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Hand Gesture Recognition
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Electronic and Electrical Engineering, University of Strathclyde, Glasgow, United Kingdom

The combination of neuromorphic visual sensors and spiking neural network

offers a high efficient bio-inspired solution to real-world applications. However,

processing event- based sequences remains challenging because of the nature of

their asynchronism and sparsity behavior. In this paper, a novel spiking convolutional

recurrent neural network (SCRNN) architecture that takes advantage of both convolution

operation and recurrent connectivity to maintain the spatial and temporal relations

from event-based sequence data are presented. The use of recurrent architecture

enables the network to have a sampling window with an arbitrary length, allowing the

network to exploit temporal correlations between event collections. Rather than standard

ANN to SNN conversion techniques, the network utilizes a supervised Spike Layer

Error Reassignment (SLAYER) training mechanism that allows the network to adapt to

neuromorphic (event-based) data directly. The network structure is validated on the DVS

gesture dataset and achieves a 10 class gesture recognition accuracy of 96.59% and an

11 class gesture recognition accuracy of 90.28%.

Keywords: spiking neural network, DVS, gesture recognition, event-based processing, video processing

1. INTRODUCTION

During the past couple of decades, computer vision applications have become increasingly
important in many industrial domains such as security systems, robotics, and medical devices.
Many Deep Neural Network (DNN) based algorithms have outperformed human performance in
different image recognition tasks such as the success of Convolutional Neural Networks (CNN)
(Krizhevsky et al., 2012) in the 2012 ILSVRC image classification challenge. However, it remains a
challenge to extend the achievements in static image recognition to dynamic scene recognition,
which has both strong temporal and spatial correlations. Human hand gesture recognition is
one such problem that is significant for human-computer interaction (Mitra and Acharya, 2007;
Rautaray and Agrawal, 2012; Haria et al., 2017). The hand’s movement conveys certain information
that can be used as a tool to communicate with computers. The hand gesture recognition has
shown a significant value in applications such as virtual reality (Wickeroth et al., 2009; Frati and
Prattichizzo, 2011), robot control (Droeschel et al., 2011; Liu and Wang, 2018), and sign language
recognition (Liang and Ouhyoung, 1998; Yang et al., 2010; Pigou et al., 2015). The importance
of developing intelligent models for complex Spatio-temporal processing is widely recognized for
solving dynamic scene based recognition problems. In recent years, recurrent neural network
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(RNN) structures such as the long-short-term-memory (LSTM)
(Hochreiter and Schmidhuber, 1997) have been shown to be
effective for time-based sequence to sequence classification and
prediction tasks. However, the LSTM is still inherently inefficient
for the dynamic scene recognition since it does not deal with
any spatial information. Research has shown the effectiveness
of combining the recurrent structure and convolution operation
in the dynamic scene recognition such as CNN-LSTM structure
(Donahue et al., 2017; Wang et al., 2017) and convLSTM
structure (Shi et al., 2015; Song et al., 2018; Zhou et al., 2018).
Such a mechanism allows feature extraction to use both temporal
and spatial information.

Concerning the data acquisition side, the traditional vision
sensor is a digital camera that repeatedly refreshes its entire
array of pixel values at a predefined frame rate. However, using
the digital camera has three drawbacks for dynamic motion
recognition. First, a digital camera normally operates with a
predefined frame sampling rate (typically range 25–50 frames
per second), which limits the temporal resolution of activities
observed. Second, consecutive frames and redundant pixels in
each frame waste significant storage resources and computation.
Third, the dynamic range of traditional image sensors is limited
by its exposure time and integration capacity. Most cameras
suffer from saturating linear response with dynamic range
limited to 60–70 dB where light from natural scenes can
reach approximately 140 dB of the dynamic range (Posch et al.,
2011).The dynamic vision sensor (DVS) (Lichtsteiner et al., 2008;
Posch et al., 2011; Brandli et al., 2014) provides a solution to these
problems. The DVS using address event representation (AER) is
an event-driven technology based on the human visual system.
The benefit of the event-based sensor on the dynamic scene
recognition task is that it offers very high temporal resolution
when a large fraction of the scene changes, which can only be
matched by a high-speed digital camera with the requirement of
high power and significant resources.

In DVS, information is coded and transmitted as electric
pulses (or spikes), which is similar to the processing mechanism
in biological sensory systems. The output of DVS is generated
asynchronously by comparing each activity of a retina
pixel with a certain threshold. The emergence of dynamic
vision sensor (DVS) (Lichtsteiner et al., 2008) demonstrated
significant potential in applications of ultra-fast power efficient
computing. Compared to traditional vision sensors, DVS returns
unsynchronized events rather than a sampled time-based frame
series. For a given real-world input, DVS records only changes in
pixel intensity values and outputs a stream of ON/OFF discrete
events regarding the changing polarity. Such an event-based
acquisition mechanism offers many advantages such as low
power consumption, less redundant information, low latency,
and a high dynamic range. Despite the advantages of DVS,
it is still challenging to apply the traditional computer vision
algorithms to unsynchronized DVS output data.

The spiking neural network (SNN) provides an efficient
solution to event-based data processing. As the DVS mimics
the biological retina, the spiking neural network (SNN) mimics
the human brain’s functionality by utilizing bio-inspired
neuron and synapse models. The major difference between
SNN and traditional ANNs is the information carrier between

their fundamental processing units. The SNN propagates
only individual spikes rather than floating-point numbers.
Such a characteristic provides an effective and low power
computing strategy for event-driven inputs. Previous work has
demonstrated application examples of combining SNN and the
event-based visual sensor such as extracting car trajectories on
a freeway [10], recognition of human postures (Pérez-Carrasco
et al., 2010; Jiang et al., 2019), object tracking (Hinz et al., 2017),
and human gesture recognition (Amir et al., 2017). However, to
our knowledge and to date, the convolutional recurrent network
structure which has been particularly designed for gesture
recognition has not been widely investigated in the SNN domain.
Wang W. et al. (2019) presented a spiking recurrent neural
network used for action recognition, but the term “spiking” in
their work does not represent the event-based processing but a
spiking signal that was used to help a traditional RNN correct
its contaminated memory. Demin and Nekhaev (2018) proposed
a bio-inspired learning rule FEELING with an attempt on the
recurrent structure, which is applied to the handwritten digit
recognition. The FEELING algorithm was further implemented
by Nekhaev and Demin (2020) with an convolutional recurrent
structure that has been proven to be more energy efficient on
hand digit recognition. However, this work did not consider
the research line where the combination of convolutional and
recurrent structure is more significant in a dynamic scene
based recognition (i.e., hand gesture recognition). Furthermore,
this work ignored the adaptability of SNN with neuromorphic
hardware and sensors.

In this paper, we present a novel spiking neural network
structure that can adapt to the neuromorphic vision data-based
recognition problem especially for data that contains strong
spatiotemporal correlations such as human hand gesture
recognition. The convolutional operation and recurrent neural
network connections are combined in an SNN that uses a
supervised learning based spiking convolutional recurrent
neural network (SCRNN). By adjusting the integration period
of the input data sequence and convolution kernel, SCRNN
can achieve arbitrary Spatio-temporal resolution related to
the recognition demand. Moreover, The Spike Layer Error
Reassignment (SLAYER) training algorithm (Shrestha and
Orchard, 2018) is successfully deployed to the SCRNN for
the purpose of generalization and training stability. It utilizes
both temporal error and axonal delay credit assignment to
minimize the computational complexity. The use of SLAYER
effectively prevents the common gradient vanishing and
explosion problem associated with recurrent neural networks.
Since the recurrent propagation between the SCRNN cells relies
on the information fusion from inputs of current timestamps
and output from previous timestamps, particularly for SCRNN,
a spiking feature map integration method is developed in the
SCRNN cell to maintain information continuity in the temporal
domain. Furthermore, The SCRNN is validated by a series of
experiments on the DVS gesture dataset (Amir et al., 2017) to
prove its robustness for the motion-based neuromorphic action
recognition problem.

The remainder of this paper is organized as follows. Section
2 introduces the related work in the spiking recurrent neural
network and SLAYER training algorithm. In section 3, detailed
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FIGURE 1 | The illustration of the spiking neuron operating mechanism. (A) An

example of a single spiking neuron that consists of integrator and threshold

operator. (B) A simulation of membrane potential u(t) change of a spiking

neuron.

descriptions are provided in terms of individual SCRNN cell
and overall SCRNN topology. The experiment results on the
DVS gesture dataset is presented and discussed in section 4. The
experiment result is analyzed and compared with previous work.
Finally, the conclusions are provided in section 5.

2. PRELIMINARIES

This section provides an explanation of the background of SNN,
the SLAYER training algorithms (Shrestha and Orchard, 2018),
as well as relevant previous works on convolutional recurrent
neural networks.

2.1. Spiking Neural Network
In recent years, deep learning technologies have rapidly
revolutionized the field of machine learning. Traditional
deep neural networks are trained using supervised learning
algorithms, which are usually based on gradient descent
backpropagation. A neural network comprises several
fundamental computing units (neurons) containing a weighted
and biased continuous activation function. Typical examples of
these activation functions include sigmoid, hyperbolic tangent
and ReLU (Nair and Hinton, 2010). With the feed-forward and
recurrent structure, this computation strategy allows them to be
able to approximate any analog function universally (Vreeken,
2002).

Although DNNs were initially brain-inspired, their structure,
neural information processing and learning method are still
fundamentally different from the brain. One of the most
distinctive differences is the means in which information is

carried between neurons. That is one of the main reasons
for the increased interest in spiking neural networks (SNNs).
SNN raises the level of biological realism of ANNs by
utilizing individual spikes as information carriers. This allows
the network computation and communication to incorporate
spatial-temporal information. The spikes used in SNN, however,
are sparse in time with uniform amplitude, but rich in their
information content when they occur in time. The information
in SNNs is presented by spike timing e.g., latency, frequency or
the population of the neuron that are emitted spikes (Gerstner
et al., 2014).

The SNN is an ideal universal spike generation model that
mimics the actual biophysical mechanisms described by Hodgkin
and Huxley (Hodgkin and Huxley, 1990). The spikes are only
identified at the time instant when they arrive at the post-
synaptic neuron. Non-linear differential equations are commonly
used in SNN neuron modeling to generate the membrane
potential through time (Hodgkin and Huxley, 1990; Abbott,
1999; Gerstner, 2009; Teka et al., 2014). Figure 1 illustrates the
basic operating mechanism of a spiking neuron. This illustrates
a single spiking neuron that receives incoming spike trains
from s1, s2, and s3 and generates an output spike as shown in
Figure 1A. The incoming spikes to a neuron are integrated and
transferred to the membrane potential dynamics u(t) as shown in
Figure 1B. Whenever the membrane potential reaches a certain
threshold value ϑ , the spiking neuron will emit a spike and
reset the membrane potential to its resting value urest . After a
spike activity, the neuron enters the refractory period and cannot
fire any further spikes until its membrane potential resets to its
resting value.

A typical spiking neuron model can contain additional
parameters that approximate the membrane potential dynamics
in the neural cortex. Spiking neuron models commonly used in
SNNs include: Integrate and fire neurons (IF) (Feng and Brown,
2000; Feng, 2001), Leaky integrated and fire neurons (LIF) (Liu
and Wang, 2001), Hodgkin-Huxley model (Bower et al., 1995)
and Spike Response Model (SRM) (Gerstner, 2008) etc.

Recent research has successfully demonstrated examples of
SNN based applications including object recognition (Diehl
and Cook, 2015; Kheradpisheh et al., 2018), speech processing
(Stéphane et al., 2005; Wysoski et al., 2010; Tavanaei and Maida,
2017), pattern recognition (Han and Taha, 2010; Dhoble et al.,
2012;Mohemmed et al., 2012; Kasabov et al., 2013). Furthermore,
many developed neuromorphic computing platforms have
demonstrated tremendous potential in real-world power limited
applications. The IBM TrueNorth systems consist of 5.4 billion
transistors with only 70mW power density consumption, which
accounts for only 1/10,000 of traditional computing units
(Akopyan et al., 2015). The SpiNNaker platform (Furber et al.,
2013, 2014) developed by Researchers in Manchester provides
ASIC solutions to hardware implementations of SNNs. It utilizes
multiple ARM cores and FPGAs to configure the hardware and
PyNN (Davison et al., 2009) software API to enable the scalability
of the platform. The Loihi NM chip (Davies et al., 2018) is a
digital NM computing platform that was recently announced
by Intel. One of the most attractive features of Loihi is the
potential of online-learning. Loihi has a special programmable
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microcode engine for SNN training on the fly. The emergence
of these hardware technologies demonstrates strong suitability
of applying power efficient neuromorphic computing into real-
world mobile units.

2.2. Spike Layer Error Reassignment in
Time (SLAYER)
Currently, the training procedure of most ANNs relies on the
combination of continuously differentiable activation function
and a gradient descent convergence algorithm. Spiking Neural
Networks are similar to traditional neural networks in topology
but differ in the way of information carrier and the choice
of neuron models. The non-differentiable nature of biological-
plausible spiking neurons is the main challenge of the
development of SNN training algorithms. Spike Layer Error
Reassignment in Time (SLAYER) alternatively approximates the
derivative of the spike function based on the neuron state changes
and assigns the error to previous layers. A description of the
SLAYER training algorithm is provided in the next subsection.

The neuron model used for the SLAYER is the Spike Response
Model (SRM). The membrane potential generation process of a
SRM neuron is achieved by convolving a spike response kernel
σ (t) with the incoming spike train si(t) to this neuron to form
a spike response signal as a(t) = (σ (t) ∗ si(t)). Here the
index i represents the ith input channel. The spike response
signal is further weighted by the synaptic weight w. Similarly,
the refractory response signal can be obtained via convolving a
refractory kernel ν(t) with the neuron output spike train so(t) as
r(t) = (ν(t) ∗ so(t)). The overall neuron membrane potential u(t)
can be obtained by summing all the spike response signal and
refractory response signal as:

u(t) =
∑

wi(σ (t) ∗ si(t))+ (ν(t) ∗ so(t))

= W⊤a(t)+ r(t)
(1)

The generated membrane potential u(t) is then compared with a
predefined threshold ϑ and output spike when u(t) > ϑ as is
shown in Figure 1. In a multilayer feedforward spiking neural
network architecture, instead of directly managing the non-
differentiable spike neuron equations, SLAYER approximates the
derivative of the spike function as a probability density function
(PDF) of spike state changes. Further details of the model and its
use in training the SNN can be found in Shrestha and Orchard
(2018). With a good estimation PDF as the derivative term of
spike change state, the SLAYER can easily derive the gradient
of weights and delays in each layer from a feedforward SNN.
This allows the network to adapt the developed gradient descent
method for an optimization purpose such as ADAM (Kingma
and Ba, 2015), RmsProp (Hinton et al., 2012).

2.3. Convolutional Recurrent Neural
Network
The convolutional recurrent neural network (CRNN) structure
has been well studied in the second generation of ANNs. The
convolution operation in the ANNs usually acts as a spatial visual
feature extractor that assumes features are in different levels of

hierarchy. The recurrent structure introduces memory to the
network and an ability to deal with sequential data dependently.

A significant design of the CRNN structure is the ConvLSTM
structure (Shi et al., 2015) that was initially designed for
forecasting precipitation. By replacing the general gate activation
by the convolutional operation, the network is able to exploit an
extracted 3D tensor as the cell state. The ConvLSTM was also
evaluated on the moving MNIST (Srivastava et al., 2015) dataset
and was shown to successfully separate the overlapping digits and
predicted the overall motion with a high level of accuracy.

Another CRNN structure, CNN-LSTM, concatenates a CNN
and an LSTM to formulate a collaborative network. The LSTM
in the structure is placed behind a pretrained CNN that directly
takes the output feature vector from the CNN as the input
sequence. The implementation of this structure however is
highly dependent on a well pre-trained CNN that was designed
for the interest as the feature extractor. The CNN-LSTM has
been proven to be powerful in many application domains
such as acoustic scene classification (Bae et al., 2016), emotion
recognition (Fan et al., 2016), action recognition (Wang et al.,
2017) etc.

Over the past few years, researchers have successfully applied
CRNN in medical applications (Wang L. et al., 2019), speech
processing (Cakir et al., 2017; Tan and Wang, 2018), and music
classification (Choi et al., 2017). Adopting a recurrent structure
enables the neural network to encapsulate the global information
while local features are extracted by the convolution layers. Yang
et al. (2018) demonstrated a Convolutional LSTM network that
was successfully evaluated on various action recognition datasets.
The importance of using a CRNN structure in the application
of human action recognition is that unlike action recognition in
images, the same task in videos relies on motion dynamics in
addition to visual appearance. Although CNNs and its variants
like 3D convolution (Ji et al., 2013; Karpathy et al., 2014)
achieves good performance, they still do not make sufficient use
of temporal relations between frames. More recently, Majd and
Safabakhsh (2019) designed a motion-ware ConvLSTM for the
action recognition task which is an LSTM unit that considers
the correlation of consecutive video frames in addition to the
Spatio-temporal information.

However, in the SNN domain, the CRNN structure has not
been widely investigated especially for the action recognition
problem. One of the main challenges in developing a spiking
CRNN is how to manage the training process of spiking neurons.
Additionally, the consecutive information recurrency is difficult
to achieve in the SNN since the traditional probabilistic based
functions do not comply with spikes. In this paper, the SLAYER
algorithm is used as an efficient, general supervised training
mechanism for SNNs. Based on the spiking model of SLAYER,
we design a network structure that can achieve both forward and
recurrent information propagation.

3. SPIKING CONVOLUTIONAL
RECURRENT NEURAL NETWORK (SCRNN)

In this section, the novel system using SCRNN for action
recognition is described. The fundamentals of 3D spiking
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FIGURE 2 | The 3D spiking convolution operation. Red: represents the spiking convolution through a defined 3D volume.

convolution and the related SCRNN model are described in the
following subsections.

3.1. Spiking Convolution Operation
Consider an input sequence S(n), n = 0, 1, 2, ...N as is illustrated
in Figure 2. At each time step, S(n) is a 3D tensor with shape
{u, v, t} where u and v denote the width and height of each frame
and t correspond to the pre-defined time resolution. For a given
event-based video stream, it can be arbitrarily segmented into
several tensors according to the desired temporal frequency. For
example, for a 1.5 s 128 × 128 resolution events data stream
with 30 ms temporal resolution and 1ms sampling time can form
a input sequence S(n), n = 0, 1, 2, ...50. For each segments, the
tensor shape is {128, 128, 30}.

The sampled input tensor S(n) with a shape of {u, v, t} is
convolved with a 3D convolutional kernel to generate a spiking
neuronal feature map. The spikes within an arbitrary kernel can
be regarded as a bunch of spike trains su,v(t) where each spike
train corresponds to the spikes at a specific coordinate (u, v)
within the temporal resolution window t. Each neuron in the
feature map receives the spikes from the neurons in the 3D
convolutional kernel. The spikes in the region of the kernel are
integrated to generate membrane potential for a single neuron
in the feature map. The neurons in a map detect the Spatio-
temporal dynamic patterns in different 3D volumes. Unlike the
standard feature map generated by CNN, the information at
each coordinate in a spiking feature map is expressed by spike
trains which can be considered as a spiking representation of
detected patterns.

The convolutional kernel is highly overlapped to ensure the
proper detection of features. The SRM neuron model is used to
describe the 3D spiking convolution operation, which gathers all

the input spikes from pre-synaptic neurons and outputs spike
when the membrane potential reaches the pre-defined threshold.
In the SLAYER, this is done by convolving the spike trains in
the kernel with a spike response kernel followed by the threshold
function. Each spike train will be transferred to the spike response
signal then further to the membrane potential of the postsynaptic
neuron. The process can be expressed as:

au,v(t) = su,v(t) ∗ σ (t) (2)

uj,k(t) =

K
∑

m=1

K
∑

n=1

Wm,naj+m−1,k+n−1(t)+ (sj,k(t) ∗ ν(t)) (3)

sj,k(t) = 1 & uj,k(t) = 0 when uj,k(t) ≥ Vthr (4)

whereW denotes to the synaptic weights, u and v are the vertical
and horizontal coordinate index of the input tensor, j and k
represents the vertical and horizontal coordinate in the feature
map, and K represents the convolution kernel width and height.

The 3D spiking convolution can decompose the input event
based data into several spatio-temporal pattern feature maps,
where each spike in the map corresponds to a specific pattern.
When multiple spiking convolution layers are used, the feature
in a layer is a combination of several low level features extracted
from the previous layer.

3.1.1. SCRNN Cell

The SCRNN cell is designed as the fundamental unit of the
SCRNN system. The idea was inspired by the structure of the
ConvLSTM cell (Shi et al., 2015). A graphical illustration of a
single SCRNN cell is shown in Figure 3. The inputs to the cell
comprise two parts. First is the spiking feature map generated
by the outside events (e.g., a fragment from an event-based
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FIGURE 3 | The proposed single SCRNN cell. The state spiking feature map and input feature map are combined in the cell with an output feature map recurrently

connected to the cell.

action data). The second part is the hidden spiking states which
represent the fused feature map of previous states and the feature
map generated by the current input. To ensure the state feature
map has the same shape as the input, a padding technique is
needed before the actual convolution operation, which means
padding empty events (zeros) on the boundary of state maps.
This can be viewed as the current state having no prior knowledge
in terms of the region outside the current receptive field. At zero
time index, the internal state needs to be initialized randomly or
set empty which represents no prior knowledge at the beginning
from the temporal perspective. Consequently, the 3D spiking
convolution operation is applied to both input-to-internal state
transitions and state-to-state transitions in an SCRNN cell. The
future state to state transition is achieved by utilizing another 3D
convolution layer that contains a pre-defined number of hidden
neurons. Two feature maps are concatenated to form a single
map. Then the spikes in the same kernel of the fusion map are
accumulated and activated to generate the membrane potential
signal for future states. Consider an input segment Xi. The entire
computation process within an SCRNN cell can be written as:

si(t) = θ{
∑

Wih(Xi ∗ σ (t))} (5)

sh(t) = θ{
∑

Whi(sh(t − 1) ∗ σ (t))} (6)

sh(t + 1) = θ{
∑

Whh(si(t) ∗ σ (t)+ sh(t) ∗ σ (t))} (7)

so(t) = θ{
∑

Who(si(t) ∗ σ (t)+ sh(t) ∗ σ (t))} (8)

where θ represents the thresholding operation. Wih, Whi, Whh,
and Who denotes the weight input to state, state to input, state
to state, and state to output, respectively. It can be seen from
Equations (7) and (8) that the output of an SCRNN cell comprises
two terms: sh(t+1) is the spiking states that can be used for future
cells and the so(t) represents the output spike train. The output
from the cell represents the 3D feature map extracted from the
current cell that allows the network to go deeper by using the
so(t) as the input of the next layer.

3.2. Spiking Convolutional Recurrent
Neural Network
The overall SCRNN architecture shown in Figure 4 comprises
a combination of single cells that are stacked in both the
temporal and spatial processing domain. From a temporal
point of view, the cells can process the input sequence
separately using the internal state correlations. Furthermore,
the input can be further decomposed by adding additional
cells at each time step, thus allowing the network to form
greater computational complexity and processing higher level
spatial features. In other words, at a specific time step, the
concatenated SCRNN cells (layers) can be treated as a standard
spiking convolutional neural network wherein each input of
an SCRNN cell is the output signal of the previous cell. It
should be noted that additional initial states are needed for every
added layer.
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FIGURE 4 | The proposed SCRNN structure which is comprised by prior defined individual SCRNN cells. The information going through the vertical direction in this

figure is the spiking convolutional operation in the spatial domain. The information processing along with the horizontal direction in this figure is the recurrent process

between the SCRNN cells which is in the temporal domain. h1, h2, and h3 is the initial feature map assumption prior to the zero index. Xn and Yn represents the nth
input or the output sequences.

Similar to the conventional recurrent neural network, the
SCRNN can also be unrolled to form a short-term feed-
forward structure that increases the network parameter capacity.
Unrolling a recurrent structure represents a trade-off between
the network performance and the computational cost. Although
theoretically the cells can be unrolled up to the length of
the input sequence, the computational cost in the training
process increases dramatically along with the number of cells.
Moreover, to guarantee the network performance in terms
of temporal information, the backpropagation through time
(BPTT) (Werbos, 1990) is used, another factor that affects the
training speed. BPTT calculates and accumulates errors across
each time step, which can be computationally expensive as the
number of time steps increase.

4. EXPERIMENT RESULTS

In this section, the experimental result of action recognition
using SCRNN will be presented. To validate the robustness of
the SCRNN, we evaluated the network structure by performing
the recognition task on the IBM DVS gesture dataset (Amir
et al., 2017). The DVS gesture dataset comprises recordings of 29
different actors carrying out 10 different hand gesture actions. All
recordings are captured by an Inilabs 128 × 128 dynamic vision
sensor under three different lighting conditions. Each gesture
sample has a duration of approximately 6 s. Figure 5 shows an
example of hand waving gesture with 0.5 s integral time interval
in nature light condition. The goal is to classify the gesture event

video data into a corresponding label. The DVS gesture dataset is
split as 1,176 samples for training and 288 samples for testing,
as annotated. We construct a three layer SCRNN to solve this
problem as is shown in Figure 4. The SRM response neuron
parameters are shown in Table 1.

The parameters define the standard neuron dynamics
behavior which is used in all SCRNN networks. Where ϑneuron is
the neuron firing threshold. τneuron is the neuron time constant,
τref is the neuron refractory time constant, Cref is the refractory
response scaling coefficient, tauf is the neuron spike function
derivative time constant, and the Cf is the neuron spike function
derivative scaling coefficient.

As the gesture recognition is a many-to-one problem, only
the output from the last layer and last time step SCRNN cell
are considered for the loss calculation. The loss function used
in this method is defined as the square error based on the
number of spikes between the target and actual output in a time
window according to Shrestha and Orchard (2018). Where the
So denotes the output spike train of the last layer of SCRNN
and Ŝ indicates the target spike train; the loss function L can be
expressed as follows.

L =
1

2

N
∑

1

(∫

So(τ )dτ −

∫

Ŝ(τ )dτ

)2

(9)

where N is the number of output neurons of the last layer. At
each time step, the error signal is calculated according to the
current output spike count and target spike count. It should be
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FIGURE 5 | The demonstration of DVS gesture dataset with integral time of 0.5 s. The gesture showing in the example is hand waving. The green and red edges in

each this figure represents the ON/OFF polarities of spikes.

TABLE 1 | The neuron parameter setting for the SCRNN simulation.

ϑneuron τneuron τref Cref tauf Cf

5 10 1 2 1 1

noted that the backpropagation pipeline covers both spatial and
temporal propagating routes through the recurrent connection.
To save on computation resources, only 1.5 s out of 6 s of each
gesture samples were used for the experiment. The input event
sequence is integrated into several frames based on a pre-defined
segmentation length ls. The segmentation length significantly
affects the sparsity and the number of integrated frames. A small
ls results in a large number of sparse frames, on the contrary a
chosen large ls will reduce the number of frames but increase the
number of events in each frame.

To evaluate the performance of SCRNN, we carried out
different combinations of network parameters to perform the
action recognition task. The following hyper-parameters were
used in the experiments: Number of filters in the convolutional
layer, the segmentation length (time resolution) ls, the target true
spike count TgTrue and target false spike count TgFalse. Figure 6
illustrates the output spike activities before and after the training
of the last layer of the SCRNN. The vertical dash line in the
figures simulates the time window of spiked that will be counted
for an input sample. In other words, the spikes between two
dash lines are the output from a single input instance. The
output neuron index from 1 to 10 represents 10 different gesture
classes. The red bars are target spike(labels) and the black bars
are actual network output spikes. It should be noted that the loss
for the SLAYER training algorithms is calculated from the error
signal that was generated according to the difference between
the number of actual output spikes from the network and the
target spikes (TgTrue and TgFalse). If the actual spike count of

the output neuron match that of the target spike count then a
correct prediction is implied. As shown in Figure 6A, the SCRNN
has zero output before training and gradually learns to generate
spikes that match the target spike in terms of the target spike
quantity. Figure 6B demonstrates the output spike monitoring
after-training the SCRNN. It can clearly be seen from Figure 6B

that the actual spikes (shown in black) now have similar spike
counts as target spikes (shown in red) for the input samples.
It should be noted that the target spikes and actual spikes have
different spike timings but similar spike counts in each window.

The experiment results are shown inTable 2, where each listed
architecture is simulated for 100 epoch over the full dataset.
For each structure listed in the table, the accuracy is obtained
by averaging the best testing accuracy among five repeated
experiments with different random initialized weights. Among
these experiments, the best testing accuracy of the 10 class gesture
is 96.59%, with the 3 layer SCRNN structure with the first
convolutional layer consisting of 32 5 × 5 convolutional filters,
while the second and third convolution layer consist of 64 and
128 3 × 3 convolutional kernels, respectively. The ls is 50 ms
which represents a total of 1,000/50 = 20 time steps. The loss
and training curve for the best network structure is shown in
Figures 7A,B. This structure was also used to train the 11 class
gesture (plus a random other gesture action) and obtained a
testing accuracy of 90.28%.

Thus, the loss can be very large at the start compared with a
normal loss value since the network can have an empty output
with untrained weights and delays. It was found that setting the
ls = 50ms produces the best result for the SCRNN structure
which can be explained as follows. First, the time resolution is
matched with the frame continuity for this dataset, which means
the individual segmented frame can either contain limited or
redundant information with ls = 25ms or ls = 75ms. This
can possibly weaken the connection between the frames from
the perspective of recurrent convolutional operation. Second,

Frontiers in Neuroscience | www.frontiersin.org 8 November 2020 | Volume 14 | Article 590164

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xing et al. SCRNN

FIGURE 6 | The last layer SCRNN output: (A) after training, (B) before training.

the spike emitting of neurons in each layer is important to the
training process. A proper selection of ls can ensure that the
sparsity of frames guarantee the stability of the training process.

The confusion matrix in Figure 7C shows a detailed
performance of the SCRNN for the 10 gesture recognition tasks.
Note that the number of samples of arm roll is twice that of
other gestures in the original dataset. It can be seen that the
SCRNN achieved an overall good performance except for the
confusion between the hand-clapping and air drums gesture
where there are 3 + 4 = 7 total instances where SCRNN

misclassified the hand clapping or air drum as the other. This
is due to the dynamic similarity of these two gestures for some
instances. Figure 8 demonstrates an example of misclassification
which shows both the 3D and 2D view of the dynamics of
these two gestures. From our observations, some hand-clapping
and air drum gestures exhibit a strong similar spike change
pattern which is a potential reason that leads to misclassification.
This further matches our initial design purpose of SCRNN,
which is an action dynamics sensitive event stream pattern based
recognition network.
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TABLE 2 | Comparisons of SCRNNs performance on DVS gesture dataset with different hyper-parameters.

Conv1 Conv2 Conv3 FC1 FC2 TgTrue TgFalse ls(ms) Trainacc (%) Testacc (%)

5 × 5 × 16 3 × 3 × 32 3 × 3 × 64 1,024 512 30 5 25 90.73 85.23

3 × 3 × 16 3 × 3 × 32 3 × 3 × 64 512 128 30 5 25 87.92 84.64

5 × 5 × 32 3 × 3 × 64 3 × 3 × 128 1,024 512 30 5 25 93.54 89.15

5 × 5 × 16 3 × 3 × 32 3 × 3 × 64 1,024 512 60 10 50 95.45 91.67

3 × 3 × 16 3 × 3 × 32 3 × 3 × 64 512 128 60 10 50 95.08 89.39

5 × 5 × 32 3 × 3 × 64 3 × 3 × 128 1,024 512 60 10 50 98.48 96.59

5 × 5 × 16 3 × 3 × 32 3 × 3 × 64 1,024 512 80 15 75 95.45 88.64

3 × 3 × 16 3 × 3 × 32 3 × 3 × 64 512 128 80 15 75 93.18 93.56

5 × 5 × 32 3 × 3 × 64 3 × 3 × 128 1,024 512 80 15 75 96.59 90.90

Conv: Spiking convolutional layer; FC: Fully connected layer; TgTrue: The preliminarily setting of target true spike count; TgFlase: The preliminarily setting of target false spike count; ls (ms):

Segmentation length; Trainacc: Training accuracy; Testacc: Testing accuracy.

FIGURE 7 | (A) The training and testing loss changes for 3 layer SCRNN with conv1: 5 × 5 × 32; conv2:3 × 3 × 64; conv3:3 × 3 × 128; ls = 50 ms. (B) The training

and testing accuracy changes for 3 layer SCRNN with conv1: 5 × 5 × 32; conv2:3 × 3 × 64; conv3:3 × 3 × 128; ls = 50 ms. (C) The confusion matrix for 3 layer

SCRNN with conv1: 5 × 5 × 32; conv2:3 × 3 × 64; conv3:3 × 3 × 128; ls = 50 ms; The 0–9 represents the 10 categories of gestures. 0: hand clapping; 1:right hand

wave; 2: left hand wave; 3: right arm clockwise; 4: right arm counter clockwise; 5: left arm clockwise; 6: left arm counter clockwise; 7: arm roll; 8: air drums; 9:

air guitar.

For comparison purposes, results from previously published
work (Amir et al., 2017; Shrestha and Orchard, 2018; Wang Q.
et al., 2019) on the IBM DVS gesture dataset is carried out which
is shown in Table 3. It can be seen that the SCRNN approaches
state-of-the-art recognition accuracy, surpassing the benchmark
accuracy of IBM’s work in 10 gesture classification task categories.
The original work from IBM that ran on TrueNorth was trained
with Eedn (Amir et al., 2017) and required extra filters and
preprocessing before the CNN. On the other hand, the SCRNN
takes the neuromorphic data directly from the sensor and the
training process does not require any additional processing to
the data. The SLAYER algorithms (Shrestha and Orchard, 2018)
using CNN with a feedforward structure achieved an accuracy
of 93.64% on average for the 11 class recognition. Although the
SCRNN does not outperform the SLAYER based CNN network
in 11 class classification, the SCRNN is still competitive at
90.28%. We conclude that this accuracy drop for the 11 class
recognition task is due to the introduction of the additional
class of the random gesture. The “other” class in the DVS
gesture dataset consists of random samples and each of those
are neither same as other samples nor do they fall into the first

10 categories. The SCRNN with designed recurrent convolution
operation is found to be less effective in such types of training
data. Although the SCRNN does not outperform the SLAYER
based CNN network in 11 class classification, the SCRNN is still
competitive at 92.01%. The pointnet++ (Wang Q. et al., 2019)
processed individual event data using an MLP based feedforward
neural network which achieved the best accuracy in both 10 and
11 category gesture recognition tasks. However, the pointnet++
is not a spiking based training algorithm, with less potential to
be applied to neuromorphic hardware, and the DVS data in their
method needs to be modeled as multiple points cloud with each
spike {x,y,z} is fed into an MLP.

5. EFFECT OF RECURRENT CONNECTION

To further demonstrate the effectiveness of SCRNN for the
category-limited dynamic scene recognition. A mini-experiment
is designed to directly compare the effect of the recurrence for the
10 class gesture recognition. A feedforward spiking convolutional
neural network and an SCRNN is designed following a “same
learning capacity rule” as is shown in Figure 9. The spike pooling
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FIGURE 8 | The example of 3 layer SCRNN misclassification case. The 4 figures demonstrate a similarity of event dynamics between the hand clapping gesture and

air drum gesture. Top left: the 3D view of a hand clapping sample with duration of approximately 1 s. Top right: the 2D view of a hand clapping gesture that

integrated all spikes within 1 s. Bottom left: the 3D view of a air drum gesture sample with duration of approximately 1 s. Bottom right: the 2D view of a air drum

gesture that integrated all spikes within 1 s.

TABLE 3 | Comparison of SCRNN gesture recognition results with previous work.

Method Type of processing 10 class 11 class

IBM TrueNorth Eedn

(Amir et al., 2017)

Spiking 96.49% 94.59%

SLAYER CNN

(Shrestha and Orchard,

2018)

Spiking Unknown 93.64%± 0.49%

PointNet++ (Wang Q.

et al., 2019)

Non-Spiking 97.08% 95.32%

SCRNN Spiking 96.59% 92.01%

operation was applied to reduce the computational cost. The
pooling was done by reducing all the spikes in a pooling kernel
into one over the spike presentation time. The two structures
are exactly the same in neuron parameters, the number of
neurons and number of layers except the SCRNN has a recurrent

connection in each convolution layer. For both structures, with
the segmentation length of ls, the first layer is a pooling layer
with a kernel size of 4 × 4 × ls, which reduces the dimension
of data from 128 × 128 × ls to 32 × 32 × ls. The second layer
is a convolutional layer that has a kernel size of 3 × 3 × ls with
16 hidden neurons. The third layer is a pooling layer using 2× 2
kernels to further reduce the dimension of each feature map to 16
× 16× ls. The fourth layer is a convolutional layer with 32 hidden
neurons with the kernel size of 3 × 3 × ls, which the output
flattens and feeds into a fully connected layer with 5,256 neurons,
followed by the output layer to perform the classification.

The feedforward CNN is different from the SCRNN in the
training phase. For CNN, the first 1s event data of each sample
with a temporal resolution of 1 ms (ls = 1,000) is used as the
input data, which only needs to be fed to the network once per
sample. The SCRNN takes the same length of input data in total
for each sample but a segmentation length of ls = 50 is selected
to partition the input into 20 subsets. This represents that fact
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FIGURE 9 | The network structure for the experiments of comparison between the feedforward Spiking Convolutional Neural Network and SCRNN.

that the SCRNN needs to iteratively take the data to perform the
recurrent processing.

Both of the designed structures are trained for 100 epochs
on five trials with different weight initializations, the averaged
testing accuracy dynamics of these two experiments are plotted
in Figure 10. The SCRNN compared to standard feedforward
spiking CNN with a similar learning condition can provide a
faster convergence speed. As shown in Figure 10, the averaged
testing accuracy of SCRNN is stabilized after approximately 40
epochs while the CNN requires about 25 additional epochs to
fully converge with the data. Furthermore, the SCRNN without
the inference of the unknown class can provide a recognition
accuracy of 88.64% on the 10 class gesture recognition in
this particular structure, while the feedforward CNN only
achieves 84.09%.

6. CONCLUSION

In this paper we presented a novel spiking convolutional
recurrent neural network that was designed for efficient human
hand gesture recognition. The individual cell is able to extract
the spatial features by 3D spiking convolution operation and
transferring the information recurrently.

The SCRNN is successfully deployed to the DVS 128 gesture
dataset. The SCRNN tested on the IBM DVS gesture dataset
achieved an averaged recognition accuracy of 96.59% for 10

FIGURE 10 | The testing accuracy curve for the designed experiments.

category classification and 90.28% for 11 category classification.
We have shown that the designed SCRNN compared to the
standard feedforward CNN structure performs less competitively
for the “unknown” class but has the advantage in terms
of convergence speech and accuracy for the fixed number
of categories.
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We believe however, that the usage of SCRNN is not only
limited to action recognition but can be extended to various
dynamic scene recognition and prediction tasks. A further
extension of this work could be a spiking-flownet-like network
that is used for optical flow estimation (Dosovitskiy et al., 2015).
Additionally, using new neuromorphic hardware with a low
SWaP (Size, Weight and Power) profile, the SCRNN has the
potential to be implemented as an efficient training algorithm
for neuromorphic action recognition based applications. The
SCRNN also has a strong potential to be implemented on the
Loihi chip due to the use of the SLAYER algorithm.
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