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Abstract

Protein-protein interactions (PPI) in nature are conveyed by a multitude of binding modes involving various surfaces,
secondary structure elements and intermolecular interactions. This diversity results in PPI binding affinities that span more
than nine orders of magnitude. Several early studies attempted to correlate PPI binding affinities to various structure-
derived features with limited success. The growing number of high-resolution structures, the appearance of more precise
methods for measuring binding affinities and the development of new computational algorithms enable more thorough
investigations in this direction. Here, we use a large dataset of PPI structures with the documented binding affinities to
calculate a number of structure-based features that could potentially define binding energetics. We explore how well each
calculated biophysical feature alone correlates with binding affinity and determine the features that could be used to
distinguish between high-, medium- and low- affinity PPIs. Furthermore, we test how various combinations of features
could be applied to predict binding affinity and observe a slow improvement in correlation as more features are
incorporated into the equation. In addition, we observe a considerable improvement in predictions if we exclude from our
analysis low-resolution and NMR structures, revealing the importance of capturing exact intermolecular interactions in our
calculations. Our analysis should facilitate prediction of new interactions on the genome scale, better characterization of
signaling networks and design of novel binding partners for various target proteins.
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Introduction

Many biological processes are governed by non-covalent

interactions between two or more proteins. Binding affinities of

functional protein-protein interactions (PPIs) span more than nine

orders of magnitude, from very weak and transient interactions

observed frequently in signal transduction and membrane

trafficking [1,2] to very strong interactions exhibited by several

enzyme-inhibitor complexes with binding affinities (Kd) reaching

10214 M [3,4]. In spite of numerous studies that analyze various

PPIs [5,6], precise features that distinguish weak PPIs from high-

affinity PPIs remain elusive [7]. An accurate understanding of

these interactions would allow us to predict new PPIs on the

genome scale, to better characterize known signaling networks,

and to study PPI evolution. In addition, it would enable rational

design of novel binding interactions, facilitating the discovery of

therapeutic molecules that target disease-associated PPIs.

Binding interfaces of protein-protein complexes serve a dual

role in protein function, since they can exist both as surfaces of

monomeric proteins and as the area buried upon complex

formation. They hence should differ in chemical properties from

both protein surfaces and protein cores [8]. With the appearance

of high-resolution structures for the first protein-protein complex-

es, a number of groups calculated and analyzed various structure-

based features of binding interfaces such as solvent accessible

surface area, packing, hydrogen bond (H bonds) and salt bridge

patterns and arrived at a number of conclusions (see [9] for a

review). Janin and colleagues reported that an interface covering

about 1500 Å2 and containing at least ten hydrogen bonds

possesses sufficient enthalpy to generate binding affinities of up to

10214 M [10]. Xu et al, established that hydrogen bonding

geometry at interfaces is less optimal and exhibits wider

distribution compared to that at the interior of globular proteins

[11]. Thornton and colleagues concluded that interfaces of

permanent complexes are more closely packed and contain fewer

intermolecular hydrogen bonds compared to interfaces of non-

obligatory complexes [5].

The growing number of high resolution structures for various

PPIs as well as experiments documenting binding strengths

stimulated several investigations directed at predicting PPI binding

affinities from structure-derived features [12–18]. These works

utilized either empirical scoring functions or knowledge–based

potentials that both highly depend on the quality of the dataset.

The described studies were performed using small datasets where

good correlation with binding affinity was observed. However,

when evaluated on larger datasets the same methods frequently fail

[19]. Recent community-wide assessment of methods for predict-

ing protein binding affinities demonstrated that even distinguish-
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ing between native PPIs and computationally designed PPIs that

do not bind each other in reality is a difficult task [20].

Prediction of PPI binding affinity faces several limitations. First,

binding affinity data is not always reliable and is frequently not

compatible between various experiments due to different condi-

tions and experimental techniques used for the measurement. For

example, a Kd for the same protein-protein complex reported by

different groups could easily range by two orders of magnitude

(e.g. from 10210 to 10212 for the fasciculin/acetylcholinesterase

complex [21–23]). An additional inaccuracy in affinity prediction

might come from crystal structures that are solved at low or

medium resolution and thus might misrepresent certain intermo-

lecular interactions in the complex. Due to these uncertainties, a

structure-based prediction of the binding affinity cannot exceed a

certain limit of accuracy [24].

Recently, Kastritis et al reported a dataset containing 144

protein-protein complexes with their corresponding binding

affinities [25]. This dataset is larger than the previously available

datasets and contains only binding affinity data measured with

precise experimental techniques such as SPR, ITC, and fluores-

cence, thus improving the accuracy of the provided Kd values. An

additional advantage of this dataset is that the structural

information is provided not only for the bound complex but also

for the free components, allowing calculation of conformational

changes associated with binding. Three recent studies used this

benchmark to develop new computational methods for prediction

of binding affinity and reported good correlation with experimen-

tal data, especially when utilizing a very large number of molecular

descriptors [24,26,27]. However, machine-learning-based predic-

tors are complex and thus do not provide better understanding of

fundamental forces that determine protein binding affinity. In

addition, such predictors are biased towards a particular dataset

and are likely to perform worse on different datasets.

The goal of the present study is to examine how several types of

structure-derived molecular features influence binding energetics

and to define particular features that can distinguish between high-

, medium- and low-affinity PPIs with statistical significance. Using

the Kastritis dataset [25] we construct our own database where for

each PPI we calculate a number of biophysical features from the

atomic coordinates of the protein-protein complexes and the

unbound structures. We explore how well each calculated

biophysical feature alone correlates with binding affinity and

determine the features that could be used to distinguish between

high-, medium- and low- affinity PPIs. Furthermore, we test how

various combinations of features could be applied to predict

binding affinity and observe some improvement in correlation if

more features are incorporated into the equation. In addition, we

see a considerable improvement in predictions if we exclude from

our analysis low-resolution and NMR structures, revealing the

importance of capturing exact intermolecular interactions in our

analysis.

Methods

All the data used for this work is organized in a database which

includes all parameters at the atomic level. Different physical

features were calculated from PDB files and included in the

database.

Database preparation
144 structures of protein-protein complexes and the corre-

sponding structures of the unbound proteins were extracted from

PDB according to the list published in the benchmark database

[25]. Complexes with heteroatoms closer than 1.4 Å from the

interface were discarded (PDB IDs 1BJ1, 1F34, 1JIW, 1JMO,

1S1Q, 1XD3 and 2J0T). In addition, we excluded a complex

where an N-terminal tail close to the binding interface is missing

from the structure but is strongly influencing the affinity

measurements (PDB ID:2TGP), a complex where two different

interfaces are too close to each other to analyze them indepen-

dently (PDB ID:1NVU), and a complex that has been reported to

exhibit an exceptionally high level of disorder-to-order transition

[26] (PDB ID:2OZA).

Hydrogens were added to all files with the Reduce software [28]

with histidines, asparagines and glutamines allowed to flip. The

binding interface for each PPI was defined as all the atoms on one

chain that are within 4.8 Å from the second chain in the complex.

Calculation of difference in accessible surface area
(DASA)

We implemented the Lee-Richards molecular surface definition

[29] using a probe radius of 1.4 Å for the calculation of the

accessible surface area at the atomic level. Interface ASA is defined

as the area of the atoms that make up the surface of the binding

interface. DASA is defined as ASA that becomes inaccessible to

solvent upon binding.

For each atom in the interface, we defined a periphery index as a

distance from the closest atom on the surface of the protein that is

not part of the interface. Atoms with a periphery index #3 Å were

defined as peripheral atoms. Polar and non-polar area was

calculated by summing up the areas of polar and non-polar

interfacial atoms.

Hydrogen bonds
An angle- and hybridization-dependent 12–10 H bond potential

[30] with hydrogen bond equilibrium distance of 2.8 Å and a well-

depth of 8 kcal/mol was used to calculate the hydrogen bond

energy for each pair of potential donor and acceptor atoms [31]. If

the calculated H bond energy was lower than 20.6 kcal/mol a

satisfied hydrogen bond was counted, otherwise an unsatisfied

bond was counted. In the hydrogen bond analysis, we report the

number of non-peripherial H bonds, involving the atoms with a

periphery index of .3 Å. When an interfacial atom participates in

a H bond with another atom on the same protein, an

intramolecular H bond was counted. Intermolecular H bonds

were counted when a H bond involves a donor and an acceptor

atoms that belong to different chains.

Geometric complementarity
Van der Waals (VdW) interactions were calculated according to

the Lennard-Jones 12-6 potential with softened repulsive term

[31,32]. Only neighbor atoms of less than 9 Å were considered for

this calculation. VdW interactions were measured between atoms

of different chains in the complex. Well depth was set to 0.001 Å

when atoms formed a H bond. Other methods used for geometric

complementarity calculation in this work include Sc [33],

implemented in the Rosetta software [34], and the Katchalsky-

Katzir method [35].

Cavities
Empty spaces within the interface with sufficient volume to

accommodate a water molecule were defined as cavities. We then

selected only closed cavities that were at a distance of at least 2.8 Å

from the surface (corresponding to the diameter of a water

molecule). Cavities were detected and their volume was calculated

using a simple Monte Carlo Integration technique [36].

Structure-Affinity in Protein Interactions
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Conformational changes
Structures of the unbound proteins were superimposed onto the

structure of the complex [37]. Root Mean Square Deviation

(iRMSD) between bound and unbound structures was calculated

for all Ca atoms belonging to the interface.

To calculate side chain conformational changes upon binding,

we assigned x1 and x2 dihedral angles to all side chains in the

binding interface for the bound and the unbound structures. When

at least one of these angles differed by more than 20 degrees

between the unbound and the bound protein, the residue was

considered to change conformation upon binding. The number of

residues that do not change conformation upon binding was

normalized by the total number of residues in the interface to give

a percentage of residues that do not change side chain

conformation. For NMR structures, only the first model was

analyzed.

Hot spots
In silico alanine scanning was performed with the Robetta

server that uses a fixed backbone approximation and an energy

function parameterized on Ala mutations [38]. We defined hot-

spot positions where mutation to Ala destabilized the complex by

at least 1 kcal/mol.

Binding Interface composition
The interface propensities for each of the 20 natural amino-

acids, for each PPI, were calculated as a ratio between ASA that

the amino acid contributes to the interface and ASA that it

contributes to the whole surface according to.the equation:

AApropensity = (ASA AAi/ASA interface)/(ASA AAs/ASA sur-

face). Here ASA AAi is the surface area of a particular amino acid

in the interface and ASA AAs is the surface area of the same amino

acid on the whole surface of the protein [5]. The results were

averaged over the entire database for each amino acid. High- and
Low-affinity propensities for each amino acid were calculated

similarly as above but using only PDBs belonging to high- and

low-affinity groups, respectively.

Electrostatic interactions
Salt bridges were counted according to Xu et al [11]. When

distance between charged atoms is less than 4 Å and they

participate in a hydrogen bond, a salt bridge is counted.

Electrostatic energy was calculated using a Coulomb equation

with a dielectric constant of 10 [31] and using the Delphi software

[39] that utilizes linear Poisson-Boltzmann equation. For the latter

calculation we used interior and exterior dielectric constants of 2

and 80, respectively and salt concentration of either 0 or 0.145 M.

The electrostatic component of the binding free energy was

obtained as the difference between the electrostatic free energy of

the complex and those of the unbound chains.

Receiver Operator Characteristic (ROC) plots
For every tested biophysical feature we drew a ROC plot. This

plot goes through all possible cut-off values that are used to

distinguish between two groups, e. g. high- and low-affinity PPIs.

Y-axis shows the fraction of PPIs from high-affinity PPIs that are

above the cutoff values, as expected (true positive rate). X-axis

shows the fraction of PPIs that are above the cut-off value in spite

of belonging to low-affinity PPIs (false positive rate). Both x and y

are normalized to 1 and the area under the curve (AUC)

represents the performance of prediction when distinguishing

between the two groups using the particular feature.

Combining biophysical features for affinity prediction
We considered all possible combinations of thirteen different

biophysical features that are likely to be independent of each other

(see table S2). Using a linear combination of all considered

features, we optimized the weights in front of each feature to get

the best correlation with experimental binding affinity. This

optimization was performed starting from all combinations of two

features and finishing with all possible combinations of thirteen

features. Using the optimized weights, we calculated Pearson’s

correlation coefficient R and the AUC for ROC plots for high- vs.

low-, high- vs. medium-, and medium- vs. low-affinity PPIs.

Finally, the best values of R, and AUCs for each number of

considered features were plotted. Models were cross-validated

using the leave one out algorithm when the number of samples was

below 100. This method requires fitting the data N times for a

dataset of N points. In each round of fitting, one file is excluded

from calculations and its affinity is predicted with the best weights

in front of each feature. The N predicted values are then

compared to the experimental values and the Pearson correlation

coefficient R is reported.

Results and Discussion

To achieve the best possible accuracy in our analysis, we first

systematically inspected all PPIs presented in the Kastritis

database. We decided to exclude complexes that contain

heteroatoms in the vicinity of the binding interface since the

effect of heteroatoms on binding affinities cannot be accurately

predicted. In addition, we excluded a complex where an N-

terminal tail close to the binding interface is missing from the

structure but is strongly influencing the affinity measurements

(PDB ID:2TGP), a complex where two different interfaces are too

close to each other to analyze them independently (PDB

ID:1NVU), and a complex that has been reported to exhibit an

exceptionally high level of disorder-to-order transition [26] (PDB

ID:2OZA). After these exclusions we were left with 133 PPIs in

our dataset. Each PPI was assigned into one of the three groups of

high (Kd #1029 M), medium (1029 M ,Kd #1026 M) and low

affinities (Kd.1026 M) containing 43, 60, and 30 complexes in

each group (see Figure S1 for distribution of datapoints). In

addition, we divided the complexes into rigid and flexible

according to the extent of conformational changes they exhibit

upon binding. Complexes were defined flexible if the Root Mean

Square Deviation between interfacial Ca atoms (iRMSD) of the

bound and the unbound structures was $1 Å and were defined as

rigid otherwise. For each PPI in our dataset, the binding interface

was defined and was broken down into atoms with assigned

coordinates and chemical properties. For each complex, we

calculated a number of biophysical features that we considered

important for determining binding affinity. These features

included accessible surface area, inter- and intra-molecular H

bonds, changes in main chain and side chain conformations

between the bound and unbound structures, geometric comple-

mentarity, electrostatic interactions, the number of hot-spots,

interface composition and volume of cavities. Some features were

calculated with a number of different methods and the results were

compared. Finally, using the Receiver Operator Characteristic

(ROC) analysis, we compared how different features could be used

to distinguish between low-, medium-, and high-affinity complex-

es.

Changes in the accessible surface area (DASA)
DASA is the total area that gets buried upon the complex

formation. Earlier studies reported that protein binding affinity

Structure-Affinity in Protein Interactions
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depends on DASA, with high-affinity complexes burring more

surface area [5,19,40]. We found that DASA exhibits some

correlation with binding affinity, with an R-value of 0.32

(Figure 1A). A better correlation (R = 0.41) is obtained if we

normalize DASA by the total area of the atoms in the binding

interface, providing a measure of binding interface dehydration

(Figure 1B). The moderate correlation between DASA and affinity

is not surprising since it is known that a few point mutations can

produce many-fold changes in binding affinity without significant

changes in DASA. For example, cognate and non-cognate

complexes of colicin/immune proteins exhibit affinities of 10214

and 1028 M respectively while showing very similar DASA [41].

Furthermore, a single mutation in hemagglutinin from Influenza

virus reduces the affinity of this protein for an antibody from 1029

to 1026 M [42]. Affinity maturation experiments in many

antibody-antigen complexes also argue against strong correlation

between DASA and binding affinity [43]. Thus, PPIs with larger

DASA do not necessarily exhibit higher affinity but have a

potential for containing more productive intermolecular interac-

tions and for achieving higher affinity through mutations.

In some protein design studies, binding affinities of PPIs were

enhanced by substituting polar residues with hydrophobic amino

acids, implying that non-polar buried surface area should correlate

with affinity [44]. We thus decided to examine whether polarity of

the binding interface is correlated with binding affinity in our

dataset. We found no correlation between binding interface

polarity and affinity (Figure 1C) with PPIs exhibiting on average

48:52 ratio between polar and hydrophobic surface area, with a

standard deviation of 7%. We conclude that binding interfaces of

high-affinity complexes are not more hydrophobic than those of

low-affinity complexes. This lack of correlation between polarity

and affinity might be a result of the evolutionary pressure to keep

protein surfaces mostly polar, preventing protein aggregation.

H bonds
H bond interactions are crucial to both protein folding and

binding. While the energy of one H bond is relatively small, a large

number of H bonds in proteins make them significant contributors

to protein energetics. We hence calculated the number of H bonds

formed across the binding interface (intermolecular H bonds), and

within the interface (intramolecular H bonds) for the complexes in

our dataset. Here we excluded H bonds that lie on the periphery of

the binding interface since buried H bonds were expected to be

more important for binding energetics compared to exposed H

bonds. We also calculated the number of unsatisfied H bonds (the

number of H bond donors that are buried within the interface and

do not participate in H bonds). Unlike some previous studies [5]

our analysis was based on calculating the energies of the H bonds

according to atomic distances and angles between the donor, the

hydrogen, and the acceptor atoms (see Materials and Methods).

Our results show that the highest correlation (R = 0.40) is observed

between affinity and the total number of H bonds in the binding

interface (Figure 1D). Slightly lower correlation is observed when

considering inter- or intra-molecular H bonds alone with R-values

of 0.34 and 0.36, respectively (Figure 1E and 1F). Our results are

in agreement with the general notion that intermolecular H bonds

improve the enthalpic term of the free energy of binding, while the

intramolecular bonds stabilize the interface and thus reduce the

unfavorable entropic change associated with binding. Unexpect-

edly, no correlation with binding affinity is observed for interfacial

unsatisfied H bonds for all PPIs in the dataset (Figures S2).

Geometric complementarity
Protein-protein recognition has been first described by the lock-

and-key theory developed already hundred years ago [45]. This

model assumes complete geometric complementarity of the two

binding interfaces and does not consider any conformational

change upon binding. Geometric complementarity in binding

interfaces is hence a likely parameter for determining PPI binding

affinity. We calculated geometric complementarity using three

different methods including Katzir’s molecular surface recognition

[35], surface complementarity parameter Sc [33] and Van der

Waals energy [30]. The best correlation with binding affinity is

obtained when using VdW energy as a measure of geometric

complementarity (Figure 1G). This feature shows an R-value of

0.43. Substantially lower correlation with affinity is observed when

using two alternative methods for geometric complementarity

calculation (Figures S3A and S3B). When separating between rigid

and flexible complexes, Van der Waals energy gives a comparable

correlation with binding affinity for both groups while the Katzir

method gives much lower correlation for flexible complexes

compared to rigid complexes and Sc parameter gives no

correlation for either rigid or flexible complexes (Table S1). These

results suggest that Van der Waals energy best approximates the

energetic contribution of geometric complementarity to protein

binding.

Cavities
Cavities could be observed as packing defects within protein

cores or binding interfaces [46,47]. Cavities in protein cores have

been shown to be extremely unfavorable and their removal usually

produces high stabilization of the protein [48,49]. The role of

cavities in protein-protein interfaces has been less studied

compared to their role in protein cores. Chakrabarti and

colleagues report that cavities in interfaces are on average larger

compared to cavities in protein cores and their size correlates well

with the size of the monomeric protein but not with the size of the

interface [50].

We computed the volume of closed cavities in binding interfaces

of PPIs in our dataset and examined how this feature correlates

with binding affinity. In contrast to our expectations, we observed

no correlation between the total cavity volume and binding affinity

(Figure 1H). Interfaces of high- and low-affinity complexes exhibit

an average total cavity volume of 146 and 104 A3 respectively.

The lack of correlation may be due to the fact that only empty

cavities, not containing water molecules, are destabilizing for

binding. However, we could not distinguish between empty and

water-containing cavities in our database due to insufficient

resolution of some of the crystal structures in our study.

Hot Spots
It has been observed that a relatively small number of interface

residues, referred to as hot-spots, account for the majority of the

binding energy [51]. Hot-spot residues are usually defined as

binding interface positions where mutations to Ala produce more

than 1 kcal/mol destabilization of the complex. We calculated the

number of hot-spots for each PPI in the dataset using the Robetta

server [52] and explored whether the calculated number of hot-

spots in the interface correlates with binding affinity. We found a

moderate correlation between affinity and the number of

interfacial hot-spots with an R value of 0.28 (Figure 1I). One

possible reason for relatively modest correlation between affinity

and the number of hot-spots are errors associated with hot-spot

predictions due to inaccuracies in the energy function and/or the

fixed backbone approximation.

Structure-Affinity in Protein Interactions
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Electrostatic interactions
Past studies have demonstrated that electrostatic interactions, in

general, are destabilizing in protein folding [39,53] but stabilizing

in protein binding [54]. Such difference was explained by more

favorable energetic change associated with transferring hydrophil-

ic pairs from the surface of unbound proteins to the complex

compared to the same change associated with protein folding.

Here, we calculated electrostatic interactions in binding interfaces

using two alternative methods, first by simply counting the number

of intermolecular salt bridges [11,55] and second by calculating

the exact electrostatic interaction energy [30,39,56,57].

We found that the number of salt bridges as defined by Xu et al

[11] does not correlate with binding affinity (Figure S4A). Similar

results are obtained if we count repulsive same-charge intermo-

lecular interactions (Figure S4B). Nevertheless, the number of salt

bridges shows some correlation with the interfacial area (R-value

of 0.44). That is, the number of salt bridges is dependent on the

area of the interface, but its contribution to binding energetics is

Figure 1. Dependence of Kd on various single biophysical features. (A) Change in the accessible interface surface area (ASA); (B) DASA
normalized to the total interface area; (C) percent of non-polar change in the accessible surface area; (D) the total number of interfacial H bonds, (E)
the number of intermolecular interfacial H bonds, (F) the number of intra-molecular H bonds; (G) Van der Waals energy; (H) volume of cavities; (I)
number of hotspots; (J) electrostatic columbic energy; (K) RMSD between bound and unbound structures for interface Cas; (L) percentage of
rotamers that do not change conformation upon binding. Each point represents one PDB file in the database and the line corresponds to a linear fit
to all data points in the database.
doi:10.1371/journal.pone.0110085.g001
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low. We thought that the lack of correlation between electrostatics

and the binding affinity might be due to our simplistic approach

for approximating this term. We hence performed more rigorous

calculations to obtain electrostatic energy between the two protein

chains involved in binding using either the Coulombic potential or

a more sophisticated Poisson-Boltzmann equation [39,58]. In both

cases, we found no substantial correlation between electrostatic

energy and binding affinity (Figure 1J and Figure S4C). These

results indicate that both high- and low-affinity complexes could

contain electrostatically optimized or non-optimized interfaces.

Binding interface composition
Several recent studies concluded that certain amino acids such

as Tyr, Trp, Phe, Met, Val, Cys and Ile appear more frequently in

PPI binding interfaces [5]. Other studies however, showed no

appreciable difference in the composition of interfaces of the whole

genomes [59,60]. To our knowledge, no study attempted to

correlate amino acid composition to binding affinity. We hence

examined whether this feature plays a role in determining binding

affinity by calculating amino acid propensity to be in an interface

[5], first for all complexes in our database and then separately for

low- and high-affinity complexes (Figures 2A and B). For all

complexes in the database, we observe that Trp, Tyr, Phe and Met

are the most frequent interfacial amino acids, in agreement with

previous studies. We also observe that Tyr, Trp, His, and Cys have

a higher propensity to be found in high-affinity interfaces

compared to low-affinity interfaces. However, due to a relatively

small number of data points, these results are not statistically

significant, pointing to the necessity of enlarging the dataset under

study. Interestingly, Ala propensity shows an anti-correlation with

affinity that is highly significant, indicating that this amino acid,

within an interface, cannot provide favorable interactions. Lys also

shows higher propensity to be found in low-affinity complexes

compared to high-affinity complexes, in agreement with a previous

study [61].

High propensity of Cys in high-affinity interactions could be

partially explained by the fact that many of the high-affinity PPIs

are enzyme-inhibitor complexes and inhibitors frequently contain

multiple cysteins, most of them linked in intramolecular disulphide

bonds. Indeed, in high-affinity complexes, Cys residues are mostly

oxidized exhibiting an 8:1 oxidized/reduced ratio, while in low-

Figure 2. Amino acid interface propensities. (A) Amino acid
propensities to be in an interface compared to protein surface
calculated according to [5] (B) Amino acid propensities for high-affinity
(black) and low-affinity (grey) complexes.
doi:10.1371/journal.pone.0110085.g002

Figure 3. Improvement in R-value for high-resolution structures. Barplot displaying correlation (R-value) between different biophysical
features and Kd when using only high-resolution structures (red bars) and all structures (grey bars).
doi:10.1371/journal.pone.0110085.g003
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affinity complexes this ratio reduces to 1:1. We thus conclude that

cysteins bring rigidity to the main chain of the interface, lowering

the entropic cost of binding.

Conformational changes upon binding
Protein-protein binding is a thermodynamic process that involves

gain of favorable enthalpy and unfavorable reduction in entropy

upon complex formation. However, the entropic term of binding is

difficult to calculate and has been estimated only in a few studies

[5,25,62,63,64]. The Kastritis database [25] allows for estimation of

the entropic term by analyzing conformational changes associated

with binding on both the backbone and the side chain level.

We first analyzed backbone conformational changes associated

with binding by calculating iRMSD between Ca atoms of the

bound and the unbound conformations. For all complexes in the

database, no measurable correlation was observed between

binding affinity and iRMSD (Figure 1K). However, when

analyzing only rigid complexes (N = 69) we observed that iRMSD

decreases with increased affinity with a correlation of R = 0.35

(Figure S5). This result indicates that iRMSD is a good measure of

contribution of conformational movements to binding energetics

when such movements are small. However, when large confor-

mational changes are involved iRMSD becomes a poor measure

of binding affinity.

Figure 4. Receiver Operator Characteristic Analysis. The graph shows the true positive rate vs. false positive rate in discriminating high- from
low-affinity PPIs (red line), medium- from low-affinity PPIs (green line) and high- from medium-affinity PPIs (blue line) for each feature. Each point
represents a particular cut-off value used to discriminate between the two groups. Features included in the figure are (A) DASA, (B) DASA/ASA, (C)
Van der Waals energy, (D) the total number of interfacial H bonds, (E) the number of intermolecular interfacial H bonds, (F) the number of intra-
molecular H bonds; (G) Percentage of rotamers that do not change conformation upon binding; and (H) the number of hotspots.
doi:10.1371/journal.pone.0110085.g004
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We next measured side chain conformational rearrangements

for interface residues due to binding by calculating the differences

in x1 and x2 angles between the bound and the unbound states.

We further correlated percentage of side chains that did not

change conformation upon association to binding affinity. We

found that when all complexes are considered, the correlation

between percentage of residues that do not change conformation

and affinity is moderate (R = 0.27, Figure 1L). This value however

increases substantially to 0.51 if we restrict our analysis to high-

resolution X-ray structures (see section on high-resolution

structures). Previous reports demonstrated that some key side

chains in binding interfaces are pre-oriented for binding [20,65].

Our results corroborate these findings and further reveal that high-

affinity complexes are more likely to have their side chains pre-

orientated for binding compared to low-affinity complexes. Such

side chain pre-orientation minimizes the entropy loss upon binding

and thus increases affinity. This feature however, could not be

computed accurately for low-resolution structures.

High-resolution structures show better correlation to
binding affinity for most of the features

We thought that modest correlation with binding affinity for most

biophysical features could be in part due to the limited resolution of

the structures under study. We hence compared the R-values

calculated for all structures in the dataset to those calculated for only

high-resolution files (X-ray structures with a resolution ,2.5 Å for

both the complex and the free components, 37 PPIs). To exclude

possible bias coming from lowering the number of samples in our

analysis, we performed the same calculation using only low-

resolution structures in our dataset. Interestingly, we find that most

features show a considerable improvement in R-values when only

high-resolution structures are considered (Figure 3). In contrast,

decrease or no change in R-value was observed for most features for

low-resolution structures (Figure S6). Very substantial improvement

in R-values for high-resolution structures is shown for iRMSD and

the percentage of side chains that did not change conformation

upon binding (corresponding to 0.40 and 0.51, respectively),

indicating that these features are most sensitive to resolution of

the structure. Overall, our analysis shows that low resolution of

structures is a limitation that results in inaccuracies of binding

affinity predictions and some biophysical descriptors are more

sensitive than others to such inaccuracies.

Distinguishing between low-, medium-, and high-affinity
complexes

Using ROC analysis, we tested how each of the explored

biophysical features can distinguish between high-, medium-, and

low-affinity PPIs. In this analysis we included only thirteen features

that showed some correlation with binding affinity (Table S2). Our

results show that several single features could distinguish well

between high- and low-affinity PPIs with Area Under the Curve

(AUC) values reaching 0.86 and 0.81, for the VdW energy and the

total number of H bonds, respectively (Figure 4, red curves).

Slightly lower AUC values are obtained when distinguishing

between medium- and low-affinity complexes (Figure 4, green

curves). However, worse results are obtained when distinguishing

high-affinity complexes from medium-affinity complexes, pointing

to apparent similarity of these two groups (Figure 4, blue curves).

Inability to discriminate between these two groups of PPIs is

probably due to the composition of out database that contains

many PPIs with a Kd near the cutoff between high- and medium-

affinity groups (Figure S1).

We further explored whether our predictions could be improved

by combining several features into one formula (see Methods).

Figure 5. Incorporating more features in the prediction improves correlation with Kd and ROC analysis. The best possible weights were
obtained to combine the features into one equation using a linear fit to the experimental data. X-axis shows the number of features used to predict
Kd and to discriminate between the two groups. Y-axes shows the best value obtained for each number of features used in the equation. The analysis
was performed on all structures in the database (filled circles) and on high-resolution structures only (red stars). (A) AUC were evaluated on high- vs
low-affinity (red), medium- vs low-affinity (green) and medium- vs high-affinity (blue) PPIs (B) Pearson’s correlation coefficient for all dataset (filled
circles) and for high-resolution structures only (red stars).
doi:10.1371/journal.pone.0110085.g005
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Figure 5A and B shows that both AUC and R-values could be

increased if several features are combined in one linear equation

reaching the maximum R-value of 0.57 and maximum AUCs of

0.93, 0.81 and 0.71 for discriminating between high- and low-,

medium- and low- and high- and medium-affinity PPIs, respec-

tively. However, introduction of more than four features does not

improve predictions substantially, indicating that the considered

features are probably interdependent and/or overfitting is

observed. Finally, when we restrict our dataset to high-resolution

structures, the correlation with binding affinity significantly

improves for all predictions using combinations of features

reaching a maximum R-value of 0.71 (Figure 5B, red stars).

Conclusions

In this work we tested how a number of features derived from a

PPI structure correlate with PPI binding affinity. The features that

showed the highest correlation with binding affinity are the total

number of H bonds, geometric complementarity measured by the

van der Waals energy, and side chain conformational changes for

high-resolution X-ray structures. In spite of moderate correlation

and high variability, a number of tested single biophysical features

could be used to discriminate between high- and low-affinity

complexes as well as between medium- and low-affinity complexes

with high significance and hence could be used to predict the range

of affinities from structure. These features include not only those

determining enthalpic contribution to binding but also those

directly related to the entropic term such as iRMSD, change in

side chain conformation, the number of disulfide bonds and

intramolecular H bonds. Correlation with binding affinity for most

of the studied features could be improved by restricting the analysis

to high-resolution X-ray structures. Combining several biophysical

features into one equation results in further improvement of our

predictions and allows for unequivocal discrimination between

high-, medium- and low-affinity PPIs. Finally, incorporating the

information for both bound and unbound states improves the

accuracy of the binding affinity predictions and could be utilized for

developing new energy functions for design of PPIs.

Supporting Information

Figure S1 Density estimation of logKd. Kernel density

estimation of the probability density function of the logKd for the

whole dataset. Each circle represents one pdb file in the dataset.

(TIFF)

Figure S2 Unsatisfied Interfacial H bonds. Number of

unsatisfied hydrogen bonds vs. Kd. Each point represents one

PDB file in the database.

(TIFF)

Figure S3 Geometric complementarity vs. Kd. Surface

complementarity calculated using the Katzir score (A) and the Sc

core (B) vs. Kd. Each point represents one PDB file in the database

and the line corresponds to a linear fit to all data points in the

database.

(TIFF)

Figure S4 Electrostatic interactions vs. Kd. (A) the

number of interfacial salt bridges, (B) the number of repulsive

electrostatic interactions and (C) the intermolecular Coulombic

electrostatic energy calculated with the Poisson-Boltzmann

equation vs. Kd. Each point represents one PDB file in the

database and the line corresponds to a linear fit to all data points

in the database.

(TIFF)

Figure S5 iRMSD vs. Kd. iRMSD of rigid structures (iRMSD

#1) vs. Kd. Each point represents one PDB file in the database

and the line corresponds to a linear fit to all data points in the

database.

(TIFF)

Figure S6 R-values for All and low-resolution struc-
tures. Barplot displaying the correlation of different PPI features

to affinity using only low-resolution structures (blue bars)

compared to all structures in the database (grey bars). On the y-

axis, the Pearson’s correlation to affinity. On the x-axis, the

different features whose correlation to affinity was measured.

(TIFF)

Table S1 Pearson correlation coefficient R and p-values
for the three methods used for surface complementarity
analysis computed over the entire database, rigid, and
flexible complexes.

(DOC)

Table S2 List of the 13 different biophysical features
that were considered in a linear combination to fit
experimental Kd values. linear combination to fit
experimental Kd values.

(DOC)
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