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Abstract

Polymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the
development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage.
Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene
transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene
transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently
unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n = 4) administered a single dose of
endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNFa, G-CSF and GM-
CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating
neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in
signaling of TNFa and IL-1a and IL-1b. The transcriptome profile of inflammatory activated neutrophils in vivo reflects
extended survival and regulation of inflammatory responses. These changes in neutrophil transcriptome suggest a
combination of early activation of circulating neutrophils by TNFa and G-CSF and a mobilization of young neutrophils from
the bone marrow.
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Introduction

Sepsis is the most frequent cause of death at non-cardiac

intensive care units [1,2]. It is characterized by a systemic

inflammatory response, and associated with marked cardiovascu-

lar changes, capillary leakage, tissue damage and multiple organ

failure. The most common form of sepsis is caused by bacterial

infection, and involves a severe host immune response. The

inflammatory responses induced by bacteria are mediated by the

expression of pathogen-associated molecular patterns (PAMPs)

which are recognized by the host cells via pattern recognition

receptors (PRRs) such as Toll-like receptors (TLRs) [3]. For

example, stimulation of TLR4 by lipopolysaccharide (LPS) of

Gram-negative bacteria results in activation of inflammatory

signaling pathways and induction of cytokine secretion by

endothelium and circulating leukocytes [4]. In blood, systemic

inflammation is classically reflected by a change in leukocyte count

with most prominent an increase in neutrophils. During the course

of systemic inflammation, neutrophil numbers remain elevated

[5]. Besides their anti-microbial activity, neutrophils also exert

regulatory functions during inflammation by secretion of their

granular content and direct cell-cell interaction with mononuclear

cells and endothelium [6,7]. It has been shown that the pool of

circulating neutrophils during systemic inflammation is reflected

by a diversity in neutrophil phenotype [8].

The human endotoxemia model is a valuable tool to study early

inflammatory mechanisms [9]. Transcriptome analysis of this in

vivo response to LPS has been shown to reflect the trancriptome

profiles of septic or injured patients[10–12]. These studies focused

on whole blood and PBMC analysis, showing an early acute

response followed by a recovery phase in gene expression.

However, up till now, it is unclear what part of this acute systemic

inflammatory regulation can be attributed to circulating neutro-

phils. In the current study, we present for the first time the

transcriptional response of circulating neutrophils to LPS admin-

istration in vivo. We use novel analysis methods based on physical

protein interaction to control for interaction enrichment bias.

Hereby, we aim to identify the role of circulating neutrophils in

controlling systemic inflammation by evaluation of their gene

expression kinetics and immunomodulatory properties during

early inflammatory responses, increased granulopoiesis and

neutrophilia.

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38255



Results

Clinical and Inflammatory Parameters Induced by LPS
Infusion in Healthy Volunteers

Infusion of LPS in healthy volunteers induced clinical symptoms

corresponding with a systemic inflammatory response (increased

heart rate, increased body temperature) (data not shown). Total

leukocyte counts increased 1–2 hours after infusion of LPS and

remained elevated during the whole experiment (12 hours)

(Figure 1A). Leukocyte counts showed a depletion of monocytes

and lymphocytes 1 hour after LPS infusion with gradual recovery

afterwards. In contrast, the neutrophil fraction after a short drop

in numbers (50%), increased 1 hour after LPS infusion and

remained elevated during the entire experiment (Figure 1A).

Plasma levels of pro-inflammatory cytokines TNFa and IL-6 levels

were maximal 1.5 hours after infusion of LPS and returned to

baseline after 6 hours, whereas circulating IL-1b remained below

the detection limit. The anti-inflammatory cytokines IL-1RA and

IL-10 reached maximal plasma levels 3 hours after LPS infusion.

The chemokines IL-8 and MCP-1 peaked at 2 hours and 3 hours

after LPS infusion, respectively (Figure 1B). The colony stimulat-

ing factor G-CSF peaked at 4 hours after LPS infusion, whereas

plasma levels GM-CSF remained below detection limit

(Figure 1C).

Microarray Transcriptome Analysis of Circulating
Neutrophils after LPS infusion Reveals a Time Specific
Expression Pattern

To investigate the in vivo neutrophil transcription response after

LPS infusion, a total of 17393 core genes was analyzed on

microarray. Principal component analysis of expression in time

indicates a separation of time t = 2 hours from time t = 4 hours and

t = 6 hours for all four subjects (data not shown). From the core

gene set, 2248 genes (<13%) were differentially expressed relative

to time t = 0 hours at a fold change threshold of 2 (Table S1). Out

of these genes, 233 genes were consistently upregulated and 307

genes were consistently downregulated at all 3 investigated time

points following LPS infusion. Gene ontology analysis indicates

overrepresentation of processes involved in the inflammatory

response in the up-regulated genes and lymphocyte activation in

the down-regulated genes (Figure S1).

Out of the 2248 differentially expressed genes, 37 were

increasingly upregulated and 79 genes were increasingly down-

regulated over time. Meanwhile, 49 genes showed a ‘wavy’

behavior in time, being either first upregulated at t = 2 hours and

downregulated at t = 4 hours and t = 6 hours or vice versa. This

was consistent for all four subjects tested (Figure 2).

Validation of Microarray by q-PCR
The top 5 persistently upregulated and the top 5 persistently

downregulated genes were selected for q-PCR validation of the

microarray, as well as 5 relevant inflammatory genes with wavy

behavior (Table 1). Q-PCR gene expression analysis was similar

with the expression data from the microarray (Figure 3). Strongly

downregulated IL7R and CD3G confirm minor PBMC contam-

ination in isolated neutrophil fractions.

Consistently Upregulated and Downregulated Genes
have a High Number of Protein-Protein Interactions
among them

The higher the number of protein-protein interactions within a

set of proteins, the more functionally cohesive the set is expected to

be. The overrepresentation of interactions among a set of proteins,

relative to a random set of proteins with the same number of

interactions among all known protein-protein interactions, can be

expressed with a Physical Interaction Enrichment (PIE) score [13].

The PIE score for randomly chosen genes is expected to be 1.0, P-

values are obtained by randomly sampling sets of genes. To

identify relevant networks involved in the neutrophil kinetics after

LPS infusion, we analyzed the genes that were consistently

upregulated (233) or downregulated (307). Both the consistently

upregulated and the consistently downregulated genes show a high

number of protein-protein interactions among them (PIE score

1.139, p = 0.053 for the upregulated genes and PIE score 1.274,

p = 0.002 for the downregulated genes), indicating that they are

functionally cohesive. The protein-protein interaction network of

up-regulated genes contains interacting proteins involved in

signaling of TNFa and IL-1, regulators of transcription (NFkB

family), apoptosis and ligand-receptor interaction (Figure 4). IL-1A

was strongly upregulated (68 fold increase) at 2 hours after LPS

(Table S1).

TNF-signaling, Inflammatory Networks and Apoptosis
Networks are Significantly Influenced by LPS Infusion

Most of the upregulated genes that are involved in inflammatory

pathways and genes of the TNFa signaling pathway were affected

early after LPS infusion. In general, transcription factor expression

for inflammatory genes was induced by upregulation of NFkB-

family genes NFKB1, NFKB2, NFKBIA, NFKBID and

NFKBIE(Figure 5A).

Figure 1. Clinical parameters in time after LPS infusion. A, Leukocyte count with total leukocytes, Polymorphonuclear cell fraction and
mononuclear cell fraction. Error bars represent SEM (N = 4). B, Plasma cytokines at different time points measured by luminex or ELISA (IL8). Error bars
represent SEM (N = 4). C, Plasma GM-CSF and G-CSF measured by cytometric bead array. Error bars represent SEM (N = 4).
doi:10.1371/journal.pone.0038255.g001
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Figure 2. Persistent changes in gene expression. A Genes which are persistently upregulated in time, B Genes which are persistently
downregulated in time, C Genes which are regulated in opposite direction between t = 2 h and t = 4 h/t = 6 h after LPS infusion (wavy genes). D, Heat
map with fold change of genes relative to t = 0. Green represents downregulation and red upregulation.
doi:10.1371/journal.pone.0038255.g002

Table 1. Selection of top 5 persistently upregulated, persistenly downregulated and relevant wavy genes for q-PCR validation with
fold changes on microarray.

Gene symbol t = 3 t = 5 t = 7 Description

persistently upregulated CD177 11.16 22.63 24.93 CD177 antigen

HGF 5.24 21.56 32.90 Hepatocyte growth factor

HP 5.58 14.93 18.64 Haptoglobin

TRPS1 4.66 14.83 16.34 Trichorhinophalangeal syndrome 1

IL18R1 5.28 8.69 10.06 Interleukin 18 receptor 1

persistently downregulated P2RY10 212.73 219.29 223.10 Purinergic receptor P2Y, G-protein coupled, 10

IL7R 29.13 211.16 212.82 Interleukin 7 receptor

FAIM3 27.31 29.00 213.45 Fas apoptotic inhibitory molecule 3

ITGA4 27.52 28.82 28.88 Integrin alpha 4 (antigen CD49D, alpha subunit of VLA-4 receptor)

CD3G 28.00 28.34 214.03 CD3G molecule, gamma (CD3-TCR complex)

Wavy behavior FCGR1A 22.95 5.06 7.41 Fc fragment of IgG, high affinity 1a, receptor (CD64)

STAT5A 22.11 2.41 2.43 signal transducer and activator of transcription 5A

JAK3 22.48 2.23 2.55 Janus Kinase 3

IL1RAP 210.56 2.08 2.66 Interleukin 1 Receptor accessory protein

KCNAB2 2.45 20.77 22.46 potassium voltage gated channel, shaker related subfamily, beta member

doi:10.1371/journal.pone.0038255.t001
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Since TNFa plasma levels increased early following LPS

infusion in parallel with circulating neutrophils, we investigated

the activation of neutrophils by TNFa. TNFa inducible proteins 3

and 6 were strongly upregulated at all time points with peaks at

t = 2 hours. TNFAIP3 was because of its important role in TNFa
signaling also validated by q-PCR (Figure 3). Furthermore, TRAF

genes were induced and TNF receptor gene expression was

differentially regulated (Figure 5B). TNFa gene expression was

upregulated at t = 2 hours, but not at t = 4 hours and t = 6 hours.

These data may suggest that circulating neutrophils after LPS

infusion are activated by circulating TNFa.

Apoptosis of neutrophils is inhibited by G-CSF and interestingly,

apoptosis of circulating neutrophils is decreased during sepsis [14].

Early after LPS infusion in healthy volunteers plasma levels of G-

CSF increased (Figure 1C). Apoptosis pathway genes were

differentially regulated, with among them a pronounced upregula-

tion of anti-apoptotic genes BIRC3 and TNFRSF10D (Figure 5C).

Specific Ex vivo Stimulation of Neutrophils Results in
Stimulus Specific Gene Expression Patterns

The induction of the increasingly upregulated genes and TNF/

anti-apoptosis pathways is initiated by multiple ligands. We

investigated the effect of direct activation by specific ligands on

neutrophil gene transcription. Freshly isolated neutrophils were

stimulated ex vivo with LPS, rTNFa, rG-CSF and rGM-CSF.

Figure 6A shows neutrophil gene expression at 2 hours after

stimulation. The neutrophil specific protein CD177 was mainly

induced by G-CSF (15 fold increase) and TNFa induced

Figure 3. Validation of array results by taqman gene expression assay q-PCR. A, Gene expression in time relative to t = 0 for 16 target
genes Geometric mean of 4 individuals. B, corresponding q-PCR results for same geneset in time relative to t = 0 h.
doi:10.1371/journal.pone.0038255.g003
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TNFAIP3 expression (12 fold increase) as well as NFKBIA (8 fold

increase). Other investigated genes were not mediated by these

specific ligands.

In addition, the ex vivo survival of neutrophils was assessed.

neutrophils incubated with LPS and G-CSF for 7 hours showed 10%

more viable cells compared with RPMI control, and GM-CSF

stimulated cells (Figure 6B). TNFa stimulated neutrophils exhibited

10% lower viable cells compared with RPMI. These results confirm

that the activation, reflected by gene-expression patterns, of

circulating neutrophils can be partially induced by the early secreted

cytokines, growth factors, and direct stimulation with LPS.

Discussion

In our study, we characterized the transcriptome profiles of

circulating neutrophils, in the human experimental endotoxemia

model. We showed an abundant upregulation of inflammatory

pathways and regulation of apoptosis pathways involving G-CSF,

TNFa and IL-1a and IL-1b [15].

The microarray analysis revealed direct neutrophil responses to

a diverse pool of activators present in high concentrations in the

circulation after LPS infusion. Clear distinction can be made

between early (2 hours after LPS) and late (4 hours and 6 hours

after LPS) response transcriptome profiles with highest activation

at 2 hours after LPS. In contrast, Calvano et al. showed a time

dependent activation of inflammatory pathways with peak

activation at 4 hours in whole blood [10]. It is unclear what

causes these differences since the total circulating leukocyte

population after activation exists mainly out of neutrophils.

Interestingly gene transcription at 2 hours is similar with our

current findings and reflected by e.g. early elevated expression of

IL1A, IL1B TNF, TNFAIP3, PTX3 and different chemokines like

CCL20 and CXCL10. This suggests that the by Calvano et al.

reported change in whole blood inflammatory gene transcription

at 2 hours after LPS administration can be mainly attributed to

circulating neutrophils. Furthermore, others have shown previ-

ously in this model of systemic inflammation that after LPS

administration a population of CD16dim neutrophils with a

banded nuclear morphology appears in the circulation, most

likely released from the bone marrow [8]. This population

comprises up to 40% of the total amount of circulating neutrophils

at 6 hours after LPS administration. In this respect, it is very likely

that changes in gene expression at 4 hours and 6 hours after LPS

are partially due to an increase of these young CD16dim

neutrophils in the circulation. The influence of these CD16dim

neutrophils could be even higher since these cells have a lower

Figure 4. Functional networks of persistent changes in gene expression. Cohesive network based on 233 upregulated genes. ‘Wavy’ genes
are marked blue and persistent upregulated genes are represented by large nodes.
doi:10.1371/journal.pone.0038255.g004
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density and the recovery from our density centrifugation method

may be less.

The novel analysis method based on physical protein interac-

tion, enabled us to identify networks of upregulated genes linked

with inflammatory activation and apoptosis of neutrophils without

interaction enrichment bias. This upregulated functional network

showed a strong prediction of physical protein interaction as

indicated by its high cohesiveness [13]. By restricting to the protein

interaction network with high cohesiveness, we identified potential

relevant protein interactions for neutrophils in early inflammatory

response. The current analysis revealed a network of eleven

different protein interactions that may account for the inflamma-

tory regulation of circulating neutrophils. Since multiple upregu-

lated genes such as Matrix Metalloproteinase 9 (MMP9), Lipocalin

2(LCN2), Hepatocyte growth factor (HGF) and Haptoglobin (HP),

are known as granule proteins, the backbone of upregulated genes

we found suggests a change in granule content following activation

by pro-inflammatory factors. Interestingly, the expression of these

proteins is increased in bone marrow neutrophils and their

precursors[16–18]. Since HGF and HP expression are poorly

upregulated by specific ex vivo stimulation (Figure 6), it is plausible

that the observed increases in expression are partially represented

by release of bone marrow neutrophils to the circulation. This is

supported by our findings that upregulation of the neutrophil

specific marker CD177, highly expressed on bone marrow

neutrophils, is even higher at 4 hours and 6 hours after LPS

compared with 2 hours after infusion. In contrast with this, we did

show G-CSF induced upregulation of CD177 expression ex vivo.

This is confirmed by Passamonti et al., who showed that

neutrophils isolated from the bone marrow, or from peripheral

blood following G-CSF administration showed both increased

CD177 expression compared with circulating granulocytes in

steady state conditions [19]. Taken together, this implies that

direct stimulation of circulating neutrophils and influx of bone

marrow neutrophils contribute both to changes in gene expression

kinetics.

During systemic inflammation, pro-inflammatory pathways

(LPS,TNFa) and pro-survival routes (G-CSF, GM-CSF) can cause

neutrophilia by induction of neutrophil release from the bone

marrow [20,21]. In addition to release from the bone marrow,

delayed neutrophil apoptosis may also contribute to high

circulating neutrophil numbers. During sepsis, a delayed apoptosis

can result in neutrophilia and subsequent tissue damage [22]. It

has been demonstrated that already under steady state conditions,

in vivo neutrophil lifespan is about 5.4 days [23]. We showed under

early inflammatory conditions that apoptosis pathways are

regulated on the gene expression level. The gene expression

profiles indicated delayed neutrophil apoptosis by either early

induced expression of anti-apoptotic routes like the TNFa
pathway but also G-CSF driven inhibition of pro-apoptotic routes

via Calpain and XAF1 [24]. In line, ex vivo stimulation of

neutrophils with G-CSF reduced apoptosis. In contrast, stimula-

tion with TNFa even increased apoptotic cell death. This implies

that although the TNFa survival pathway was upregulated, TNFa
has no anti-apoptotic effect early after stimulation.

As described recently, IL-1b inhibits IKKb-NF-kB and thereby

contributes to neutrophilia [25]. The upregulated protein inter-

action network after LPS infusion suggests increased IL-1 signaling

although circulating IL-1b was not detectable. Since IL-1a
expression was strongly increased in neutrophils at 2 hours after

LPS infusion (Table S1), it may indicate an important role of IL-

1a in the observed neutrophilia and activated IL-1 signaling

pathway. This supports our hypothesis that the observed

neutrophilia, at least in part is caused by cytokine and growth

factor increased survival of circulating neutrophils. In neutrophils,

the role of IL-1a in the induction of survival might be superior

compared to TNFa. The contribution of IL-1a in the mediation of

survival in neutrophilia should therefore be further investigated.

Figure 5. Kinetic behavior of inflammatory genes. A Genes of the
NFkB family. Fold change in time relative to t = 0 h. B TNF related genes
and genes from TNF receptor family. Fold change in time relative to
t = 0. C Apoptosis mediating genes. Fold change in time relative to
t = 0 h.
doi:10.1371/journal.pone.0038255.g005
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We hereby directly demonstrated early pro-inflammatory

activation of neutrophils reflected by induced pathway expression.

Since LPS is cleared from the circulation very rapidly, high

numbers of circulating inflammatory cytokines, released by a.o

tissue macrophages [26] and endothelium, are likely to account for

the major part of this activation of neutrophils. TLR pathways are

induced in macrophages and endothelial cells directly after

infusion of LPS [27,28]. We found no persistent upregulation of

these pathways in circulating neutrophils. We did show that TNF

signaling routes were activated and NFkB family genes were

induced These genes comprised mainly the NFkB inhibitory

complex like NFKBIA, NFKBID, NFKBIE and NFKBIZ. This is

in line with neutrophil transcriptome data in sepsis patients

indicating suppression of neutrophils during sepsis [29]. Our data

suggests that these regulatory mechanisms are also changed during

controlled human endotoxemia. The ability of LPS to directly

regulate neutrophil activity is mainly dependent on the TLR

expression on neutrophils. Interestingly LPS was able to slightly

increase neutrophil survival ex vivo. Since neutrophils do express

TLR4 [30], it is plausible that LPS can activate these pathways,

however this activation is not reflected on the most persistently

upregulated genes.

This is the first full genome gene transcription analysis that has

been performed in circulating neutrophils during human exper-

imental endotoxemia. We herewith include the complex environ-

ment of the circulation after systemic activation. By combining this

analysis with specific ex vivo neutrophil stimulation we underlined

the complexity of neutrophil kinetics during early systemic

inflammation. We show that gene transcription profiles of

inflammatory activated neutrophils in vivo reflects extended

survival and regulation of inflammatory responses. These changes

in neutrophil transcriptome suggest a combination of early

activation of circulating neutrophils and a mobilization of young

neutrophils from the bone marrow.

Methods

Subjects
Neutrophil gene expression was studied in 4 healthy male

volunteers who participated in a human endotoxemia trial

(Clinical Trial Register number NCT00783068, placebo group).

The study protocol was approved by the Ethics Committee of the

Radboud University Nijmegen Medical Centre and complies with

the Declaration of Helsinki including current revisions and the

Good Clinical Practice guidelines. Written informed consent was

obtained from all study participants. Physical examinations,

electrocardiography, and routine laboratory studies on all the

volunteers before the start of the experiment showed normal

results. Volunteers were not taking any prescription medications,

and tested negative for hepatitis B surface antigen and human

immunodeficiency virus infection.

Human Endotoxemia Model
Subjects refrained from food 12 hours before the start of the

experiment, and caffeine or alcohol containing substances 24

hours before the start of the experiment. The experiments were

performed according to a strict clinical protocol as described

previously [26]. U.S. Reference E. coli endotoxin (Escherichia coli

O:113, Clinical Center Reference Endotoxin, National Institute of

Health (NIH), Bethesda, MD) was used. Ec-5 endotoxin, supplied

as a lyophilized powder, was reconstituted in 5 ml saline 0.9% for

injection and vortex-mixed for at least 10 minutes after

reconstitution. The endotoxin solution was administered as an

intravenous bolus injection at a dose of 2 ng/kg of body weight.

Plasma Cytokine and Growth Factor Measurements
During human endotoxemia experiments, EDTA anticoagulat-

ed blood was collected from the arterial line and immediately

centrifuged at 2000 g for 10 minutes at 4uC to obtain plasma.

Concentrations of IL-1b, TNF-a, IL-6, IL-10, IL-1RA and MCP-

1 in plasma and whole blood stimulation supernatants were

measured using a simultaneous Luminex Assay according to the

manufacturer’s instructions (Bio-plex cytokine assay, BioRad,

Hercules, CA, USA). IL-8 was measured in plasma by ELISA

Figure 6. Ex vivo neutrophil stimulation. A Gene expression in in vitro stimulated neutrophils. Cells were stimulated with 10 ng LPS, 10 ng
rTNFa, 50 ng rG-CSF or 50 ng rGM-CSF. At t = 2 h after stimulation RNA was isolated and q-pcr was performed with taqman probes for specific genes.
Fold change relative to unstimulated. Error bars represent SEM (N = 4). B Survival after stimulation with 10 ng LPS, 10 ng rTNFa, 50 ng rG-CSF or
50 ng rGM-CSF. Cell viability was determined in $16105 cells with Annexin V apoptosis detection kit at 7 hours after stimulation. Dots represent the
percentage of viable (Annexin V negative and 7 AAD negative) cells. N = 4 *p,0.05.
doi:10.1371/journal.pone.0038255.g006
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(Pelipair, Sanquin, Amsterdam, the Netherlands) following man-

ufacturer’s protocol and plasma G-CSF and GM-CSF concentra-

tions were measured by cytrometric bead array (BD, Franklin

Lakes, USA) on the FACScalibur flow cytometer.

Neutrophil Isolation
Blood samples were drawn at 0, 2, 4 and 6 hours after LPS

administration in 10 ml sodium heparin blood tubes (BD, Franklin

Lakes, USA). Total leukocytes were determined by Tuerk’s

solution (Merck staining, Darmstadt, Germany). Blood was diluted

1:1 with PBS and placed on lymphoprep (Axis shield, Dundee,

UK) and centrifuged. The 1:1 diluted blood plasma was stored at

280uC until further use. The lowest compartment containing the

polymorphonuclear cell fraction was taken containing neutrophils

(purity .95%) mostly contaminated by eosinophils and minor

PBMCs. Shock buffer containing 0.155 M NH4Cl,

0.0001 M Na2EDTA and 0.01 M KHCO3 was used to lyse the

red blood cells. After washing, the granulocytes were counted on a

hemocytometer and cell viability (.99%) was determined using

0.4% trypan blue solution. Granulocytes were suspended at a

concentration of 10*106 cells/ml in Qiagen RLT buffer (Qiagen,

Venlo, the Netherlands) containing 1% B-mercaptoethanol and

stored at 280uC until RNA isolation For ex vivo neutrophil

stimulation, after obtaining written informed consent, EDTA

coagulated blood was drawn from healthy volunteers (N = 4).

Neutrophils were isolated according to the same protocol. After

isolation and washing, cells were allowed to recover for 30 minutes

at 37uC.

RNA Isolation and Microarray Analysis
RNA was isolated by Qiagen RNAeasy RNA isolation kit

according to the manufacturer’s protocol. DNA contamination

was removed by on column DNase treatment (Qiagen, Venlo, the

Netherlands). Total RNA yield was determined on the nanodrop

ND-1000 (Isogen life sciences, and Total RNA quality was

assessed at Agilent 2100 bioanalyzer with RNA 6000 Nano chips

(Agilent, Santa Clara, USA). Neutrophil gene expression was

measured on Affymetrix Human ST 1.0 exon arrays. RNA

material was first amplified, transformed to cDNA and labeled

using ambion WT expression kit and the affymetrix terminal

labeling kit (Ambion, Life Technologies, Carlsbad, USA). Labeled

cDNA was then hybridized for 17 hours to a Human ST 1.0 exon

array, washed and stained according to manufacturers’ instruc-

tions and scanned on a Genechip H scanner 3000 (Affymetrix,

Santa Clara, USA). Microarray data has been uploaded to the

Gene expression omnibus (GEO) with accessionnumber

GSE35590.

Data Analysis
AffymetrixH CEL-files from microarray scans were used for

quality control and first Robust Multiarray Averaging (RMA)

analysis for normalization was performed with PartekH genomics

suiteTM. In order to assess the extent of gene expression fold

changes after LPS infusion in a subject, the normalized log2

intensity value at time 0 was subtracted from those of 2,4 and 6 h,

to yield the relative expression fold change per probeset identity.

The mean fold changes of all probeset identities pertaining to a

gene were used to represent the effective fold change of the gene

for that infused subject. The mean fold change for a gene in all 4

subjects was finally used as its overall fold change of perturbation

in expression after LPS infusion. Genes that were perturbed at

least 2 fold relative to time 0 of LPS infusion were used for

subsequent analyses. That is, a gene is considered up-regulated in

expression if its log2 fold change value is greater than 1; or down

regulated if its log2 fold change value is less than 21. At this fold

change threshold, we queried for sets of genes that are perturbed

in expression at any time point (i.e. major overall perturbed gene

set); at each time point; at all time points; only at certain time

points; those that are increasingly up-regulated or down-regulated

in the course of infusion; and finally those that show wavy

expression patterns, up-regulated at one point but down regulated

at another. We performed gene ontology analysis on each of these

sets of genes to elucidate the temporal transcriptional program

elicited upon LPS stimulation in neutrophils.

All gene ontology annotations were done using the BINGO [31]

plugin in cytoscape [32]. Using this algorithm, we assessed for

gene set overrepresentation using the hypergeometric test with the

multiple correction method of Benjamini & Hochberg False

Discovery Rate (FDR) correction. Our gene sets were tested

against the background of all predicted human genes. Unless

otherwise stated, all biological processes mentioned were signifi-

cantly (corrected p-value ,0.01) overrepresented by the set of

genes perturbed at any time after LPS infusion (at t = 0 h). Protein-

protein Interaction data were obtained from HPRD, release 9

Protein-protein Interaction data were obtained from HPRD [33].

Q-PCR for Microarray Validation and in Vitro Neutrophil
Gene Expression

From every sample, 250 ng RNA was reverse transcribed to

cDNA with superscript III (Invitrogen, Paisley, UK). Gene specific

Taqman gene expression assays (Life Technologies, Carlsbad,

USA) were used in q-PCR to determine sample gene expression.

GAPDH and 18S were used as reference genes. q-PCR was

performed at the applied biosystems 7500 fast q-PCR machine

using standard procedures.

In Vitro Neutrophil Stimulation
Neutrophils (5610L6 cells/ml) in RPMI supplemented with

0.5% Human Serum Albumin (Sanquin, Amsterdam. The

Netherlands) were stimulated at t = 0 with LPS (10 ng/ml;

Escherichia coli serotype 055:B5, Sigma Aldrich, purified as

described previously [34]), TNFa (10 ng/ml; Abcan, Cambridge,

UK), G-CSF (50 ng/ml; R&D Systems, Minneapolis, USA) and

GM-CSF (50 ng/ml; Cellgenix, Freiburg, Germany). After 2

hours, 800 ml cell suspension was taken and washed with PBS.

Subsequently cells were resuspended in 350 ml RLT with 1% Beta

mercapthoethanol and stored at 220uC. After 7 hours, 200 ml cell

suspension was used for apoptosis assay. Survival and apoptosis

were determined on the FACScalibur by Annexin V apoptosis

detection kit (BD, Franklin Lakes, USA) according to the

manufacturers’ instructions.

Statistics
Cell survival was tested with a repeated measures ANOVA, and

Tukey’s multiple comparison post-hoc test. P values #0.05 were

considered statistically significant.

Supporting Information

Figure S1 Functional networks of persistent changes in
gene expression. Cohesive network based on 307 downregu-

lated genes. ‘Wavy’ genes are marked red and persistent

downregulated genes are represented by large nodes.

(TIF)

Table S1 List of 2248 perturbed genes on one or more
timepoints in alphabetical order. Fold changes are Log 2

transformed.
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