca]s Serum calcium concentration, mass/volume
[Ca]i Serum ionized calcium concentration, mass/volume

[Ca]uf Serum ultrafilterable calcium concentration, mass/volume
[Ca]u Urine calcium concentration, mass/volume

[Ca]CDN Calcium concentration in the cortical distal nephron, mass/volume
ICa Influx of calcium (into extracellular fluid or plasma), mass/time
ECa Urinary excretion rate of calcium, mass/time

TRCa Rate of tubular reabsorption of calcium, mass/time
ECa/Ccr Amount of calcium excreted per volume of filtrate, mass/volume

TRCa/Ccr Amount of calcium reabsorbed per volume of filtrate, mass/volume
[P]s Serum phosphorus concentration, mass/volume
[P]p Plasma phosphorus concentration, mass/volume
[P]u Urine phosphorus concentration, mass/volume

[P]CDN Phosphorus concentration in the cortical distal nephron, mass/volume
IP Influx of phosphorus into extracellular fluid or plasma, mass/time
EP Urinary excretion rate of phosphorus, mass/time

TRP Tubular reabsorption rate of phosphorus, mass/time
EP/Ccr Amount of phosphorus excreted per volume of filtrate, mass/volume

TRP/Ccr Amount of phosphorus reabsorbed per volume of filtrate, mass/volume
25D 25-hydroxyvitamin D

1,25D 1,25-dihydroxyvitamin D
EDTA Ethylenediaminetetraacetic acid
VDRA Vitamin D receptor activator
mRNA Messenger RNA
FGF23 Fibroblast growth factor 23
NHE3 Sodium-hydrogen exchanger 3
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