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Frontotemporal degeneration genetic risk loci and 
transcription regulation as a possible mechanistic 
link to disease risk
Russell P. Sawyer, MDa,* , Hillarey K. Stone, DOb,c, Hanan Salimd, Xiaoming Lu, PhDd,  
Matthew T. Weirauch, PhDd,e,f,g, Leah Kottyan, PhDc,f,g

Abstract 
The etiology of Frontotemporal Degeneration (FTD) is not well understood. Genetic studies have established common genetic 
variants (GVs) that are associated with increased FTD risk. We review previous genome wide association studies (GWAS) of FTD 
and nominate specific transcriptional regulators as potential key players in the etiology of this disease. A list of GVs associated 
with FTD was compiled from published GWAS. The regulatory element locus intersection (RELI) tool was used to calculate the 
enrichment of the overlap between disease risk GVs and the genomic coordinates of data from a collection of >10,000 chromatin 
immunoprecipitation (ChIP-seq) experiments. After linkage disequilibrium expansion of the previously reported tag associated 
GVs, we identified 914 GV at 47 independent risk loci. Using the RELI algorithm, we identified several transcriptional regulators 
with enriched binding at FTD risk loci (0.05 < corrected P value <1.18 × 10−27), including Tripartite motif-containing 28 (TRIM28) 
and Chromodomain-Helicase DNA-binding 1 (CHD1) which have previously observed roles in FTD. FTD is a complex disease, and 
immune dysregulation has been previously implicated as a potential underlying cause. This assessment of established FTD risk 
loci and analysis of possible function implicates transcriptional dysregulation, and specifically particular transcriptional regulators 
with known roles in the immune response as important in the genetic etiology of FTD.
Abbreviations: FTD = frontotemporal degeneration, GV = genetic variants, GWAS = genome wide association study, RELI = 
regulatory element locus intersection.
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1. Introduction

Frontotemporal degeneration (FTD) is now recognized as the 
most common cause of early-onset dementia in people under 
the age of 60 years.[1] A heterogeneous neurodegenerative dis-
order presenting with distinct changes in behavior, language 
and motor function, the heritability and genetics of FTD are 
complex.[2] Heritability is observed in 12% to 48% of FTD 
subjects,[3] with most of the heritability attributed to autosomal 
dominant mutations in progranulin (GRN), microtubule-asso-
ciated protein tau (MAPT) and chromosome 9 open reading 
frame 72 (C9orf72).[4,5] The majority of cases, however, do not 
have an identifiable monogenic cause. Genome wide association 
studies (GWAS) in FTD have sought to fill the missing heritabil-
ity gap by identifying common genetic variants (GV) associated 

with disease risk.[6] While several genomic regions associated 
with increased FTD risk have been identified, the functional 
relevance of the GV within these loci remains elusive.[6]

Our goal is to better understand the functional relevance 
of previously described FTD genetic risk variants. To this end, 
we first curated the independent association signals identified 
by previously published GWAS. Then, we performed a linkage 
disequilibrium expansion step to identify all variants that were 
tagged by the associated variants reported with significant (or 
suggestive) p values. We next used our analytical tool regula-
tory element locus intersection (RELI) to identify critical cell 
types and transcriptional regulatory molecules based on enrich-
ment of chromatin immunoprecipitation data at disease risk 
loci. This algorithm assesses the significance of intersections of 
genomic coordinates of disease risk loci and DNA occupied by 
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transcriptional regulators. The data generated by RELI iden-
tify specific regulatory proteins that may be involved in disease 
pathogenesis, which therefore are good candidates for further 
experimental investigation. This is an important first step in 
generating hypotheses to understand the functional relevance of 
the genetic risk loci identified by genome wide association stud-
ies. Collectively, our analyses reveal potential gene regulatory 
mechanisms underlying the complex etiology of FTD, provid-
ing avenues for future studies examining possible therapeutic 
strategies.

2. Methods

2.1. Identification of independent genetic risk loci

A literature search was performed using PubMed and the 
NHGRI-EBI GWAS catalog[7] to identify genome wide associ-
ation studies reporting significant genetic association for FTD. 
These databases were searched using the terms “FTD”, “fronto-
temporal dementia”, “genome wide association”, “genomics”, 
and “single nucleotide polymorphisms” on September 28th, 
2020. Studies were required to utilize a discovery and validation 
cohort. Six studies met our search criteria. GVs with “sugges-
tive” p values (uncorrected P value <5 × 10−8) were included in 
our analysis.[8–13] Starting with the “tag” genetic variant of each 
reported FTD risk variant (P value < 5 × 10−8), independent 
risk loci were identified using the “Variant pruning” function 
of PLINKv1.90b.[14] R2 is a measure of linkage disequilibrium 
between GV. We used an R2 threshold of 0.2 to define indepen-
dent loci. Only variants on the same chromosome were assessed 
for linkage disequilibrium because variants on different chro-
mosomes segregate completely independently in meiosis.

2.2. Linkage disequilibrium (LD) expansion

Each independent “tag” genetic variant reported in association 
studies was used to identify all GV in LD with the “tag” variant 
with R2 > 0.8 in the ancestry of reported association.

2.3. Pathway analysis of genes near FTD risk loci

Genes within 50 kB pairs of FTD risk loci (Supplementary 
Tables S7, http://links.lww.com/MD/H591 and S8, http://links.
lww.com/MD/H592) were used to identify the biological path-
ways enriched in this gene set using ENRICHR.[15,16]

2.4. Collection and processing of chip-seq datasets

A collection of 11,071 publicly available ChIP-seq datasets 
were identified in the Gene Expression Omnibus (GEO) as of 
February 4th, 2021, and downloaded from the NCBI Sequence 
Read Archive (SRA). The corresponding experimental data 
were analyzed using an in-house automated pipeline (https://
github.com/MarioPujato/NextGenAligner). Briefly, the pipe-
line first downloads the SRA files, converts them to fastq files, 
and runs QC on the files using FastQC (v0.11.2).[17] If FastQC 
detects adapter sequences, the pipeline runs the fastq files 
through Trim Galore (v0.4.2),[18] a wrapper script that runs 
cutadapt (v1.9.1)[19] to remove the detected adapter sequence 
from the reads. The quality controlled reads are then aligned 
to the reference human genome (hg19/GRCh37) using bowtie2 
(v2.3.4.1).[20] The aligned reads (in.bam format) are then sorted 
using samtools (v1.8.0)[21] and duplicate reads are removed 
using picard (v1.89).[22] Finally, peaks are called using MACS2 
(v2.1.0),[23] using four different parameter settings (MODE1: 
callpeak -g hs -q 0.01 -t bamfile, MODE2: callpeak -g hs -q 
0.01 --broad -t bamfile, MODE3: callpeak -g hs -q 0.01 --broad 
--nomodel --extsize 500 -t bamfile, MODE4: callpeak -g hs -q 
0.01 --broad --nomodel --extsize 1000 -t bamfile). ENCODE 

blacklist regions[24] were removed from the called peaks using 
the hg19-blacklist.v2.bed.gz file available at https://github.com/
Boyle-Lab/Blacklist/tree/master/lists.

2.5. Identification of particular transcriptional regulators 
enriched at risk loci using RELI

We used our RELI algorithm to identify ChIP-seq datasets 
whose genomic coordinates significantly intersect FTD genetic 
risk variants.[25] As previously published,[25] all of the genetic 
polymorphisms in linkage disequilibrium with the “tag” vari-
ant at each of the 47 independent FTD risk loci were intersected 
with ChIP-seq peaks. RELI uses a permutation-based strategy 
to estimate the significance of the overlap between each LD 
block and a given ChIP-seq dataset, which we designate the 
observed intersection count. As described previously,[25] this 
value is compared to the expected intersection distribution. 
In this procedure, the most strongly associated variant in the 
LD block is chosen as the reference variant. A distance vec-
tor is then generated providing the distance (in bases) of each 
variant in the LD block from this reference variant. A random 
genomic variant with approximately matched allele frequen-
cies to the reference variant is then selected from dbSNP, and 
genomic coordinates of artificial variants are created that are 
located at the same relative distances from this random variant 
using the distance vector. Members of this artificial LD block 
are then intersected with each ChIP-seq dataset, as was done 
for the observed intersections. This strategy accounts for the 
number of variants in the input LD block and their relative 
distances, while prohibiting “double counting” due to multiple 
variants in the block intersecting the same dataset. We repeat 
this procedure 2000 times, generating a null distribution. 
The expected intersection distributions are used to calculate 
Z-scores and p values for the observed intersection. For each 
ChIP-seq dataset, only the top-performing peak set of the four 
MACS2 “modes” is reported, where performance is gauged 
based on the RELI algorithm corrected P value. Only ChIP-seq 
datasets with 3 or more FTD risk locus overlaps are reported 
in Table 1, this threshold was selected given.

2.6. Ethics statement

This study was approved by the Cincinnati Children’s Hospital 
Institutional Review Board.

3. Results

3.1. Literature review and curation of previous studies

There have been limited studies assessing the genetic basis of 
FTD. To identify all possible candidates, we used Pubmed and 
the GWAS catalog[7] to identify FTD risk variants from genome 
wide association studies that reported significant genetic associ-
ation for FTD. A total of six studies met our search criteria and 
identified 47 loci with an uncorrected P value <5 × 10−8.[8–13] 
An expanded table of all reported FTD risk variants without 
filtering for statistical significance is provided in Supplementary 
Table S1, http://links.lww.com/MD/H585.

3.2. Inclusion of all possible statistically associated FTD 
variants

Genetic association studies report “tag” GV representing the 
most significant association observed at a particular locus. GV 
are inherited as a haplotype of variants in linkage disequilibrium 
- independent loci contain variants that are not in strong linkage 
disequilibrium. Using a linkage disequilibrium cutoff of r2 = 0.2 
in the ancestry of identification, we identified 47 independent 
genetic loci (Supplementary Table S2, http://links.lww.com/MD/
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H586). Next, we identified all common GV in linkage disequilib-
rium (LD) r2 > 0.8 with the identified risk variants in the ancestry 
of discovery; this resulted in a total of 914 variants with an aver-
age of 19.4 variants per locus. (Supplementary Table S3, http://
links.lww.com/MD/H587).

While there are likely only one or two causal variants per 
FTD risk locus, all the variants within the LD-expanded list are 
candidates because they are statistically associated with disease 
risk. Using the National Center for Biotechnology Information’s 
(NCBI) dbSNP database,[26,27] annotations of the position of the 
LD-expanded FTD risk variants relative to gene coding regions 
were assessed (Supplementary Table S4, http://links.lww.com/
MD/H588). Only 27 variants (0.03%) in 914 LD expanded GV 
located within coding regions. PolyPhen2[28] and SIFT[29] were 
used to predict the functional effects of the 15 synonymous 
variants, one peptide shift variants, and 11 non-synonymous 
variants. These analyses showed that only two are predicted 
to cause changes to the resulting protein function by PolyPhen 
(Supplementary Table S5, http://links.lww.com/MD/H589), 
while one is predicted to be deleterious by SIFT (Supplementary 
Table S6, http://links.lww.com/MD/H590). Variant rs2725405 
on chromosome 17 was found to be deleterious in both the 
SIFT model and possibly damaging in the PolyPhen model. The 
remaining coding variants were not predicted by either algo-
rithm to impact protein function. The remaining 867, which 
represent the vast majority identified GVs, are in non-coding 
regions. Overall, these results are consistent with a possible role 
for alteration of gene regulatory mechanisms at most of the 47 
FTD genetic risk loci.

3.3. Identification of genes near risk loci

Gene regulatory regions can affect the expression of genes that 
are located a great distance away in linear genomic space due to 
chromatin looping interactions. To create a list of genes whose 
expression might be affected by FTD risk variants, we identified 
a total of 62 genes within 50 kb of the list of LD-expanded risk 
variants (Supplementary Tables S7, http://links.lww.com/MD/
H591 and S8, http://links.lww.com/MD/H592). This included 
several genes previously associated with FTD such as APOE, 
HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB5,TMEM106B, and TMEM184C.[30,31] These 62 genes 
were significantly enriched for immune-related biological path-
ways defined by Gene Ontology (GO) enrichment terms asso-
ciated with antigen presentation, T cell receptor signaling, and 
interferon-gamma associated signaling (Supplementary Table 
S9, http://links.lww.com/MD/H593). In addition to the immune 
functions, there was significant enrichment in cholesterol and 
phospholipid handling: chylomicron remnant clearance, phos-
pholipid efflux, positive regulation of steroid metabolic process, 
and phosphatidylcholine-sterol O-acyltransferase activator 
activity.

3.4. Identification of key transcriptional regulators at FTD 
risk loci

We next applied RELI to a large dataset of transcriptional reg-
ulator ChIP-seq datasets. This approach identified five unique 
transcriptional regulators that overlap at least three out of 47 
FTD risk loci, with enrichment ranging from 3.4 to 52.7 times 
that expected by random chance and corrected p values between 
0.04 and 1.18 × 10−27 (Table  1). Included in these enriched 
transcriptional regulators were Tripartite motif-containing 
28 (TRIM28), and Chromodomain-Helicase DNA-binding 
1 (CHD1), which have previously been implicated in FTD 
through orthogonal approaches.[32,33] The final list also narrowly 
excluded Signal Transducer and Activator of Transcription 4 
(STAT4), a central mediator of inflammatory signaling. STAT4 
overlapped three out of the forty-seven loci, with an enrichment 
of 8.12, although its corrected P value was 0.06. The full results 
from our RELI analysis with corrected p values <1 × 10−5 are 
provided in Supplementary Table S10, http://links.lww.com/
MD/H594.

4. Discussion and conclusions
Although the pathogenesis of FTD remains unclear, current 
evidence suggests that immune dysregulation and genetic fac-
tors play important roles in the development of this complex 
disease. Genetic association studies have identified several FTD 
genetic risk variants in HLA regions and RAB38/CTSC loci in 
FTD to support these mechanisms.[10,11] While GWAS are valu-
able tools for understanding the genetic basis of complex traits, 
there are several limitations to consider. First, although GWAS 
can be used to identify a region of the genome associated with 
disease risk, due to linkage disequilibrium these loci almost 
always represent several potentially causal variants. This makes 
it difficult to identify specific variants with functional relevance. 
Furthermore, most risk variants identified by GWAS are in 
non-coding regions. Thus, it is often unclear how these variants 
directly contribute to disease pathogenesis. Further functional 
testing is therefore required in order to fully understand the con-
tributions of risk loci in the etiology of a particular disease.[34]

Results from our analysis demonstrate significant enrichment 
for GO pathways related to immune function. Specifically, in 
the adaptive immune system involving antigen presentation, T 
cell receptor signaling, and interferon-gamma associated signal-
ing. Altered antigen presentation in microglial and peripheral 
immune cells has been shown to create a pro-inflammatory 
environment that stimulates neurodegeneration.[35] Additionally, 
interferon-gamma associated signaling is critical for social behav-
ior; mice deficient in adaptive immunity exhibit social deficits 
and hyper-connectivity of fronto-cortical brain regions.[36] These 
two factors are possible causes for the frequent immune dys-
function seen in FTD.[11,37] Another potential pathophysiologic 

Table 1

Intersection between FTD risk loci and top overlapping transcriptional regulators.

Cell type Cell line Molecule Overlap Total Enrichment Corrected P value 

HEK293T/17 Adenovirus fetal kidney ZNF525 3 47 52.68 1.18 × 10−27

Caki-1 Clear cell carcinoma KDM5C 3 47 11.64 .0007
AD Lung adenocarcinoma CHD1 3 47 10.54 .002
T-47D Ductal carcinoma PGR 4 47 7.90 .01
WA01 Embryonic stem cell TRIM28 11 47 3.37 .04

For this analysis, all the genetic polymorphisms in linkage disequilibrium with the “tag” variant at each of the 47 independent FTD risk loci were intersected with transcriptional regulator ChIP-seq peaks 
from publicly deposited experimental data. For each ChIP-seq dataset, the cell line, cell type, and molecule are provided. The number of times that the ChIP dataset had a peak that overlapped a genetic 
variant at an FTD risk locus is indicated (“Overlap”). Only one overlap was counted for each independent risk locus, even when multiple risk variants at the same risk locus overlapped a ChIP-seq dataset 
(i.e., the maximum overlap is 47). Only the top 5 unique transcriptional regulator datasets with three or more overlaps with independent FTD risk loci are shown. A permutation strategy is used by RELI to 
identify the significance of the “Overlap”. The P value is identified based on the permutations of RELI and is calculated from the Z-score. The “Corrected P value” gives the P value after accounting for 
multiple testing of the many ChIP-seq datasets.
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http://links.lww.com/MD/H592
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http://links.lww.com/MD/H594
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mechanism is tau hyperphosphorylation; interferon-gamma 
(which signals through STAT4) has been shown to induce tau 
hyperphosphorylation, a key pathologic event in FTD due to 
tauopathies, in two mouse models.[38,39]

In addition to enrichment in immune function, we also found 
that GO pathways related to lipid and cholesterol handling/
metabolism were enriched. Recent evidence has found higher 
serum low-density lipoprotein in the behavioral variant of FTD 
compared to Alzheimer’s disease as well as healthy aging.[40] 
Though it remains unclear whether this is part of the pathophys-
iology of FTD or a result of increased appetite, as the elevated 
LDL levels were positively correlated with increased appetite 
and eating score.[40] Recently it was shown that the total serum 
HDL concentration was decreased in autosomal dominant FTD 
carriers when compared to non-carriers and, decreased concen-
trations of HDL particles of different sizes and subclass were 
consistently observed.[41] Though the etiology for this remains 
unclear. Regarding lipid handling, total abundance of triglycer-
ide was increased significantly in the behavioral variant of FTD, 
whereas phosphatidylserine and phosphatidylglycerol decreased 
significantly in the behavioral variant FTD.[40] Our findings may 
provide insights into the mechanisms for altered cholesterol 
and lipid handling in FTD, serving as a novel direction for FTD 
research.

Our analysis identified several unique transcriptional reg-
ulators with significant enrichment at FTD disease risk loci. 
TRIM28, KDM5C, ZNF525, and CHD1 are highly expressed 
in the brain as well as the immune system, further supporting 
a possible role of transcriptional regulation in this disease.[42] 
These transcriptional regulators have all been previously 
linked to dementia or other neurologic disorders, and there-
fore it is plausible that they may be involved in the genetic 
etiology of FTD. Tripartite motif-containing 28 (TRIM28) has 
previously been shown to regulate tau levels, as well as sta-
bilize and promote nuclear accumulation and toxicity of tau, 
with the reduction of TRIM28 reducing toxicity in animal 
models of tau-mediated neurodegeneration.[43] KDM5C has 
previously been associated with X-linked intellectual disability 
with apathy and socially inappropriate behaviors.[44,45] Because 
FTD is also associated with apathy and socially inappropriate 
behaviors, albeit later in life, it is unsurprising that KDM5C 
is associated with both FTD and X-linked intellectual disabil-
ity. TAR DNA-binding protein 43, the pathologic hallmark of 
the majority of FTD cases (along with hyperphosphorylated 
tau), has been found to impair the induction of multiple key 
stress genes required to protect from disease by reducing the 
recruitment of the chromatin remodeler Chromodomain heli-
case DNA binding protein 1 (CHD1) to chromatin in animal 
models of FTD and amyotrophic lateral sclerosis.[32] CHD1 
depletion robustly enhances TDP-43-mediated neurodegen-
eration and promotes the formation of stress granules.[32] 
Upregulation of CHD1 restores nucleosomal dynamics, pro-
motes normal induction of protective stress genes, and rescues 
stress sensitivity of TDP-43-expressing animals.[32] Therefore, 
depending on the underlying FTD pathology (tau vs TDP-43) 
there may be different transcriptional regulators with altered 
activity: TRIM28 or CHD1.

This study has several limitations. First, interpretation of 
GWAS results is challenging because the resulting genetic 
loci are largely located in non-coding regions, and therefore 
it is difficult to predict and validate their mechanistic roles. 
Furthermore, genetic association studies do not identify single 
GVs, but rather nominate a set of variants that are in link-
age disequilibrium with one or more causal variant(s). Studies 
using larger populations are therefore needed to identify 
more robust associations. In addition, many currently iden-
tified FTD genetic risk loci are in the highly complex HLA 
region, further hindering the task of understanding the genetic 
etiology of the disease. Furthermore, there is a lack of ChIP 

seq data in neuronal and microglial cells, which are the most 
likely effectors of disease in FTD, resulting in a substantial 
missing data problem.

Our results have identified several transcriptional regulators 
that may play a role in the etiology of FTD. This focused list of 
regulatory proteins can now be used in ChIP-seq experiments 
using cells from patients with FTD. This important first step 
supports the role of immune associated transcriptional regula-
tors in the pathogenesis of this complex disease and will help 
guide further studies evaluating the functional relevance of 
genetic risk loci in FTD.
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