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Abstract

Background: Report cards on the health care system increasingly report provider-specific performance on indicators
that measure the quality of health care delivered. A natural reaction to the publishing of hospital-specific performance
on a given indicator is to create ‘league tables' that rank hospitals according to their performance. However, many
indicators have been shown to have low to moderate rankability, meaning that they cannot be used to accurately rank
hospitals. Our objective was to define conditions for improving the ability to rank hospitals by combining several
binary indicators with low to moderate rankability.

Methods: Monte Carlo simulations to examine the rankability of composite ordinal indicators created by pooling three
binary indicators with low to moderate rankability. We considered scenarios in which the prevalences of the three
binary indicators were 0.05, 0.10, and 0.25 and the within-hospital correlation between these indicators varied between
—0.25 and 0.90.

Results: Creation of an ordinal indicator with high rankability was possible when the three component binary indicators
were strongly correlated with one another (the within-hospital correlation in indicators was at least 0.5). When the binary
indicators were independent or weakly correlated with one another (the within-hospital correlation in indicators was less
than 0.5), the rankability of the composite ordinal indicator was often less than at least one of its binary components. The
rankability of the composite indicator was most affected by the rankability of the most prevalent indicator and the
magnitude of the within-hospital correlation between the indicators.

Conclusions: Pooling highly-correlated binary indicators can result in a composite ordinal indicator with high rankability.
Otherwise, the composite ordinal indicator may have lower rankability than some of its constituent components. It is
recommended that binary indicators be combined to increase rankability only if they represent the same concept of
quality of care.
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Background

There is an increasing interest in reporting on the qual-
ity of health care and comparing the quality of health
care and outcomes of treatment between health care
providers. Several American states have released hospital
report cards comparing patient outcomes between hos-
pitals for patients hospitalized with acute myocardial in-
farction or undergoing coronary artery bypass graft
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surgery [1-6]. Similar reports have been released in the
Canadian province of Ontario and in Scotland [7-9].

An indicator is either an outcome (e.g., mortality, surgi-
cal site infection, or length of stay) or a process of care
(e.g., discharge prescribing of evidence-based medications
in specific patient populations) that is used to assess the
quality of health care. A common practice is to report
hospital-specific means of health care indicators (e.g., the
proportion of patients who died in each hospital or mean
length of stay). Crude (or unadjusted) or risk-adjusted
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estimates of hospital performance on specific indicators
can be reported.

When hospital-specific performance on indicators are re-
ported, a natural tendency is to create ‘league tables; in
which hospitals are ranked according to their performance
on a given indicator [10]. Implicit in such comparisons is
the assumption that the indicator permits hospitals to be
ranked accurately according to their performance on the
indicator. However, such rankings do not account for in-
herent variability in ranking due to natural variation in the
indicator. In a study on the use of empirical Bayes methods
to assess health care quality, van Houwelingen et al. appear
to have coined the term ‘rankability’ to refer to the ability
to accurately rank hospitals [11]. While rankability is de-
fined formally in the next section, it can be interpreted as
the proportion of the variation between providers (in terms
of the indicator) that is due to true differences (as opposed
to natural variation due to unexplained factors). Potential
values for the rankability of an indicator range between
zero and one, with higher values suggesting that the indica-
tor can be used to accurately rank hospitals. Lingsma et al.
suggested that an indicator with a rankability above 0.7 can
be considered to have high rankability [12]. A similar con-
cept is referred to as ‘statistical reliability’ by others [13].
This concept has been implemented for both diagnostic
and process indicators [14], as well as for outcome indica-
tors in different fields [15—18].

Some indicators have been shown to have high rank-
ability. Using pregnancy rate as an indicator for assessing
the quality of a set of large IVF clinics was found to have
a rankability of 0.90 [12]. Surgical site infection (SSI)
after colonic resection had a rankability of 0.78 after
adjusting for patient case-mix [19]. However, other indi-
cators have been shown to have poor to moderate rank-
ability. SSI across several types of surgery combined had
a rankability of 0.08 after adjusting for patient case mix
[19]. The indicator denoting poor outcome following
hospitalization for stroke was shown to have a rankabil-
ity of 0.55 [20]. Van Dishoeck examined seven indicators
used in Dutch hospitals and found that only one had
high rankability (unintended reoperation after colorectal
surgery — rankability of 0.71; other indicators had rank-
ability ranging from O to 0.58) [21]. Lawson examined
the rankability of SSI following colorectal surgery and
found that the mean rankability was 0.65 for superficial
SSI, 0.40 for deep/organ-space SSI, and 0.59 for any SSI
[22]. Hofstede et al. examined the rankability of in-
hospital mortality for a variety of conditions or proce-
dures [23]. They found that rankability ranged from 0.01
for patients with osteoarthritis undergoing total hip
arthroplasty/total knee arthroplasty to 0.71 following
hospitalization for stroke.

High rankability is a desirable property for an indica-
tor, as it means that the indicator permits accurate

Page 2 of 10

ranking of hospitals or providers. In the context of ran-
domized controlled trials it has been shown that ordinal
outcomes result in more reliable estimates of the treat-
ment effect than binary outcomes [24—26]. A question
when developing indicators for assessing quality of
health care is whether several binary indicators reflecting
outcomes of increasing severity, which individually have
poor to moderate rankability, can be combined into an
ordinal indicator to increase rankability.

The objective of the current study was to examine how
the rankability of composite ordinal indicators compared
to the rankabilities of the component binary indicators.
The paper is structured as follows: In Section 2, we pro-
vide background and formally define rankability. In Sec-
tion 3, we conduct a series of Monte Carlo simulations to
examine the relationship between the rankability of a bin-
ary indicator and the intraclass correlation coefficient
(ICC) of that indicator across hospitals (as a measure of
the between-hospital variation). In Section 4, we conduct
a series of Monte Carlo simulations to examine the rela-
tionship between the rankability of a composite ordinal in-
dicator and the rankabilities of the individual binary
indicators from which it was formed. Finally, in Section 5
we summarize our findings and place them in the context
of the existing literature.

Rankability and notation
Let Y denote a binary indicator that is used to assess the
performance of a health care provider (e.g., hospital or
physician). Throughout the manuscript, we will refer to
the hospital as the provider, but the methods are equally
applicable to other healthcare providers (e.g., physicians or
health care administrative regions). Y;;= 1 denote that the
indicator was positive or present (e.g., the patient died or
SSI occurred) for the ith patient at the jth hospital, while
Y;; =0 denotes that the indicator was negative for this pa-
tient (e.g., the patient did not die or SSI did not occur). Let
X,;; denote a vector of covariates measured on the ith pa-
tient at the jth hospital (e.g., age, sex, and comorbid condi-
tions).

A random effects logistic regression model can be fit
to model the variation in the indicator:

logit( Pr(Y; = 1|X;)) = Xy + a; (1)

where a; denotes a hospital-specific random effect that is
assumed to be normally distributed: a;~N(ao, %) (we as-
sume that X;; does not contain a constant or intercept
term). The random effects model allows one to formally
model between-hospital variation in the indicator after
adjusting for baseline covariates. The ICC or the vari-
ance partition coefficient (VPC) can be calculated using
the latent variable approach as ICC = -, where 1° is

2 n2?
the variance of the hospital—specificrraghdom effects
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defined above and 1t is the mathematical constant [27,
28]. The ICC denotes the proportion of the variation in
the indicator that is due to systematic between-hospital
variation in the indicator. While there are multiple defi-
nitions of the ICC for use with clustered data [29], we
used the above definition because it appears to be the
most frequently used definition in the context of multi-
level analysis.

Instead of fitting a random effects model to model
variation in the indicator, one could replace the hospital-
specific random effects by fixed hospital effects:

logit( Pr(Y; = 1|X;)) =Xy + axl(j=2) + -
+ arl(j = k) (2)

where there are k-1 indicator or dummy variables to
represent the fixed effects of the k hospitals. Let s; de-
note the standard error of the estimated hospital effect
for the jth hospital. These standard errors denote the
precision with which the hospital-specific fixed effects
are estimated.

The rankability or reliability of the binary indicator is

defined as p = , where 72 and s? are as defined

2+ median(s’)
above [20]. The rankability relates the total variation
from the random effects model to the uncertainty of the
individual hospital effects from the fixed effects model.
It can be interpreted as the proportion of the variation
between hospitals that is not due to chance.

When considering an ordinal indicator with three or
more levels, rankability can be defined similarly through
the use of ordinal regression models. Model (1) is re-
placed by a random effects ordinal logistic regression
model, while Model (2) is replaced by a fixed effects or-
dinal logistic regression model.

Monte Carlo simulations to examine the
relationship between ICC and rankability for a
single binary indicator

We conducted a series of Monte Carlo simulations to
examine the relationship between ICC and the rankabil-
ity of a single binary indicator.

Methods

Let X and Y denote a continuous risk score and a binary
indicator, respectively. The following random effects
model relates the continuous risk score to the presence
of the binary indicator:

logit( Pr(Y; = 1)) = ap; + a1.X;; (3)

The hospital-specific random effects follow a normal
distribution: ag~N(ao, 7%). The average intercept, a, de-
termines the overall prevalence of the binary indicator,
while the slope, a;, determines the magnitude of the
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strength of the relationship between the risk score and
the presence of the binary indicator. Fixing the standard

deviation of the random effects distribution at 7 =7

\ /% will result in a model with the desired value of

the ICC.

We simulated data for 500 patients at each of 100 hos-
pitals. For each of the 100 hospitals, we simulated a
hospital-specific random intercept: ag~N(ao, 7%). The
value of 7* was chosen to produce a desired ICC. For
each subject, a risk score was simulated from a standard
normal distribution: x;~N(0, 1). Then, for each subject
we computed the linear predictor using formula (3). We
then simulated a binary outcome for the indicator from
a Bernoulli distribution with subject-specific parameter
Pr(Yj = 1). In practice, hospital volume varies across hos-
pitals. We designed the simulations so that hospital vol-
ume was fixed across hospitals. This was done to
remove any effect of varying hospital volume on
rankability.

We allowed the following three factors to vary: (i) the
ICC; (ii) the average intercept (ay); (iii) the fixed slope («;)
. The ICC was allowed to take on 13 values from 0 to 0.24
in increments of 0.02. These values were selected as they
range from no effect of clustering (ICC = 0) to a strong ef-
fect of clustering. The average intercept was allowed to
take on four values: - 3, — 2, — 1.5, and — 1. The fixed slope
was allowed to take on three values: - 0.25, 0, and 0.25.
We used a full factorial design, and thus considered 156
different scenarios.

In each of the 156 different scenarios we simulated
100 datasets. In each of the 100 simulated datasets, we
estimated the rankability of the binary indicator using
the methods described in Section 2 (in each simulated
dataset rankability was estimated using the estimated
variance of the random effects, rather than the known
true value). For a given scenario, we then computed the
average rankability across the 100 simulated datasets for
that scenario. The simulations were conducted using the
R statistical programming language (version 3.5.1). The
random effects logistic regression models were fit using
frequentist methods using the glmer function from the
1lme4 package for R.

Results of the Monte Carlo simulations

The results of the Monte Carlo simulations are summa-
rized in Fig. 1. The figure consists of three panels, one for
each of the three fixed slopes relating the risk score to the
presence of the indicator. Each panel shows the relation-
ship between ICC and rankability for the four scenarios de-
fined by the four values for the average intercept. Several
patterns warrant being highlighted. First, for a given value
of the average intercept, rankability increased with
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increasing values of ICC. Second, for a given value of the
ICC, rankability increased as the average intercept in-
creased from -3 to - 1. Third, for a given value of ICC
and average intercept, rankability was negatively correlated
with the fixed slope. Fourth, either the average intercept
(i.e., the overall prevalence of the indicator) had to be mod-
erate to large (-2 to — 1) or the ICC had to be high for
rankability to exceed the 0.7 (70%) threshold that was pre-
viously proposed to denote reasonable rankability [12].

Monte Carlo simulations to examine reliability of
composite indicators

We used an extensive series of Monte Carlo simulations
to examine whether combining three binary indicators
into an ordinal indicator resulted in an ordinal indicator
with greater rankability compared to that of its binary

components.

Methods
We examined scenarios with three binary indicators: Y,

Y,, and Y3. The following three random effects models
relate an underlying continuous risk factor to the pres-
ence of each of the three binary indicators:
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= ao1j + a1 Xy
= ao2j + a12Xj
= ags; + a13X;;

loglt Pr Ylij =1
loglt Pr Y2ij =1
loglt Pr YBij =1

(4)

As above, for a given random effects model, we as-
sumed that the hospital-specific random effects followed
a normal distribution: aoy ~ N(ao, 7%), for k=1, 2, 3.
We assumed that the distribution of the triplet of
hospital-specific random effects followed a multivariate

normal distribution:

2

Xo01; o1 Ty T2 T13

aozj | ~MVN| [ a0z |, | 721 73 723
2

X03; %03 T31 T32 Tg33

(5)

We considered scenarios in which the prevalences of the
three indicators across all hospitals were 0.05, 0.10, and
0.25 (Pr(Yy;=1)=0.05,Pr(Y;=1) =0.10, and Pr(Y3;=1)
=0.25) as this is typical the range of prevalences occurring
frequently in practice. For instance, Hofstede et al. found
that the median hospital-specific rate of in-hospital mor-
tality amongst patients with colorectal carcinoma was
4.9%, while the median acute readmission rate for stroke
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patients was 6.1% [23]. They found that the median in-
hospital mortality rate for patients with heart failure was
11.0%, while the acute readmission rate for colorectal car-
cinoma patients was 10.7%. Van Dishoeck et al. found that
the median rate of having remaining cancer tissue after
breast-saving lumpectomy was 10.5% [21]. Finally, long
length of stay (LOS) has been defined as a LOS that is in
the top 25% for patients with a given diagnosis or proced-
ure [23]. This indicator would have an overall prevalence
of 25% by construction.

Informed by the results of the first set of simulations,
we fixed the three slopes relating the continuous risk
score to the presence of the three binary indicators as fol-
lows: a;;= - 025, a35,=0.50, a;3=1. We then used a
bisection approach to determine appropriate values for
agp j=1, 2, 3 such that the indicators had the desired
prevalence. We then used a grid search to select values of
T]-Z/, j=1,2,3 to result in simulated data such that the
simulated binary indicators had low (rankability < 0.5 [12])
to moderate (rankability from 0.5 to 0.7 [12]) rankability.

For a given scenario, we simulated 100 datasets, consist-
ing of N patients at each of 100 hospitals (this is approxi-
mately equal to the number of hospitals in The
Netherlands, where most of the authors are located, and
thus may be typical of the number of hospitals in small
countries). Within each simulated dataset we computed
the rankability of the three binary indicators. We also cre-
ated a five-level ordinal indicator created by combining
the three binary indicators. Our five-level ordinal indicator
was created so as to go from best (or least serious/severe)
(a value of 1) to worst (or most serious/severe) (a value of
5). It was motivated by scenarios in which the three binary
indicators denote outcomes of differing severities and that
have different prevalences. In particular, the first indicator
is the most severe or serious of the three indicators and
also occurs the least frequently (e.g., death); the third indi-
cator is the least severe or serious and also occurs the
most frequently (e.g., long hospital length of stay); the sec-
ond indicator is intermediary in terms of both severity/
seriousness and prevalence (e.g., subsequent hospital re-
admission). A previous empirical study examined an or-
dinal composite indicator created by pooling these three
binary indicators with these properties [23]. The ordinal
indicator in our study was defined as:

5if Yy =1
4 if Y2ij =1and Y3ij =1
Yij = 3if YZij =1land Ygij =0 (6)

2 if Ygl']' =1and Y2ij =0
1 otherwise

Thus, a subject had the most severe/serious level of
the composite ordinal indicator (5) if the most serious of
the binary indicators (Y;) was present, regardless of
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whether or not any of the other two indicators had oc-
curred. A subject had the least severe/serious level of
the composite ordinal indicator (1) if none of the binary
indicators was present. We computed the rankability of
the ordinal indicator. The mean rankability of each of
the three binary indicators and the one ordinal indicator
was determined over 100 iterations for each scenario.

We allowed two factors to vary in the above simula-
tions: (i) the number of subjects per hospital; (ii) the cor-
relations between the hospital-specific random effects
(cor(ao, aoy); k=1). We considered two levels for the
number of subjects per hospital: 500 and 1000. We con-
sidered eight values for the correlation between hospital-
specific random effects: — 0.25, - 0.10, 0, 0.10, 0.25, 0.50,
0.75, and 0.90. Thus, we considered indicators that were
uncorrelated, weakly correlated, moderately correlated,
and strongly correlated and also allowed both positive
and negative correlations, as found in practice [30]. For
each of the 16 combinations of the above two factors we
considered three different sets of rankability values for
the three binary indicators. We thus considered 48 dif-
ferent scenarios. The simulations were conducted using
the R statistical programming language (version 3.5.1).
The random effects logistic regression models were fit
using frequentist methods using the glmer function from
the 1me4 package for R. The ordinal logistic regression
model was fit using the polr function from the MASS
package, while the random effects ordinal logistic regres-
sion model was fit using the clmm function from the
ordinal package for R.

Results of the Monte Carlo simulations

The mean prevalence of the first, second, and third bin-
ary indicators across the 48 scenarios were 0.05, 0.10
and 0.25, respectively. The mean rankability of the first,
second, and third binary indicators across the 48 scenar-
ios were 0.36 (range 0.22 to 0.43), 0.46 (range 0.29 to
0.59), and 0.52 (range 0.33 to 0.71), respectively.

The results of the second set of Monte Carlo simula-
tions are reported in Fig. 2. The results are reported
using a dot chart. There is one row for each of the 48
scenarios (for each of the 16 combinations of number of
subjects per hospital and correlation of the random ef-
fects, we considered three different sets of rankabilities
for the binary indicators). On each line there are four
dots, denoting the mean rankability of the three binary
indicators and of the ordinal indicator. In 22 (46%) of
the 48 scenarios, the composite ordinal indicator had
greater rankability than did any of the three binary indi-
cators. The likelihood that the composite ordinal indica-
tor had greater rankability than that of the three binary
indicators increased as the correlation of the hospital-
specific effects increased. When the correlation was
negative or equal to zero, then the composite ordinal
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indicator never had greater rankability than that of each
of the three binary indicators. When the correlation was
equal to 0.10, then the composite ordinal indicator had
greater rankability than that of the three binary indica-
tors in 17% of the scenarios. When the correlation was
equal to 0.25, then the composite ordinal indicator had
greater rankability than that of the three binary indica-
tors in 50% of the scenarios. When the correlation was
greater than or equal to 0.50, then the composite ordinal
indicator had greater rankability than that of the three
binary indicators in 100% of the scenarios. In 26 (54%)
of the 48 scenarios, the composite ordinal indicator had
lower rankability than that of the binary indicator with
the greatest rankability. Increasing hospital volume from
500 to 1000 patients did not have a discernible effect on
the likelihood that the composite ordinal indicator had
greater rankability than that of the three binary indica-
tors. A high rankability of the composite indicator was
only observed in simulations in which the three binary
indicators had moderate rankability and were strongly
correlated with one another. However, not all scenarios
with the two latter characteristics yielded a composite
indicator with a high rankability (Fig. 2).
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We used linear regression estimated ordinary least
squares to regress the rankability of the ordinal indicator
on the following variables: the rankability of the three
binary indicators, the correlation between the hospital-
specific random effects, and the number of subjects per
hospital. Number of subjects per hospital was treated as
a categorical variable with two levels, while the
remaining covariates were treated as continuous quanti-
tative covariates. The estimated regression coefficients
are reported in Table 1. The R” statistic for the fitted
model was 0.97 (as was the adjusted R* statistic). Only
two of the variables had an independent effect on the
rankability of the composite ordinal indicator: the rank-
ability of the indicator with prevalence 0.25 and the cor-
relation between the hospital-specific random effects.
The latter result supports our previous results in Fig. 2
that combining highly-correlated binary indicators can
result in a composite ordinal indicator with rankability
that exceeds that of its binary components. We repeated
the regression analysis, restricting the analysis to those
scenarios in which the correlation between hospital-
specific random effects was less than or equal to 0.5, and
obtained similar results.

® Binary indicator 1 (Prevalence 5%) 4 Binary indicator 2 (Prevalence 10%) ¢ Binary indicator 3 (Prevalence 25%) ® Composite ordinal indicator
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Fig. 2 Rankability of binary and ordinal indicators
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The use of 100 replications in each of the 48 scenarios
in the Monte Carlo simulations allowed us to estimate
rankability with relatively good precision. For each sce-
nario and for each of the indicators we computed the
standard deviation of the rankability across the 100 rep-
lications for that scenario. The mean standard deviation
of the rankability of the first binary indicator was 0.067
across the 48 scenarios (ranging from 0.062 to 0.074).
The mean standard deviation of the rankability of the
second binary indicator was 0.058 across the 48 scenar-
ios (ranging from 0.046 to 0.069). The mean standard
deviation of the rankability of the third binary indicator
was 0.056 across the 48 scenarios (ranging from 0.037 to
0.072). The mean standard deviation of the rankability
of the composite ordinal indicator was 0.057 across the
48 scenarios (ranging from 0.032 to 0.078).

We conducted an additional set of simulations that were
a modification of those reported above. In this additional
set of simulations, the prevalence of all three indicators
was set to 10% (instead of 5% vs. 10% vs. 25%). Results for
these simulations are reported in Fig. 3. In 18 (38%) of the
48 scenarios, the composite ordinal indicator had greater
rankability than did any of the three binary indicators.
The likelihood that the composite ordinal indicator had
greater rankability than that of the three binary indicators
increased as the correlation of the hospital-specific effects
increased. When the correlation was negative or equal to
zero, then the composite ordinal indicator never had
greater rankability than that of each of the three binary in-
dicators. When the correlation was equal to 0.10, then the
composite ordinal indicator had greater rankability than
that of the three binary indicators in 17% of the scenarios.
When the correlation was equal to 0.25, then the compos-
ite ordinal indicator had greater rankability than that of
the three binary indicators in 33% of the scenarios. When
the correlation was equal to 0.50, then the composite or-
dinal indicator had greater rankability than that of the
three binary indicators in 50% of the scenarios. When the
correlation was greater than or equal to 0.75, then the
composite ordinal indicator had greater rankability than
that of the three binary indicators in 100% of the scenar-
ios. In 30 (63%) of the 48 scenarios, the composite ordinal
indicator had lower rankability than that of the binary in-
dicator with the greatest rankability.

Table 1 Regression analysis on simulation results
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Discussion

We conducted a series of simulations to examine
whether combining three binary indicators reflecting
outcomes with increasing severity, which individually
had low or moderate rankability, could produce an or-
dinal indicator with high rankability. We found that this
was feasible when the three binary indicators had at least
moderate rankability and were strongly correlated with
one another. When the binary indicators were independ-
ent or weakly correlated with one another, the rankabil-
ity of the composite ordinal indicator was often less than
that of at least one of its binary components.

There is an increasing interest in many countries and
jurisdictions in reporting on the quality and outcomes of
health care delivery. Public reporting of hospital-specific
performance on indicators of health care quality can
lead to the production of ‘league tables, in which hospi-
tals are ranked according to their performance. The
rankability of an indicator denotes its ability to allow for
the accurate ranking of hospitals. As noted in the Intro-
duction, many indicators have been shown to have poor
to moderate rankability.

Our focus was on pooling binary indicators reflecting
outcomes of increasing severity to create a composite or-
dinal indicator that described a gradient from lowest (least
severe/serious) to highest (most severe/serious). We did
not consider other methods of creating composite indica-
tors such as summing up the number of positive binary
indicators. Such an approach would not necessarily pre-
serve the ordering of severity present in the individual in-
dicators. For instance given three indicators of differing
severity (e.g., death, hospital readmission, and long length
of hospital stay), then a subject who died (and who was
not readmitted and who had a short length of hospital
stay) and a subject who had a long hospital stay (but who
did not die and who was not readmitted) would both have
one positive indicator. However, they would have very dif-
ferent severity of the underlying binary indicators. Our
composite ordinal indicator reflects this ordering of sever-
ity/seriousness, while counting the number of positive in-
dicators would not.

Our research has shown that rankability is increased
when individual indicators are combined with other in-
dicators with which they are highly correlated. Individual

Variable Estimate Standard error P-value
Intercept -0.057 0.026 0.0341
Rankability of indicator 1 (prevalence = 5%) 0.382 0.281 0.1813
Rankability of indicator 2 (prevalence = 10%) 0.074 0377 0.8455
Rankability of indicator 3 (prevalence = 25%) 0.603 0.188 0.0025
1000 patients per hospital (vs. 500 patients) —0.001 0011 0.9290
Correlation of random effects 0.293 0.011 < 0.0001
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Scenario
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Rankability

indicators underlying the same concepts of (quality) of
care can thereby be combined to produce a more reli-
able ranking with the added advantage of showing a
more complete picture of quality of care. On the other
hand, indicators that are not correlated might represent
other important quality domains. These should not be
ignored, although their limited rankability should be
taken into account in the interpretation of potential dif-
ferences between hospitals.

Our results confirm that rankability is affected by the
variation of the hospital-specific random effects, in other
words the magnitude of the between-hospital differ-
ences, and by the overall prevalence of the outcome, in-
fluencing the reliability of the hospital-specific random
effects. These terms are included in the definition of
rankability. Further, we found that the one of the two
factors with the strongest effect on the rankability of an
ordinal outcome is the rankability of the most prevalent
binary outcome. This is intuitive since the indicator with
the highest prevalence contributes the most information
to the ordinal outcome. Finally, our most important
finding is that ordinal outcomes only increase rankability
when the component binary indicators are strongly

correlated (typically, the within-hospital correlation
needed to be at least 0.5). This explains why a previous
study found no increase in rankability when combining
mortality, readmission and length of stay. These binary
indicators were negatively correlated, partly by definition
(e.g. high mortality will mean less readmissions), partly
because they represent different aspects of quality of
care [23]. The finding that combining binary outcomes
that are negatively correlated, uncorrelated or only
weakly correlated, into an ordinal outcome decreases
rankability is a result of violation of the proportional
odds assumption. The proportional odds model assumes
that the effect of the parameter of interest, in this case
the hospital-specific random effects, on the outcome is
comparable across the cut-offs of the ordinal scale. If the
binary indicators are not correlated this assumption is
not satisfied. For example, when a specific hospital has a
low mortality rate (meaning a negative random effect es-
timate on one cut-off) but high readmission rate (posi-
tive random effect estimate on other cut-off) these
random effect estimates average out. This reduces the
variation of the hospital-specific random effects, result-
ing in lower rankability. Thus, to obtain a composite
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ordinal indicator with high rankability, the proportional
odds assumption must be met to some extent.

Combining binary indicators to form a composite or-
dinal indicator presents several issues that must be ad-
dressed. First, one must identify binary indicators whose
combination would be meaningful for profiling health care
provider performance. Patients may not be interested in
one indicator at a given time (e.g., whether a readmission
occurs), but may want to know the likelihood that success
is achieved on a range of indicators (e.g., no readmission
and normal length of stay), also called a textbook-
outcome [23, 31]. Combining indicators is also important
for record review by professionals if they want to improve
quality, where the improvement may involve a different
intervention for patients with a normal length of stay and
a readmission (as they may be discharged too early) than
for patients with a readmission after a long length of stay
(which may reflect complex patients). Secondly, ideally,
one must identify binary indicators with a strong within-
hospital correlation (i.e., hospitals that have higher per-
formance on one indicator also have higher performance
on the other indicators), which is often not the case in
practice [30]. Third, in order for a composite indicator to
provide information on which a hospital can take action,
it would be reasonable to combine indicators that address
aspects of health care quality for the same set of patients
(e.g., that pertain to the same surgical procedure or to the
treatment of the same set of patients). Identifying indica-
tors that satisfy these requirements may be challenging in
some settings.

Conclusion

Pooling highly-correlated binary indicators can result in
a composite ordinal indicator with high rankability.
However, when binary indicators have low to moderate
within-hospital correlation, the composite ordinal indi-
cator may have lower rankability than some of its con-
stituent components. It is recommended that related
binary indicators be combined in order to increase rank-
ability, which reflects that they represent the same con-
cept of quality of care.

Abbreviations
ICC: Intraclass correlation coefficient; IVF: In vitro fertilization; LOS: Length of
stay; SSI: Surgical site infection; VPC: Variance partition coefficient

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Acknowledgements
Not applicable.

Authors’ contributions

PA, IEC, ES, HL, and PM contributed to the design of the simulations. PA coded
the simulations and conducted the statistical analyses. PA drafted the manuscript,
while IEC, ES, HL, and PM contributed to revising the manuscript. PA, IEC, ES, HL,
and PM read and approved the final manuscript.

Page 9 of 10

Funding

This study was supported by ICES, which is funded by an annual grant from the
Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results and
conclusions reported in this paper are those of the authors and are independent
from the funding sources. No endorsement by ICES or the Ontario MOHLTC is
intended or should be inferred. This research was supported by operating grant
from the Canadian Institutes of Health Research (CIHR) (MOP 86508). Dr. Austin is
supported in part by a Mid-Career Investigator award from the Heart and Stroke
Foundation of Ontario.

Availability of data and materials
The datasets used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Ethics approval and consent to participate
The study consisted of Monte Carlo simulations that used simulated data. No
ethics approval or consent to participate was necessary.

Consent for publication
Consent for publication was not required as only simulated data were used.

Competing interests
The authors declare that they have no competing interests.

Author details

'ICES, G106, 2075 Bayview Avenue, Toronto, Ontario, Canada. 2Departmem of
Public Health, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The
Netherlands. 3Departmem of Biomedical Data Sciences, Medical Decision
Making, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The
Netherlands.

Received: 7 January 2019 Accepted: 5 June 2019
Published online: 26 June 2019

References

1. Jacobs, F. M. Cardiac Surgery in New Jersey in 2002: A Consumer Report.
2005. Trenton, NJ, Department of Health and Senior Services.

2. Luft, H. S, Romano, P. S, Remy, L. L, and Rainwater, J. Annual Report of the
California Hospital Outcomes Project. 1993. Sacramento, CA, California Office
of Statewide Health Planning and Development.

3. Massachusetts Data Analysis Center. Adult Coronary Artery Bypass Graft
Surgery in the Commonwealth of Massachusetts: Fiscal Year 2010 Report.
2012. Boston, MA, Department of Health Care Policy, Harvard Medical School.

4. Pennsylvania Health Care Cost Containment Council. Consumer Guide to
Coronary Artery Bypass Graft Surgery. Volume 4. 1995. Harrisburg, PA,
Pennsylvania Health Care Cost Containment Council.

5. Pennsylvania Health Care Cost Containment Council. Focus on heart attack
in Pennsylvania: research methods and results. 1996. Harrisburg, PA,
Pennsylvania Health Care Cost Containment Council.

6. Coronary artery bypass graft surgery in New York State 1989-1991. 1992.
Albany, NY, New York State Department of Health.

7. Naylor CD, Rothwell DM, Tu JV, Austin PC, the Cardiac Care Network
Steering Committee. Outcomes of Coronary Artery Bypass Surgery in
Ontario. In: Naylor CD, Slaughter PM, editors. Cardiovascular Health and
Services in Ontario: An ICES Atlas. Toronto: Institute for Clinical Evaluative
Sciences; 1999. p. 189-98.

8. TuJV, Austin PC, Naylor CD, Iron K, Zhang H. Acute Myocardial Infarction
QOutcomes in Ontario. In: Naylor CD, Slaughter PM, editors. Cardiovascular
Health and Services in Ontario: An ICES Atlas. Toronto: Institute for Clinical
Evaluative Sciences; 1999. p. 83-110.

9. Scottish Office. Clinical outcome indicators, 1994. Scottish Office 1995.

10.  Goldstein H, Spiegelhalter DJ. League Tables and Their Limitations:
Statistical Issues in Comparisons of Institutional Performance. J. R. Stat. Soc.
A. Stat. Soc. 1996;159(3):385-443.

11. van Houwelingen, H. C, Brand, R, and Louis, T. A. Empirical Bayes Methods
for Monitoring Health Care Quality https//www.lumc.nl/sub/3020/att/
EmpiricalBayes.pdf (Accessed May 8, 2019).

12.  Lingsma HF, Eijkemans MJ, Steyerberg EW. Incorporating natural variation
into IVF clinic league tables: The Expected Rank. BMC.Med Res.Methodol.
2009;9:53. https://doi.org/10.1186/1471-2288-9-53.


https://www.lumc.nl/sub/3020/att/EmpiricalBayes.pdf
https://www.lumc.nl/sub/3020/att/EmpiricalBayes.pdf
https://doi.org/10.1186/1471-2288-9-53

Austin et al. BMIC Medical Research Methodology (2019) 19:131

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Dimick JB, Staiger DO, Birkmeyer JD. Ranking hospitals on surgical mortality:
the importance of reliability adjustment. Health ServRes. 2010;45(6 Pt 1):
1614-29. https//doi.org/10.1111/j.1475-6773.2010.01 158 x.

Abel G, Saunders CL, Mendonca SC, Gildea C, McPhail S, Lyratzopoulos G.
Variation and statistical reliability of publicly reported primary care diagnostic
activity indicators for cancer: a cross-sectional ecological study of routine data.
BMJ QualSaf. 201827(1):21-30. https//doi.org/10.1136/bmjgs-2017-006607.
Verburg IW, de Keizer NF, Holman R, Dongelmans D, de Jonge E, Peek N.
Individual and clustered Rankability of ICUs according to case-mix-adjusted
mortality. Crit Care Med. 2016;44(5):901-9. https://doi.org/10.1097/CCM.
0000000000001521.

Hashmi ZG, Dimick JB, Efron DT, Haut ER, Schneider EB, Zafar SN,
Schwartz D, Cornwell EE Ill, Haider AH. Reliability adjustment: a
necessity for trauma center ranking and benchmarking. J Trauma Acute
Care Surg. 2013;75(1):166-72.

Henneman D, van Bommel AC, Snijders A, Snijders HS, Tollenaar RA,
Wouters MW, Fiocco M. Ranking and rankability of hospital postoperative
mortality rates in colorectal cancer surgery. Ann.Surg. 2014;259(5):844-9.
https://doi.org/10.1097/SLA.0000000000000561.

Voorn VMA, Marang-van de Mheen PJ, van der Hout A, So-Osman C, van
den Akker-van Marle ME, AWMM K-v G, Dahan A, TPM W, RGHH N, van
Bodegom-Vos L. Hospital variation in allogeneic transfusion and extended
length of stay in primary elective hip and knee arthroplasty: a cross-
sectional study. BMJ Open. 2017;7(7):e014143. https://doi.org/10.1136/
bmjopen-2016-014143.

van Dishoeck AM, Koek MB, Steyerberg EW, van Benthem BH, Vos MC,
Lingsma HF. Use of surgical-site infection rates to rank hospital performance
across several types of surgery. Br.J.Surg. 2013;100(5):628-36. https://doi.org/
10.1002/bj5.9039.

Lingsma HF, Steyerberg EW, Eijkemans MJ, Dippel DW, Scholte Op Reimer
WJ, van Houwelingen HC. Comparing and ranking hospitals based on
outcome: results from the Netherlands stroke survey. QJM. 2010;103(2):99-
108. https://doi.org/10.1093/gjmed/hcp169.

van Dishoeck AM, Lingsma HF, Mackenbach JP, Steyerberg EW. Random
variation and rankability of hospitals using outcome indicators. BMJ Qual.
Saf. 2011;20(10):869-74. https://doi.org/10.1136/bmjgs.2010.048058.

Lawson EH, Ko CY, Adams JL, Chow WB, Hall BL. Reliability of evaluating
hospital quality by colorectal surgical site infection type. Ann.Surg. 2013;
258(6):994-1000. https://doi.org/10.1097/SLA.0b013e3182929178.

Hofstede SN, Ceyisakar IE, Lingsma HF, Kringos DS, Marang-van de Mheen
PJ. Ranking hospitals: do we gain reliability by using composite rather than
individual indicators? BMJ Qual.Saf. 2019;28(2):94-102. https.//doi.org/10.
1136/bmijgs-2017-007669.

Roozenbeek B, Lingsma HF, Perel P, Edwards P, Roberts |, Murray GD, Maas
Al, Steyerberg EW. The added value of ordinal analysis in clinical trials: an
example in traumatic brain injury. Crit Care. 2011;15(3):R127. https://doi.org/
10.1186/cc10240.

McHugh GS, Butcher |, Steyerberg EW, Marmarou A, Lu J, Lingsma HF, Weir
J, Maas Al, Murray GD. A simulation study evaluating approaches to the
analysis of ordinal outcome data in randomized controlled trials in
traumatic brain injury: results from the IMPACT project. Clin.Trials. 2010;7(1):
44-57. https://doi.org/10.1177/1740774509356580.

Bath PM, Gray LJ, Collier T, Pocock S, Carpenter J. Can we improve the
statistical analysis of stroke trials? Statistical reanalysis of functional
outcomes in stroke trials. Stroke. 2007;38(6):1911-5. https;//doi.org/10.1161/
STROKEAHA.106.474080.

Snijders T, Bosker R. Multilevel analysis: an introduction to basic and
advanced multilevel modeling. London: Sage Publications; 2012.

Goldstein H, Browne W, Rasbash J. Partitioning variation in generalised
linear multilevel models. Underst Stat. 2002;1:223-32.

Wu S, Crespi CM, Wong WK. Comparison of methods for estimating the
intraclass correlation coefficient for binary responses in cancer prevention
cluster randomized trials. Contemp.Clin.Trials. 2012,33(5):869-80. https://doi.
0rg/10.1016/j.cct.2012.05.004.

Hofstede SN, van Bodegom-Vos L, Kringos DS, Steyerberg E, Marang-van de
Mheen PJ. Mortality, readmission and length of stay have different
relationships using hospital-level versus patient-level data: an example of
the ecological fallacy affecting hospital performance indicators. BMJ Qual.
Saf. 2017. https://doi.org/10.1136/bmjgs-2017-006776.

Kolfschoten NE, Kievit J, Gooiker GA, van Leersum NJ, Snijders HS, Eddes EH,
Tollenaar RA, Wouters MW, Marang-van de Mheen PJ. Focusing on desired

Page 10 of 10

outcomes of care after colon cancer resections; hospital variations in
'textbook outcome'. Eur.J.Surg.Oncol. 2013;39(2):156-63. https://doi.org/10.
1016/j.6j50.2012.10.007.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC



https://doi.org/10.1111/j.1475-6773.2010.01158.x
https://doi.org/10.1136/bmjqs-2017-006607
https://doi.org/10.1097/CCM.0000000000001521
https://doi.org/10.1097/CCM.0000000000001521
https://doi.org/10.1097/SLA.0000000000000561
https://doi.org/10.1136/bmjopen-2016-014143
https://doi.org/10.1136/bmjopen-2016-014143
https://doi.org/10.1002/bjs.9039
https://doi.org/10.1002/bjs.9039
https://doi.org/10.1093/qjmed/hcp169
https://doi.org/10.1136/bmjqs.2010.048058
https://doi.org/10.1097/SLA.0b013e3182929178
https://doi.org/10.1136/bmjqs-2017-007669
https://doi.org/10.1136/bmjqs-2017-007669
https://doi.org/10.1186/cc10240
https://doi.org/10.1186/cc10240
https://doi.org/10.1177/1740774509356580
https://doi.org/10.1161/STROKEAHA.106.474080
https://doi.org/10.1161/STROKEAHA.106.474080
https://doi.org/10.1016/j.cct.2012.05.004
https://doi.org/10.1016/j.cct.2012.05.004
https://doi.org/10.1136/bmjqs-2017-006776
https://doi.org/10.1016/j.ejso.2012.10.007
https://doi.org/10.1016/j.ejso.2012.10.007

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Rankability and notation
	Monte Carlo simulations to examine the relationship between ICC and rankability for a single binary indicator
	Methods
	Results of the Monte Carlo simulations

	Monte Carlo simulations to examine reliability of composite indicators
	Methods
	Results of the Monte Carlo simulations

	Discussion
	Conclusion
	Abbreviations
	Publisher’s Note
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

